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Motivated by the recently developed duality (by Pretko and Radzihovsky) between elasticity
of a crystal and a symmetric tensor gauge theory, we explore its classical analog, that is a dual
theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a
higher derivative vector sine-Gordon model. It provides a transparent description of the continuous
two-stage melting in terms of the renormalization-group relevance of two cosine operators that
control the sequential unbinding of dislocations and disclinations, respectively corresponding to the
crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis
compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic
couplings and of the dislocation and disclination fugacities, as well the temperature dependence of
the associated correlation lengths.

I. INTRODUCTION

A. Background and motivation

Theory of continous two-dimensional (2D) melting,
developed by Kosterlitz and Thouless2 , Halperin and
Nelson3, and Young4 (KTHNY), building on the work of
Landau5, Peierls6 and Berezinskii7,8, has become one of
the pillars of theoretical physics. Mathematically related
to simpler normal-to-superfluid and planar paramagnet-
to-ferromagnet transitions in films, described by a 2D
XY model, it is a striking example of the increased
importance of thermal fluctuations in low-dimensional
systems9,10. In contrast to their bulk three-dimensional
analogs, where, typically, fluctuations only lead to quan-
titative modifications of mean-field predictions (e.g., val-
ues of critical exponents), here the effects are qualita-
tive and drastic. Located exactly at the lower-critical
dimension, a local-order-parameter distinction between
the high- and low-temperature phases is erased by fluc-
tuations, two-dimensional melting can proceed via a sub-
tle, two-stage, continuous transition, driven by unbind-
ing of topological dislocations and disclinations defects.
This mechanism, made possible by strong thermal fluc-
tuations, therefore provides an alternative route to a di-
rect first-order melting, argued by Landau’s mean-field
analysis5 to be the exclusive scenario.

As such, the continuous two-dimensional melting (and
related disordering of a 2D XY model) is the earliest ex-
ample of a thermodynamically sharp, topological phase
transition between two locally disordered phases, that,
thus, does not admit Landau’s local order-parameter de-
scription. It is controlled by a fixed line, that lends itself
to an asymptotically exact analysis2–4.

Although evidence for defects-driven phase transitions
has appeared in a number of experiments on liquid
crystals11 and Langmuir-Blodgett films12, finding sim-
ple model systems which exhibit these phenomena in ex-
periments or simulations has proven to be more chal-
lenging. Most studied systems appear to exhibit dis-
continuous first-order melting that converts a crystal di-

rectly into a liquid. However, it appears, that the two-
stage continuous melting has been experimentally ob-
served by Murray13 and Zahn14 in beautiful melting ex-
periments on two-dimensional colloids confined between
smooth glass plates and superparamagnetic colloidal sys-
tems, respectively. In these experiments, an orientation-
ally quasi-long-range ordered but translationally disor-
dered hexatic phase3 was indeed observed. As was first
emphasized by Halperin and Nelson3, the hexatic liq-
uid, intermediate but thermodynamically distinct from
the 2D crystal and the isotropic liquid, is an important
signature of the defect-driven two-stage melting. In these
two-dimensional colloids, particle positions and the asso-
ciated topological defects can be directly imaged via dig-
ital video-microscopy, allowing precise quantitative tests
of the theory.

B. Duality of two-stage melting transition

The disordering of the simpler 2D XY model (describ-
ing e.g., a superfluid-normal transition in a film) is well
known to admit two complementary descriptions, the 2D
Coulomb gas of vortices15 and its dual sine-Gordon field
theory.3,9,16–18 As with other dualities – a subject with
long history and of much current interest20 – the sine-
Gordon duality has been extensively utilized in a variety
of physical contexts. Given that elasticity of a crystal
can be thought of as a space-spin coupled vector general-
ization of an XY model (with a vector phonon Goldstone
modes ux, uy replacing the scalar phase angle), it is of
interest to also develop an analogous dual sine-Gordon
formulation and to use it to study the 2D continuous
melting transition.

Indeed, recently, such complementary description has
emerged as a classical limit of the elasticity-to-tensor
gauge theory duality1,21, derived in the context of a new
class of topologically-ordered fracton matter22. As we
will detail in the body of the paper the corresponding
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dual Hamiltonian is given by

H̃ =

∫
d2r

[
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ

−gb
p∑

n=1

cos(bn · ẑ×∇φ)− gs cos(spφ)

]
.

(1)

Its key features, that characterize the continuous two-
stage melting are the higher order “Laplacian elastic-
ity”, encoded via elastic constants C̃−1

ij,kl and two sine-
Gordon type of operators with couplings gb, gs, respec-
tively capturing the importance (fugacities) of dislocation
(elementary vector charges bn) and disclination (elemen-
tary scalar charge sp) defects.

To flesh out the essence of this dual description, ne-
glecting inessential details, the above Hamiltonian is
schematically described by

H̃ ∼
∫
r

[
1

2
C̃(∂2φ)2 − gb cos(∂φ)− gs cos(φ)

]
, (2)

where
∫
r
≡
∫
d2r. Because of the second-order Lapla-

cian elasticity, standard analysis around the Gaussian
fixed line gb = gs = 0 shows that the mean-squared fluc-
tuations of Airy-stress potential φ diverge quadratically
with system size. This leads to an exponentially (as op-
posed to power-law in a conventional sine-Gordon model)
vanishing Debye-Waller factor, and in turn to a strongly
irrelevant disclination cosine, gs, that can therefore be
neglected, whenever gb is small, i.e., near the Gaussian
fixed line.

The schematic Hamiltonian then reduces to

H̃cr ∼
∫
r

[
1

2
C̃(∂χ)2 − gb cos(χ)

]
, (3)

with χ = ∂φ. It thus obeys the standard sine-Gordon
phenomenology, exhibiting a KT-like“roughenning”tran-
sition in χ with the relevance of gb, controlled by the
stiffness C̃.3,9,16–18 At small C̃ < C̃c, gb is irrelevant,
describing the gapless crystal phase, with confined dislo-
cations and disclinations. The melting of the crystal is
then captured by the relevance of gb for C̃ > C̃c, corre-
sponding to a transition into a plasma of unbound dis-
locatons characteristic of a hexatic fluid. Since in this
phase gb is relevant, at sufficiently long scales the dislo-
cation cosine in Eq.(2) reduces to a harmonic potential
for χ, −gb cos(∂φ) ∼ 1

2gb(∂φ)2. The effective Hamilto-
nian is then given by

H̃hex ∼
∫
r

[
1

2
gb(∂φ)2 − gs cos(φ)

]
, (4)

where we have neglected the C̃ “curvature” elasticity rel-
ative to the gradient one encoded in gb and restored the
disclination cosine operator gs cos(φ). The resulting con-
ventional sine-Gordon model in φ can then in turn exhibit
the second KT-like “roughenning” transition, capturing
the hexatic-to-isotropic fluid transition, asssociated with

unbinding of disclinations. The corresponding RG flow
of the dual vector sine-Gordon model is schematically il-
lustrated in Fig. 1. We leave the detailed analysis of
this two-stage melting transition to the main body of the
paper and its Appendix.

FIG. 1: A schematic illustration of RG flows in the dual vec-
tor sine-Gordon model. It describes the two-stage continuous
2D melting, crystal-to-hexatic and hexatic-to-isotropic liquid
transitions, associated with the consequetive relevance of dis-
locations (gb) and disclinations (gs) fugacities, as a function
of the elastic modulus K̄−1 = 2µ+λ

4a2µ(µ+λ)
, expressed in terms

of the Lamé elastic constants, µ, λ (defined in the main text)
and lattice constant a.

C. Outline

The rest of this paper is organized as follows. In Sec.
II, after briefly reviewing the elasticity theory of two-
dimensional crystal and its topological defects, we give
two detailed complementary derivations of the duality
transformation to the vector sine-Gordon model. Uti-
lizing the latter we straightforwardly reproduce known
results for the crystal-hexatic phase transition in Sec.
III, by focussing on the dislocation fugacity cosine op-
erator and neglecting the irrelevant disclinations. Inside
the hexatic phase, we derive a scalar sine-Gordon model
for the Airy stress potential, that captures the subse-
quent hexatic-isotropic liquid transition. We conclude in
Sec. IV with a summary of our results and discussion of
potential application of this dual approach.

II. DUALITY OF 2D MELTING

A. Two-dimensional elasticity

At low temperatures, the deformations of a crystal
do not vary substantially over the atom size, allowing
it to be described with a continuum field theory of its
phonon Goldstone modes, u(r), with a short-distance
cutoff set by the lattice spacing a. The underlying trans-
lational symmetry (spontaneously broken by the crys-
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tal), requires that the elastic energy is an analytic expan-
sion in the strain field ∂iuj . The underlying rotational
symmetry in the target space (i.e., no substrates and/or
external fields), the elastic Hamiltonian is further con-
strained (in harmonic order) to be independent of the
antisymmetric part of ∂iuj , i.e., of the local bond angle
θ(r) = 1

2εij∂iuj = 1
2 ẑ ·∇ × u. The elastic Hamiltonian

density to harmonic order is thus given by

H =
1

2
Cij,kluijukl, (5)

where uij = 1
2 (∂ir · ∂jr− δij) is the symmetric nonlinear

strain tensor (fully rotationally invariant in the target
space), which in the harmonic approximation takes the
linear symmetrized form

uij ≈
1

2
(∂iuj + ∂jui). (6)

Cij,kl is the elastic constant tensor, whose number of
independent components is restricted by the symmetry
of the crystal. For simplicity, we focus on the isotropic
hexagonal lattice, where Cij,kl takes the form

Cij,kl = λδijδkl + 2µδikδjl (7)

and characterized by two independent elastic constants,
the Lamé coefficients, λ and µ. As we discuss in Ap-
pendix B, an external stress σeij(r) is included through
an additional term −σeijuij , here focussing on the case of
a vanishing external stress.

B. Topological defects

In addition to the single-valued elastic phonon fields,
the crystal also exhibits topological defects – disclina-
tions and dislocations, captured by including a nonsingle-
valued part of the phonon distortion field.

Disclinations are topological defects associated with
orientational order. A disclination at a point r0, illus-
trated in Fig. 2(a), is defined by a nonzero closed line-
integral of the gradient of the bond angle around r0:∮

r0

dθ =
2π

p
s (8)

or equivalently in a differential form:

ẑ ·∇×∇θ =
2π

p
sδ2(r− r0) ≡ 2π

p
s(r), (9)

measuring the deficit/surplus bond angle, (2π/p)s, with s
the integer disclination charge in a Cp symmetric crystal.
In the case of a hexagonal lattice, p = 6. Above, s(r) is
the disclination charge density.

Dislocations are vector topological defects associated
with translational order. A dislocation at r0 with a Burg-
ers vector-charge bn (that is an elementary lattice vec-
tor), as illustrated in Fig. 2(b), is defined by a closed

line-integral ∮
r0

du = bn, (10)

or equivalently in the differential form,

ẑ ·∇×∇ui = bi,nδ
2(r− r0) ≡ bi(r), (11)

where b(r) is the Burgers charge density. As illustrated
in Fig.2(b), a dislocation is a disclination dipole, and is
therefore energetically less costly than a bare disclination
charge.

(a)

(b)

FIG. 2: Topological defects in a 2D hexagonal lattice. (a)
A disclination. (b) A dislocation, a dipole of two, opposite
charge disclinations. (Figure adapted from Ref. 1.)

C. Vector Coulomb gas formulation

In the presence of topological defects, the distortion
field u(r) is not single-valued. It and the associated strain
tensor can be decomposed into the single-valued elastic
phonon and the singular parts,

ui = ũi + usi , (12)

uij = ũij + usij . (13)

To include these topological and phonon degrees of free-
dom we focus on the partition function (taking kBT = 1,
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i.e., measuring coupling constants in units of thermal en-
ergy),

Z =

∫
[du]e−

∫
r
H[u]

=

∫
[dũ][dus]

∫
[dσij(r)]e−

∫
r
H[u,σij ],

(14)

where the trace over u(r) implicitly includes both
phonons and topological defects by allowing nonsingle-
valued distortions. In the second form, above, we de-
coupled the elastic energy by introducing a Hubbard-
Stratonovich tensor field – the symmetric stress tensor
σij(r)18, with the resulting Hamiltonian density given by

H[u, σij ] =
1

2
C−1
ij,klσijσkl + iσijuij

=
1

2
C−1
ij,klσijσkl + iσij

(
∂iũj + usij

)
.

(15)

Above, for a 2D hexagonal lattice,

C−1
ij,kl = − λ

4µ(µ+ λ)
δijδkl +

1

2µ
δikδjl (16)

Tracing over the single-valued phonons ũ, enforces
the divergenless stress constraint (via δ-function identity
1

2π

∫∞
−∞ dueiuf = δ(f))

∂iσij = 0, (17)

solved with a scalar Airy stress potential, φ(r),

σij = εikεjl∂k∂lφ. (18)

Expressing the Hamiltonian density in terms of φ(r), and
integrating by parts in the second linear term, we utilize
the defects conditions, Eq. 9, 11,

εikεjl∂l∂ku
s
ij = εikεjl∂l∂k(∂iu

s
j − εijθs), (19a)

= εki∂kbi(r) + εki∂k∂iθ(r), (19b)

= ẑ ·∇× b +
2π

6
s(r), (19c)

to obtain

H[φ] =
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ+ iφ

(
2π

6
s+ ẑ ·∇× b

)
.

(20)

Above C̃−1
ij,kl = εiaεjbεkcεldC

−1
ab,cd.

Focussing on dislocations and neglecting the high en-
ergy disclination defects, we can straightforwardly inte-
grate out φ(r) in the partition function, obtaining a dis-
locations vector Coulomb gas Hamiltonian

Hb =
1

2

∫
d2q

(2π)2
bi(q)K̃ij(q)bj(−q), (21)

where the tensor Coulomb interaction in Fourier and co-
ordinate spaces is given by

K̃ij(q) =
K

q2

(
δij −

qiqj
q2

)
, (22)

Kij(r) = −K
4π

(
δij ln(r/a)− rirj

r2

)
, (23)

with K = 4µ(µ+λ)
2µ+λ .

Thus, dislocations vector Coulomb gas Hamiltonian in
real space reduces to,

Hb = −K
8π

∫
r1,r2

[
b(r1) · b(r2) ln

|r1 − r2|
a

−b(r1) · (r1 − r2)(r1 − r2) · b(r2)

|r1 − r2|2

]
,

(24)

which, in the discrete form and supplemented with core
energies (see below) is exactly the vector Coulomb gas
model used by Nelson and Halperin3 and by Young4, as
the theory of 2D continuous two-stage melting.

D. Dual vector sine-Gordon model

Motivated by the sine-Gordon description of the XY
model, we dualize elasticity by transforming above vector
Coulomb gas into a vector sine-Gordon model and re-
examine two-stage continuous 2D melting transition from
this complementary approach.

Dislocation and disclination densities on a hexagonal
lattice are given as a sum of their discrete charges

b(r) =
∑
rn

brnδ
2(r− rn), (25)

s(r) =
∑
rn

srnδ
2(r− rn), (26)

where rn = a(n1ê1 + n2ê2), (n1, n2 ∈ Z) are triangu-
lar lattice vectors spanned by unit vectors ê1 = x̂ and

ê2 = 1
2 x̂ +

√
3

2 ŷ, brn = a(n1ê1 + n2ê2), and srn ∈ Z are
dislocation and disclination charges, respectively.

In terms of these discrete topological defect charges,
the Hamiltonian is given by

H =
1

2

∫
r

C̃−1
ij,kl∂i∂jφ∂k∂lφ+

∑
rn

[
Ẽbb

2
rn + Ess

2
rn

]
+
∑
rn

[
i
2π

6
φ(rn)srn − iẑ×∇φ(rn) · brn

]
,

(27)

where we have added dislocation and disclination core en-
ergies Eb = a2Ẽb and Es to account for the defects’ ener-
getics at the scales of the lattice constant, not accounted
for by the elasticity theory3. The partition function in-
volves an integration over potential φ(rn) and summation
over the dislocation and disclination charges. Following
a standard analysis2,3,15,16,18,
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Z =

∫
[dφ]

∑
{srn}

∑
{brn}

∏
rn

e−H[φ,brn ,srn ],

=

∫
[dφ]e−

1
2

∫
r
C̃−1
ij,kl∂i∂jφ∂k∂lφ

∑
{srn}

∑
{brn}

∏
rn

[
e−i

2π
6 φ(rn)srn−Ess

2
rn eiẑ×∇φ(rn)·brn−Ẽbb

2
rn

]
,

=

∫
[dφ]e−

1
2

∫
r
C̃−1
ij,kl∂i∂jφ∂k∂lφ

[
1 + e−2Es

∫
d2r1

a2

d2r2

a2
e−i

2π
6 φ(r1)ei

2π
6 φ(r2) + . . .

]
[

1 + e−2Eb

3∑
n=1

∫
d2r1

a2

d2r2

a2
e−iẑ×∇φ(r1)·bneiẑ×∇φ(r2)·bn + . . .

]
,

=

∫
[dφ]e−

1
2

∫
r
C̃−1
ij,kl∂i∂jφ∂k∂lφ ·

[
1 + e−Es

∫
d2r1

a2

(
ei

2π
6 φ(r1) + e−i

2π
6 φ(r1)

)
+

1

2!
e−2Es

∫
d2r1

a2

d2r2

a2

(
ei

2π
6 φ(r1) + e−i

2π
6 φ(r1)

)(
ei

2π
6 φ(r2) + e−i

2π
6 φ(r2)

)
+ . . .

]
∏

n=1,2,3

[
1 + e−Eb

∫
d2r1

a2

(
eiẑ×∇φ(r1)·bn + e−iẑ×∇φ(r1)·bn

)
+

1

2!
e−2Eb

∫
d2r1

a2

d2r2

a2

(
eiẑ×∇φ(r1)·bn + e−iẑ×∇φ(r1)·bn

)(
eiẑ×∇φ(r2)·bn + e−iẑ×∇φ(r2)·bn

)
+ . . .

]
,

≡
∫

[dφ]e−H̃ ,

(28)

where non-neutral charge configurations vanish automat-
ically after integration over φ(r). In the last step, above,
we have summed up over only the positive/negative sin-
gle charges of dislocation and disclination, and obtain the
dual vector sine-Gordon Hamiltonian,

H̃ =

∫
r

[
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ

−gb
3∑

n=1

cos(bn · ẑ×∇φ)− gs cos

(
2π

6
φ

)]
.

(29)

Above, the couplings gb = 2
a2 e
−Eb , gs = 2

a2 e
−Es are

proportional to dislocation and disclination fugacities,
and the three elementary dislocation Burgers vectors are

given by b1 = ax̂,b2 = −a2 x̂ + a
√

3
2 ŷ,b3 = −b1 − b2 =

−a2 x̂−
a
√

3
2 ŷ.

E. Vector sine-Gordon duality redux

Above derivation of the dual vector sine-Gordon
model departed from the conventional phonon-only elas-
tic model of a 2D crystal, (5). As discussed in Sec. II B
target space rotational invariance of the crystal is incor-
porated by building the theory based on the symmetric
tensor part uij , (6) of the full strain tensor, ∂iuj , i.e., for-
bidding an explicit dependence on the local bond angle
θ = 1

2εij∂iuj , that corresponds to an angle of rotation of
the crystal.

Alternatively, the rotational invariance of a crystal can
be formulated as a gauge-like (minimal) coupling between
the full strain tensor ∂iuj and the bond angle θ(r), en-
coded in the Hamiltonian density

H =
1

2
Cij,kl(∂iuj − θεij)(∂kul − θεkl) +

1

2
K(∂iθ)

2.

(30)

It can be straightforwardly verified that an integration
over the bond-angle field θ Higgs’es out18,19 the anti-
symmetric component of the strain tensor, at long wave-
lengths recovering the conventional elastic Hamiltonian
in (5).

We now decouple the strain and bond elastic terms by
introducing two Hubbard-Stratanovich fields – the stress
field σij and the torque “current” ji,

H[u, θ;σij , ji] =
1

2
C−1
ij,klσijσkl + iσij(∂iuj − θεij)

+
1

2
K−1j2

i + iji∂iθ.

(31)

We note that because ∂iuj is not symmetrized, the stress
tensor σij is not symmetric here. In the presence of
topological defects, we again decompose the distortion
field u and the bond angle θ into the smooth elastic and
nonsingle-valued components,

ui = ũi + usi , θ = θ̃ + θs, (32)

which allow for dislocation and disclination defects, re-
spectively.
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Integrating out the single-valued parts ũ and θ̃ enforces
two constraints

∂iσij = 0, (33a)

∂iji + εijσij = 0. (33b)

The first one is solved via a vector gauge field A with

σij = εik∂kAj , (34)

which transforms the second constraint into

∂i(ji +Ai) = 0. (35)

It is then solved by introducing another scalar potential
φ, via ji = εik∂kφ−Ai. Expressing the Hamiltonian (31)
in terms of gauge potentials, A(r) and φ(r), integrating
by parts and using the definitions of dislocation b(r) and
disclination s(r) densities, the Hamiltonian density takes
the form

H =
1

2
C−1
ij,klεimεkn∂mAj∂nAl +

1

2
K−1(εik∂kφ−Ai)2

+ iAibi + iφ
2π

p
s.

(36)

This model is evidently gauge-covariant under a local
transformation,

A(r) → A(r) + ẑ×∇α(r), (37a)

φ(r) → φ(r) + α(r). (37b)

Integrating over the vector potential, A(r) in the parti-
tion function, to lowest order, locks

Ai = εik∂kφ, (38)

(an effective Higgs mechanism18,19) and allows us to elim-
inate A(r) in favor of φ(r) and to give the effective Hamil-
tonian density

H[φ] =
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ+ iφ

(
2π

p
s+ ẑ ·∇× b

)
,

(39)

that is identical to that found in (20), which when sup-
plemented by dislocation and disclination core energies
and summed over the defects gives the dual vector sine-
Gordon model, (29).

F. Defects energetic

Inside the crystal state the background defects density
vanishes. In terms of the dual defects model, (20), (39),
we can simply set the defect charges to zero, s = b = 0.
In terms of the generalized sine-Gordon model, (29), this

corresponds to irrelevance of both cosines, i.e., vanishing
couplings, gs = gb = 0,

Hcr =
1

2

∫
r

C̃−1
ij,kl∂i∂jφ∂k∂lφ, (40a)

=
1

2
K−1

∫
r

(
∇2φ

)2
. (40b)

where C̃−1
ij,kl = εiaεjbεkcεldC

−1
ab,cd, and we have specialized

it to that of a hexagonal lattice, obtaining (40b) with

K−1 = 2µ+λ
4µ(µ+λ) .

The energy of a single disclination can be obtained by
taking s(r) = 2πδ2(r). Solving the corresponding Euler-
Lagrange equation for φ gives

φcrs (k) =
i2πK

k4
, (41)

which for the energy of a single disclination in a crystal
state gives a well-known result,

Ecrs =
1

2
K−1

∫
d2r(∇2φs)

2, (42a)

=
1

2
K

∫
L−1

d2k
1

k4
∼ KL2, (42b)

where L is the linear extent of the crystal.
Similarly, for a single dislocation, like b(r) =

b1δ
2(r) = ax̂δ2(r), the corresponding Euler-Lagrange

equation for φ gives

φcrb (k) =
aKky
k4

=
aK sin θ

k3
, (43)

where θ is the angle between the direction of k and the x̂
axis. Therefore, the energy of a single dislocation in the
crystal state is

Ecrb =
1

2
K−1

∫
d2r(∇2φcrc )2, (44a)

=
1

2
Ka2

∫ a−1

L−1

d2k

(2π)2

sin2 θ

k2
, (44b)

=
1

8
Ka2 ln

L

a
∼ K lnL. (44c)

The C3 rotational symmetry guarantees that the ener-
gies for the other single dislocations, b(r) = b2δ

2(r) and
b(r) = b3δ

2(r) are identical.

III. RENORMALIZATION GROUP ANALYSIS
OF THE MELTING TRANSITION

As discussed in the Introduction, and calculated above,
within the crystal state with a vanishing background de-
fect density, the energy of a single dislocation scales as
Eb ∼ lnL, while the energy of a single disclination scales
as Es ∼ L2, where L is the linear extent of the crystal.
Thus, as discovered by Nelson and Halperin3, above the
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critical melting temperature Tm, the dislocations will un-
bind first, while the disclinations remain confined, leading
to the orientationally ordered hexatic liquid, stable in a
finite temperature range Tm < T < Thex.

More formally, within the dual sine-Gordon model this
is reflected by the irrelevance of the disclination cosine
operator at the Gaussian fixed line. Computing its aver-
age in a system of size L, we indeed find〈∫

d2r cos

(
2π

6
φ

)〉
=

∫
d2re−

π2

18 〈φ
2(r)〉, (45a)

=

∫
d2re−

π
72KL

2

, (45b)

∼ L2e−L
2

→ 0. (45c)

This analysis (that can be more formally elevated to a
renormalizaiton group (RG) computation) demonstrates
that the disclination cosine operator, gs is strongly irrel-
evant around the Gaussian fixed line, i.e., when disloca-
tion cosine, gb is small, corresponding to the absence of
screening of disclinations by dislocations.

A. Crystal-hexatic melting transition

Thus, within the crystal and near the crystal-to-
hexatic transition, we can neglect the disclination cosine,
setting gs = 0, reducing the effective Hamiltonian to

H̃cr =

∫
r

[
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ− gb

3∑
n=1

cos(bn · ẑ×∇φ)

]
.

(46)
The RG analysis of this model is more convenient in

an equivalent description in terms of a divergenless vector
field A = ẑ×∇φ,

H̃cr =

∫
r

[
1

2
C−1
ij,klεimεkn∂mAj∂nAl

+
α

2
(∇ ·A)

2 − gb
3∑

n=1

cos(bn ·A)

]
,

(47)

with the constraint ∇ ·A = 0 imposed energetically via a
“mass” term α

2 (∇ ·A)
2

added to the Hamiltonian, with
α→∞ taken at the end of the calculation. Interestingly,
our model is mathematically closely related to that for
the roughenning transition of a crystal pinned by a com-
mensurate substrate, studied by Ohta23, and by Levin
and Dawson24.

Specializing C−1
ij,kl to a hexagonal lattice, (16), the

Hamiltonian reduces to

H̃cr =

∫
r

[
K−1

2
(∂iAj)

2
+
B

2
∂iAj∂jAi +

α

2
(∇ ·A)

2

−gb
3∑

n=1

cos(bn ·A)

]
,

(48)

where the couplings are

K−1 =
2µ+ λ

4µ(µ+ λ)
, (49a)

B =
λ

4µ(µ+ λ)
. (49b)

In the physical limit α→∞, the dislocation-free, Gaus-
sian propagator is given by,

〈Ai(q)Aj(q
′)〉0 =

K

q2
PTij (q)(2π)2δ2(q + q′), (50)

a purely transverse form, with the transverse projec-
tion operator, PTij (q) = δij − qiqj

q2 consistent with (23),

encoding the target-space rotational invariance of the
crystal3,4.

To describe the melting transition we need to include
dislocations, encoded in the gb cosine operator. Although
at low temperature, (corresponding to large elastic con-
stants, small K−1) a perturbative expansion in gb is
convergent, (i.e., the fixed line gb = gs = 0 is stable),
it breaks down for K below a critical value, indicating
an entropic proliferation of large dislocation pairs for
T > Tm.

To treat this high-temperature nonperturbative regime
requires an RG analysis. Relegating the details to Ap-
pendix A, here we present the highlights of the analysis
and its results. To control the divergent perturbation the-
ory, we employ the momentum-shell coarse-graining RG
by decomposing the vector field A(r) into its short-scale
and long-scale modes, Ai(r) = A<i (r) +A>i (r), with

A<i (r) =

∫
0<q<Λ/b

d2q

(2π)2
eiq·rAi(q), (51a)

A>i (r) =

∫
Λ/b<q<Λ

d2q

(2π)2
eiq·rAi(q), (51b)

where the ultra-violet cutoff Λ = 2π/a, and the rescaling
factor b > 1 defines the width of the momentum shell,
Λ/b < q < Λ. Following a standard analysis, we integrate
short scale modes A>i (r) out of the partition function,
obtaining a coarse-grained Hamiltonian for the long-scale
modes, A<i (r), with the renormalized coupling K−1

R (b),
BR(b) and gbR(b) satisfying

K−1
R (b) = K−1 + J2g

2
b , (52a)

B
R

(b) = B + J3g
2
b , (52b)

gbR(b) = gbe
− 1

2G
>
nn(0) + J1g

2
b , (52c)

valid to second-order in gb. The Greens function appear-
ing above is given by

G>nm(r1 − r2) ≡ bni bmj 〈A>i (r1)A>j (r2)〉>0 , (53)
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and Ji factors are defined as,

J1 = πa2

[
e
K

16π I0

(
K

8π

)
+

(
K

16π
− 1

)]
ln b, (54a)

J2 =
πa6

4

[
e
K
8π

(
3

2
I0

(
K

8π

)
− 3

4
I1

(
K

8π

))
+

3

2

(
K

16π
− 1

)]
ln b, (54b)

J3 =
3πa6

16
e
K
8π I1

(
K

8π

)
ln b, (54c)

where I0(x) and I1(x) are modified Bessel functions.
It is convenient to examine an infinitesimal form of

these RG equations by taking b = eδl with δl � 1.
Near the melting critical point K−1

R (l → ∞) ≡ K−1
R∗ =

a2

16π , gbR(l→∞) ≡ g∗b = 0, this then gives RG differential
flow equations for the dimensionless coupling constants

K
−1

(l) = K−1/a2, B(l) = B/a2 and gb(l) = gba
2 ,

dK
−1

(l)

dl
=

3π

8

[
e2

(
I0(2)− 1

2
I1(2)

)]
· g2
b(l), (55a)

dB(l)

dl
=

3π

16
e2I1(2) · g2

b(l), (55b)

dgb(l)

dl
=

(
2− K

8π

)
gb + πeI0(2) · g2

b(l). (55c)

Using the definitions in terms of the dimensionless Lamé
elastic constants µ = µa2, λ = λa2 and the fugacity y,

K
−1

=
1

4

(
1

µ
+

1

µ+ λ

)
, (56a)

B =
1

4

(
1

µ
− 1

µ+ λ

)
, (56b)

ḡb = 2e−Eb = 2y, (56c)

our equations reduce exactly to the seminal RG flows for
the inverse shear modulus, µ−1(l), inverse bulk modulus
[µ(l)+λ(l)]−1, and the effective fugacity y(l) respectively

dµ−1

dl
= 3πe2I0(2)y2, (57a)

d(µ+ λ)−1

dl
= 3πe2 [I0(2)− I1(2)] y2, (57b)

dy

dl
=

(
2− K

8π

)
y + 2πeI0(2)y2, (57c)

first derived by Nelson and Halperin3, and Young4.
Following a standard analysis2,3, the characteristic cor-

relation length ξxtal−hex near the critical point at T →
T−m can be extracted from above RG flows, and is given
by

ξxtal−hex(T ) ∼ ae−c/|T−Tm|
ν

, (58)

with the hexagonal lattice exponent given by

ν = 0.3696 . . . , (59)

and c a nonuniversal constant.3

B. Hexatic-isotropic liquid transition

Dislocation-unbinding above the melting temperature,
Tm destroys the crystal order, restoring continuous trans-
lational symmetry. The plasma of unbound dislocations
drives the shear modulus to zero, but retains the quasi-
long ranged orientational order and the associated bond
orientatonal stiffness. Inside this orientationally-ordered
hexatic fluid (Tm < T < Thex) gb is driven to strong
coupling, suppressing A fluctuations, and allowing us
to approximate the dislocation cosine by its harmonic
form. With disclinations reinstated, the resulting effec-
tive Hamiltonianin takes the standard scalar sine-Gordon
form:

H̃hex ≈
∫
r

[
1

2
gb

3∑
n=1

εikεjlb
n
i b
n
j ∂kφ∂lφ− gs cos

(
2π

6
φ

)]

=

∫
r

[
1

2
J(∇φ)2 − gs cos

(
2π

6
φ

)]
.

(60)

where J ≡ 3
2a

2gb.
Alternatively, we can get to this dual hexatic Hamilto-

nian by noting that above the critical melting tempera-
ture, Tm, dislocations (dislination dipoles) unbind, lead-
ing to an orientationally ordered (a hexatic) fluid. Since
the dislocations then appear at finite density, their Burg-
ers charge, b(r) can be treated as a continuous (rather
than a discrete) vector field. Going back to (27), carry-
ing out a Gaussian integral over continuous field br, and
summing over discrete disclination charges, srn we again
obtain the hexatic Hamiltonian, above.

Utilizing H̃hex we observe that within the hexatic
phase, the energy of a disclination, screened by the
plasma of proliferated dislocations, is reduced signifi-
cantly from that of the crystal (where it diverges as L2)
to Ehexs ∼ JR lnL/a. Thus, the hexatic-isotropic flu-
ids transition is of the conventional Kosterlitz-Thouless
type2,3,18, taking place at Thex = (72/π)JR(Thex). Above
Thex the fluid is isotropic, characterized by short-ranged
translational and orientational correlations.

IV. SUMMARY AND CONCLUSION

In this paper, starting with a descripton of a crys-
tal in terms of its elasticity and topological defects, we
derive a corresponding dual vector sine-Gordon model.
In the later the disclinations and dislocations are cap-
tured by cosine operators of the Airy stress potential
and its gradient. The relevance of the latter disloca-
tion cosine signals the continuous Kosterlitz-Thouless-
Halperin-Nelson-Young melting transition of a crystal
into a hexatic fluid2–4. The subsequent relevance of
the former disclination cosine captures the hexatic-to-
isotropic fluid Kosterlitz-Thouless transition, as outlined
in Sec.I B and illustrated in Fig.1. Our complemen-
tary analysis straightforwardly reproduces the results of
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Nelson and Halperin3 and Young4, such as the correla-
tion functions, defects energetics, renormalization-group
flows, and the correlation length exponent ν.

We expect that the simplified vector sine-Gordon for-
mulation, presented here will be useful in further de-
tailed studies such as of the external stress, defects dy-
namics, substrate, and of the dynamics of the melting
transition.25
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Appendix A: Derivation of RG equations

In this appendix we present the details of the renormal-
ization group analysis of the vector sine-Gordon model
for the dislocation unbinding transition,

H̃ =

∫
r

[
1

2

(
K−1 (∂iAj)

2
+B∂iAj∂jAi

)
+
α

2
(∇ ·A)

2

− gb
3∑

n=1

cos(bn ·A) ] ,

(A1)

where the coupling constants are K−1 = 2µ+λ
4µ(µ+λ) and

B = λ
4µ(µ+λ) . The transversality constraint ∇ ·A = 0 is

imposed energetically by taking α→∞ at the end of the
calculation.

In the physical limit α → ∞, the dislocation-free,
Gaussian propagator is given by,

〈Ai(q)Aj(q
′)〉0 =

K

q2
PTij (q)(2π)2δ2(q + q′), (A2)

with the transverse projection operator, PTij (q) = δij −
qiqj
q2 .

To carry out the momentum-shell RG analysis, we de-
compose vector field A(r) into its short- and long-scale
modes, Ai(r) = A<i (r) +A>i (r), with

A<i (r) =

∫
0<q<Λ/b

d2q

(2π)2
eiq·rAi(q), (A3a)

A>i (r) =

∫
Λ/b<q<Λ

d2q

(2π)2
eiq·rAi(q), (A3b)

where the ultra-violet cutoff Λ = 2π/a, and the rescaling
factor b > 1 defines the width of the momentum shell,
Λ/b < q < Λ.

Integrating out the short-scale modes, A>i (r), the par-
tition function reduces to integration over the long-scale
modes, A<i (r) with an effective Hamiltonian,

Z =

∫
[dA]e−H[A>+A<]

=

∫
[dA<][dA>]e−H0[A<]−H0[A>]−Hint[A

<+A>]

=

∫
[dA<]e−H0[A<]Z>0 〈e−Hint[A

<+A>]〉>0

≡
∫

[dA<]e−H<[A<],

(A4)

where Z>0 =
∫

[dA>]e−H0[A>] is the harmonic part of
the partition function of the short-scale modes with the
quadratic Hamiltonian,

H0[A>] =

∫
r

[
1

2

(
K−1

(
∂iA

>
j

)2
+B∂iA

>
j ∂jA

>
i

)
+
α

2

(
∇ ·A>

)2
] ,

(A5)

and, the coarse-grained effective Hamiltonian, H<[A<]
of the long-scale modes given by,

H<[A<] = H0[A<]− ln〈e−Hint[A
<+A>]〉>0 − lnZ>0 .(A6)

We drop the last term, − lnZ>0 , that is a field in-
dependent correction to the free energy, not affecting
the flow of the coupling constants. We then compute
H<[A<] in terms of corrections to elastic constants µ, λ
and dislocation fugacity gb, arising from coarse-graining

− ln〈e−Hint[A
<+A>]〉>0 .

We expand 〈e−Hint[A
<+A>]〉>0 to second order in gb,

〈e−Hint[A
<+A>]〉>0 = 〈egb

∑
n=1,2,3

∫
r

cos(bn·A)〉>0

≈ 1 + gb

3∑
n=1

∫
r

〈cos(bn ·A)〉>0

+
g2
b

2

3∑
n=1

3∑
m=1

∫
r1

∫
r2

〈cos(bn ·A(r1)) cos(bm ·A(r2))〉>0 ,

(A7)

finding,

ln〈e−Hint[A
<+A>]〉>0 = gb

3∑
n=1

∫
r

〈cos(bn ·A)〉>0

+
g2
b

2

3∑
n,m=1

∫
r1

∫
r2

[
〈cos(bn ·A(r1)) cos(bm ·A(r2))〉>0

−〈cos(bn ·A(r1))〉>0 〈cos(bm ·A(r2))〉>0
]
.

(A8)
These are straightforwardly evaluated by Gaussian inte-
gration, giving, to first order

〈cos(bn ·A)〉>0 =
1

2
〈eibn·(A

<+A>) + e−ibn·(A
<+A>)〉>0

= e−
1
2 〈(bn·A

>)2〉>0 cos
(
bn ·A<

)
≡ e− 1

2G
>
nn(0) cos

(
bn ·A<

)
,

(A9)
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and to second order the connected part,

〈cos(bn ·A(r1)) cos(bm ·A(r2))〉>0 − 〈cos(bn ·A(r1))〉>0 〈cos(bm ·A(r2))〉>0

=
1

4

{
ei(bn·A

<(r1)+bm·A<(r2))〈ei(bn·A
>(r1)+bm·A>(r2))〉>0 + ei(bn·A

<(r1)−bm·A<(r2))〈ei(bn·A
>(r1)−bm·A>(r2))〉>0

+ e−i(bn·A
<(r1)−bm·A<(r2))〈e−i(bn·A

>(r1)−bm·A>(r2))〉>0 + e−i(bn·A
<(r1)+bm·A<(r2))〈e−i(bn·A

>(r1)+bn·A>(r2))〉>0
}

−e−G
>
nn(0) cos(bn ·A<(r1)) cos(bm ·A<(r2))

=
1

2
e−G

>
nn(0)

{[
e−G

>
nm(v) − 1

]
cos
[
bn ·A<(r1) + bm ·A<(r2)

]
+
[
e+G>nm(v) − 1

]
cos
[
bn ·A<(r1)− bm ·A<(r2)

]}
,

(A10)

where v = r1 − r2, and we have defined

G>nm(r1 − r2) ≡ bni bmj 〈A>i (r1)A>j (r2)〉>0 . (A11)

For 0 < v < a, we approximate the short-scale averaged
correlation function by its value at v = 0,

〈A>i (r)A>j (r)〉>0 =

∫ >

q

〈Ai(q)Aj(−q)〉>0

=

∫ Λ

Λ/b

qdq

(2π)2

∫ 2π

0

dθ
K

q2

(
δij −

qiqj
q2

)
=
K

2π
ln b ·

(
δij −

1

2
δij

)
=
K

4π
ln b · δij .

(A12)

For v > a, we have the real space correlation function3,

〈Ai(r1)Aj(r2)〉 =

∫
d2q

(2π)2
〈Ai(q)Aj(−q)〉 · eiq·(r1−r2)

=

∫
d2q

(2π)2

K

q2

(
δij −

qiqj
q2

)
· eiq·v

= −K
4π

(
ln
v

a
· δij −

vivj
v2

)
.

(A13)

Therefore, we can evaluate G>nm(r1 − r2) explicitly, find-
ing

G>nm(r1 − r2) ≈
K
4πbn · bm ln b, for 0 < v < a,

− K
4π

[
bn · bm ln v

ba −
(bn·v)(bm·v)

v2

]
, for a < v < ba,

0, for v > ba.

(A14)

This thus gives to second-order in gb,

ln〈e−Hint[A
<+A>]〉>0 =gb

∑
n

e−
1
2G

>
nn(0)

∫
r

cos
(
bn ·A<

)
+
g2
b

4

∑
n,m

e−G
>
nn(0)

{∫
r1

∫
r2

[
e−G

>
nm(r1−r2) − 1

]
cos
(
bn ·A<(r1) + bm ·A<(r2)

)
+

∫
r1

∫
r2

[
e+G>nm(r1−r2) − 1

]
cos
(
bn ·A<(r1)− bm ·A<(r2)

)}
.

(A15)

Above double integral,
∫
d2r1

∫
d2r2(...) simplifies us-

ing the fact that G>nm(r1 − r2) is short-ranged, vanish-
ing for |r1 − r2| larger than b/Λ ∼ ba, since G>nm(r) is
defined to be composed of Fourier modes only within
a thin momentum-shell, Λ/b < q < Λ. Consequently,

[
e±G

>
nm(r1−r2) − 1

]
is also small everywhere but in the

range, |r1−r2| ∼ b/Λ ∼ ba. To utilize these observations
we change variables {r1, r2} to a their sum and difference,

r =
1

2
(r1 + r2), v = r1 − r2, (A16)
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obtaining

bn ·A<(r1) +bm ·A<(r2) ≈ (bn +bm) ·A<(r), (A17)

and,

bn ·A<(r1)− bm ·A<(r2) = bn ·A<(r +
v

2
)− bm ·A<(r− v

2
)

≈ (bn − bm) ·A<(r) +
1

2
(bn + bm) · (v · ∇)A<(r).

(A18)

This allows the following simplifications of (A15),

ln〈e−Hint[A
<+A>]〉>0 ≈gb

∑
n

e−
1
2G

>
nn(0)

∫
r

cos
(
bn ·A<

)
+
g2
b

4

∑
n,m

e−G
>
nn(0)

{∫
r

∫
v

[
e−G

>
nm(v) − 1

]
cos
(
(bn + bm) ·A<(r)

)
+
[
e+G>nm(v) − 1

]
cos

[(
(bn − bm) +

1

2
(bn + bm)(v · ∇)

)
·A<(r)

]}
.

(A19)

Comparing (A19) to the component of the long-scale
Hamiltonian H[A<], we can extract the corresponding
corrections for the coupling constants K−1, B, and gb.

To this end, ignoring the field-independent terms, we ob-
tain

ln〈e−Hint[A
<+A>]〉>0 ≈gb

∑
n

e−
1
2G

>(0)

∫
r

cos
(
bn ·A<

)
+
g2
b

4

∑
n,m

e−G
>(0)

{∫
r

∫
v

[
e−G

>
nm(v) − 1

]
cos
(
(bn + bm) ·A<(r)

)
+

∫
r

∫
v

[
e+G>nm(v) − 1

] [
cos
(
(bn − bm) ·A<

)
− 1

8

(
(bn + bm) · (v · ∇)A<

)2
cos
(
(bn − bm) ·A<

)]}
=gb

∑
n

e−
1
2G

>(0)

∫
r

cos
(
bn ·A<

)
+ g2

b

∫
r

[
I23 cos

(
b1 ·A<(r)

)
+ I13 cos

(
b2 ·A<(r)

)
+ I12 cos

(
b3 ·A<(r)

)]
− g2

b

8

∑
n

e−G
>(0)

∫
r

∫
v

[
e+G>nn(v) − 1

] (
bn · (v · ∇)A<

)2
+ other irrelevant terms.

(A20)

We note that above, we have written G>nn(0) simply as
G>(0), since it takes the same value for all elementary

Burgers vectors bn, n = 1, 2, 3. Further simplifications
lead to the desired form

ln〈e−Hint[A
<+A>]〉>0 ≈

∫
r

{∑
n

[gbe
− 1

2G
>(0) + J1g

2
b ] cos

(
bn ·A<

)
− g2

b

2

[
J2(∂iA

<
j )2 + J3∂iA

<
j ∂jA

<
i + J3(∇ ·A<)2

]}
,

(A21)
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where the coefficients J1, J2 and J3 are defined as:

J1 = I12 = I13 = I23 ≡
1

2
e−G

>(0)

∫
v

[
e−G

>
12(v) − 1

]
= πa2

[
e
K

16π I0

(
K

8π

)
+

(
K

16π
− 1

)]
δl,

(A22a)

J2 =
1

4

3∑
n=1

(bn2 )2e−G
>(0)

∫
v

v2
1

[
e+G>nn(v) − 1

]
=
πa6

4

[
e
K
8π

(
3

2
I0

(
K

8π

)
− 3

4
I1

(
K

8π

))
+

3

2

(
K

16π
− 1

)]
δl,

(A22b)

J3 =
1

4
e−G

>(0)
∑
n

bn1 b
n
2

∫
v

v1v2

(
e+G>nn(v) − 1

)
=

3πa6

16
e
K
8π I1

(
K

8π

)
δl.

(A22c)

Above I0(x), I1(x) are modified Bessel functions, we have
dropped higher harmonic operators, and have taken, δl ≡
ln b� 1.

Above analysis now allows us to identify the renormal-
ized couplings K−1

R , BR and gbR ,

K−1
R (b) = K−1 + J2g

2
b , (A23a)

BR(b) = B + J3g
2
b , (A23b)

gbR(b) = gbe
− 1

2G
>(0) + J1g

2
b , (A23c)

obtained to second-order in gb. The corresponding RG
differential flow equations for the dimensionless couplings

K
−1

(l) = K−1/a2, B(l) = B/a2, gb(l) = gba
2 are then

given by

dK
−1

(l)

dl
=

3π

8

[
e
K
8π

(
I0

(
K

8π

)
− 1

2
I1

(
K

8π

))
+

K

16π
− 1

]
g2
b ,

(A24a)

dB(l)

dl
=

3π

16
e
K
8π I1

(
K

8π

)
g2
b , (A24b)

dgb(l)

dl
=

(
2− K

8π

)
gb+π

[
e
K

16π I0

(
K

8π

)
+

(
K

16π
− 1

)]
g2
b .

(A24c)

Near the melting critical point, K
−1

(l → ∞) = 1
16π ,

gb(l → ∞) = 0, we define the reduced temperature,
x(l) = 16π

K
− 1, and fugacity, y(l) = e−Ecs = 1

2gb. Near

the melting point, their flow equations are given by

dx(l)

dl
= 12π2e2 (2I0(2)− I1(2)) y2 ≡ 12π2c1y

2, (A25a)

dy(l)

dl
= 2xy + 2πeI0(2)y2 ≡ 2xy + 2πc2y

2, (A25b)

where c1 = e2 (2I0(2)− I1(2)) = 21.937..., and c2 =
eI0(2) = 6.1965... are numerical constants, consistent
with Halperin and Nelson3.

Following a standard analysis2,3, the characteristic cor-
relation length ξxtal−hex near the critical point at T →
T−m can be extracted from above RG flows, giving

ξxtal−hex(T ) ∼ ae−c/|T−Tm|
ν

, (A26)

with the hexagonal lattice exponent given by ν =
0.3696 . . . and c a nonuniversal constant.

Using the expressions of K and B in terms of the di-
mensionless Lamé elastic constants µ = µa2 and λ = λa2,

K
−1

=
1

4

(
1

µ
+

1

µ+ λ

)
, (A27a)

B =
1

4

(
1

µ
− 1

µ+ λ

)
, (A27b)

the RG flow equations for the inverse shear modulus,
µ−1(l) and the inverse bulk modulus, [µ(l)+λ(l)]−1, near
the critical point are then given by,

dµ−1(l)

dl
= 3πe2I0(2)y2(l), (A28a)

d[µ(l) + λ(l)]−1

dl
= 3πe2 [I0(2)− I1(2)] y2(l).(A28b)

Appendix B: Elasticity of 2d crystal subject to an
external stress field

As the crystal is subject to an external stress tensor
field σeij(r), we need to add an external term into the
elastic energy functional

H =
1

2
Cij,kluijukl − σeijuij . (B1)

In the presence of topological defects, the distortion
field u(r) is not single-valued. It and the associated strain
tensor can be decomposed into the single-valued elastic
phonon and the singular part,

ui = ũi + usi , (B2)

uij = ũij + usij . (B3)

To include these topological and phonon degrees of free-
dom we focus on the partition function (taking kBT = 1,
i.e., measuring coupling constants in units of thermal en-
ergy),

Z =

∫
[du]e−

∫
r
H[u]

=

∫
[du]

∫
[dσij ]e

−
∫
r
H[u,σij ],

(B4)

where the trace over u(r) in the partition function (as
in summing/integrating over the degrees of freedom of
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the theory) implicitly includes both phonons and topo-
logical defects by allowing nonsingle-valued distortions.
In the second form, above, we decoupled the elastic en-
ergy by introducing a Hubbard-Stratonovich tensor field
– the symmetric stress tensor σij(r), with the resulting
Hamiltonian density given by

H[u, σij ] =
1

2
C−1
ij,klσijσkl + iσijuij − σeijuij

=
1

2
C−1
ij,klσijσkl + i

(
σij + iσeij

) (
∂iũj + usij

)
,

(B5)

and C−1
ij,kl = − λ

4µ(µ+λ)δijδkl + 1
2µδikδjl for 2D hexagonal

lattice.
Tracing over the single-valued phonons ũ, enforces the

divergenless stress constraint

∂i
(
σij + iσeij

)
= 0, (B6)

solved with a scalar Airy stress potential, φ(r),

σij = εikεjl∂k∂lφ− iσeij , (B7)

Expressing the Hamiltonian density in terms of φ(r), and
integrating by parts in the second linear term, we utilize
the defects conditions, Eq. 9, 11,

εikεjl∂l∂ku
s
ij = εikεjl∂l∂k(∂iu

s
j − εijθs), (B8a)

= εki∂kbi(r) + εki∂k∂iθ(r), (B8b)

= ẑ ·∇× b +
2π

6
s(r), (B8c)

to obtain

H[φ] =
1

2
C̃−1
ij,kl

(
∂i∂jφ− iεiaεjbσeij

)
(∂k∂lφ− iεkcεldσekl) + i

1

2
εikεjl∂k∂lφ

(
∂iu

s
j + ∂ju

s
i

)
=

1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ+ i

1

2
εikεjl∂k∂lφ(∂iu

s
j − ∂jusi ) + iεikεjl∂k∂lφ∂ju

s
i −

1

2
C−1
ij,klσ

e
ijσ

e
kl − i

˜̃C−1
ij,kl∂i∂jφσ

e
kl

=
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ+ iφ (2πs+ ẑ ·∇× b)− 1

2
C−1
ij,klσ

e
ijσ

e
kl − i

˜̃C−1
ij,kl∂i∂jφσ

e
kl

≡ Hint[φ] +Hext[φ],

(B9)

where C̃ij,kl = εiaεjbεkcεldCab,cd,
˜̃Cij,kl = εiaεjbCab,kl,

and we have used integration by parts. The total elastic
energy functional is therefore composed of an internal
part and an external part, with the internal part

Hint =
1

2
C̃−1
ij,kl∂i∂jφ∂k∂lφ+ iφ (2πs+ ẑ ·∇× b)

+ Ecss
2 + Ecbb

2,
(B10)

where we have added the dislocation and disclination core
energies Ecb and Ecs to account for their short-scales, and
the external part

Hext = −1

2
C−1
ij,klσ

e
ijσ

e
kl − i

˜̃C−1
ij,kl∂i∂jφσ

e
kl. (B11)

Alternatively, we can also start by formulating the elas-
tic energy in terms of both the full strain tensor ∂iuj and
the bond angle θ(r),

H =
1

2
Cij,kl(∂iuj − θεij)(∂kul − θεkl) +

1

2
K(∂iθ)

2

− σeij (∂iuj − θεij) ,
(B12)

and get the same result following the procedure of part
C in Section II.

∗ Electronic address: radzihov@colorado.edu
1 M. Prekto and L. Radzihovsky, Phys. Rev. Lett. 120

195301 (2018).
2 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181

(1972).
3 D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457

(1979).
4 A. P. Young, Phys. Rev. B 19, 1855 (1979).

5 L. D. Landau, Phys. Z. Sowjetunion II, 26 (1937).
6 R. E. Peierls, Ann. Inst. Henri Poincaré 5, 177 (1935).
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