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Abstract: The discovery and design of materials with large thermal conductivities (κ௅) is critical 20 

to address future heat management challenges, particularly as devices shrink to the nanoscale. 21 

This requires developing novel physical insights into the microscropic interactions and behaviors 22 

of lattice vibrations. Here, we use ab initio phonon Boltzmann transport calculations to derive 23 

fundamental understanding of lattice thermal transport in 2D monolayer hexagonal boron-based 24 

compounds, h-BX (X=N, P, As, Sb). Monolayer h-BAs, in particular, possesses structural and 25 

dispersion features of bulk cubic BAs and 2D graphene, which govern their ultrahigh room 26 

temperature κ௅ (1300 W/m·K and 2000-4000 W/m·K, respectively), yet here combine to give 27 

significantly lower κ௅ for monolayer h-BAs (400 W/m·K at room temperature). This work 28 

explores this discrepancy, and thermal transport in the monolayer h-BX systems in general, via 29 

comparison of the microscopic mechanisms that govern phonon transport. In particular, we 30 

present calculations of phonon dispersions, velocities, scattering phase space and rates, and κ௅ 31 

of h-BX monolayers as a function of temperature, size, defects, and other fundamental parameters.  32 

From these calculations, we make predictions of the thermal conductivities of h-BX monolayers, 33 

and more generally develop deeper fundamental understanding of phonon thermal transport in 2D 34 

and bulk materials. 35 

  36 
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I. INTRODUCTION 37 

As microelectronic devices shrink and power densities grow, heat dissipation has become 38 

a formidable technology challenge. The discovery of high thermal conductivity materials to 39 

improve thermal management and energy efficiency is essential for further gains in device 40 

performance. Ab initio theoretical tools such as those based on density functional theory (DFT), 41 

have been recently developed and demonstrated their capability to precisely calculate thermal 42 

properties of materials1–3. In particular, boron compounds, including cubic boron phosphide 43 

(c-BP) and boron arsenide (c-BAs), were predicted to have high thermal conductivities4,5. 44 

Importantly, experimental work has developed the synthesis of high-quality crystals and 45 

measured thermal conductivity values of 500 and 1300 W/m·K, respectively, in c-BP6 and 46 

c-BAs7–9. These studies exemplify the power of combined synthesis, characterization, and ab 47 

initio theory for developing design rules for new materials discovery.  48 

Motivated by these studies, here we perform ab initio calculations to examine the thermal 49 

properties of two-dimensional (2D) honeycomb structures of these boron compounds (inset, Fig. 50 

1a). We present calculations of the lattice thermal conductivity (κ௅) and spectral phonon transport 51 

properties for monolayer hexagonal compounds: h-BN, h-BP, h-BAs, and h-BSb – referred to 52 

collectively as h-BX monolayers. Physical insights relating symmetry, structure, and the 53 

vibrational characteristics that build microscopic, mode-specific phonon properties and transport 54 

behaviors are developed as the monolayer structures are compared with their bulk counterparts 55 

and criteria for high thermal conductivity are discussed in detail. 56 
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 57 

 58 

II. THEORY AND COMPUTATIONAL DETAILS 59 

In this section, we discuss the underlying theoretical and numerical details used to 60 

perform the ab initio calculations of thermal transport in the h-BX systems. Further details can be 61 

found in the literature10–12. 62 

A. Boltzmann transport and lattice thermal conductivity 63 

Thermal energy in semiconductor materials is primarily carried by lattice vibrations 64 

(quantized modes called phonons), as electrons and other heat carriers (e.g., magnons) usually 65 

give negligible contributions. The lattice thermal conductivity here is calculated using an ab 66 

initio methodology based on DFT and solution of the phonon Boltzmann transport equation 67 

(BTE)13,14, without relying on empirical adjustable parameters. This microscopic transport 68 

description explicitly considers mode-dependent quantum phonon scattering processes and their 69 

entangled distribution functions as the Boltzmann equation is solved self-consistently. In 70 

particular, a small applied temperature gradient સܶ perturbs the phonon distributions from 71 

equilibrium, resulting in a drifting phonon flux which is balanced by phonon scatterings, 72 ࢜ఒ · સܶ డ௡ഊడ் ൌ ቀడ௡ഊడ௧ ቁ௦௖௔௧௧௘௥௜௡௚                  (1) 73 

Here, ݊ఒ is the non-equilibrium distribution function for phonon mode ߣ ؠ ሺࢗ,  ሻ with wave 74݌

vector ࢗ and polarization ݌, and ࢜ఒ is the phonon group velocity. The right hand side of Eq. (1) 75 

represents the sum of all scatterings that alter ݊ఒ , which are predominantly built from 76 
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three-phonon interactions determined within quantum perturbation theory15,16. Isotopes, 77 

boundaries, and other extrinsic phonon scattering mechanisms are considered in some cases, as 78 

discussed below. Phonon frequencies and eigenvectors are determined by diagonalizing the 79 

dynamical matrix for each wavevector considered (see Section II B). For cases where સܶ does 80 

not drive the phonon populations far from equilibrium, the single mode relaxation time 81 

approximation (RTA), where individual scattering rates are calculated with the background 82 

phonons in equilibrium, gives a reasonably accurate solution to the BTE17. However, if the 83 

distributions are driven far from equilibrium, a higher order correction linear in the temperature 84 

gradient, ݊ఒ ൌ ݊ఒ଴ ൅ ൫െ߲݊ఒ଴ ߲ܶ⁄ ൯۴ఒ ·  should be considered, where ݊ఒ଴ is the Bose-Einstein 85 ܶ׏

distribution function, and ۴ఒ gives a measure of the deviation from equilibrium. In the latter case, 86 

the phonon BTE is solved through self-consistent iteration18,19 to determine ۴ఒ. The lattice 87 

thermal conductivity tensor ߢఈఉ is given by18 88 ߢఈఉ ൌ ଵ௞ಳ்మఆே ∑ ݊ఒ଴൫݊ఒ଴ ൅ 1൯ሺ԰߱ఒሻଶݒఒఈܨఒఉఒ             (2) 89 

where ԰, ߗ, N, and ߱ఒ are the reduced Plank constant, the volume of unit cell, the number of 90 

q-mesh points in the first Brillouin zone, and the mode frequency, respectively. ߙ and ߚ are 91 

Cartesian directions. 92 

 93 

B. Interatomic force constants 94 

The only inputs to this BTE formalism are the harmonic and third-order anharmonic 95 

interatomic force constants (IFCs), which determine the phonon dispersions and scatterings, 96 
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respectively. Fundamentally, the lattice vibrations are determined by the atomic masses and the 97 

interatomic potential (U) of the crystal, IFCs are expansion coefficients of U with respect to small 98 

atomic displacements from equilibrium,  99 ܷ ൌ100 ܷ଴ ൅ ଵଶ ∑ Φఓభఓమሺ݈ଵܾଵ; ݈ଶܾଶሻݑఓభሺ݈ଵܾଵሻݑఓమሺ݈ଶܾଶሻሼ௟,௕,ఓሽ ൅101 

ଵଷ! ∑ Φఓభఓమఓయሺ݈ଵܾଵ; ݈ଶܾଶ; ݈ଷܾଷሻݑఓభሺ݈ଵܾଵሻݑఓమሺ݈ଶܾଶሻݑఓయሺ݈ଷܾଷሻሼ௟,௕,ఓሽ ൅  102 (3)     ڮ

where ܷ଴ is the equilibrium potential and Σ is the summation over all numbered indices. ݑఓሺ݈ܾሻ 103 

denotes the atomic displacement of the ܾ௧௛ atom in the ݈௧௛  unit cell from its equilibrium 104 

position along the ߤ ሺൌ ,ݔ ,ݕ ;ሻ direction. Φఓభఓమሺ݈ଵܾଵݖ ݈ଶܾଶሻ and Φఓభఓమఓయሺ݈ଵܾଵ; ݈ଶܾଶ; ݈ଷܾଷሻ are 105 

2nd and 3rd order IFCs, respectively. The 1st order derivatives are zero as they are calculated at 106 

equilibrium. We calculated all IFCs through the finite displacement method (numerical 107 

derivatives from perturbed supercells)20–22, and enforced physical constraints on these based on 108 

crystal symmetries, derivative permutations, translational invariance, and rotational invariance. 109 

For a flat 2D lattice in the xy-plane, reflection symmetry across the z-axis results in the 110 

vanishing of IFCs involving an odd number of z components12,23. Hence, all IFCs like 111 Φ௫௭ሺ݈ଵܾଵ; ݈ଶܾଶሻ are zero, which completely decouples the out-of-plane and in-plane vibrations at 112 

the harmonic level. The same is true for 3rd order IFCs, only those with even numbers of z 113 

components are not zero. Physically, this means, e.g., two out-of-plane flexural vibrational modes 114 

cannot merge into another out-of-plane vibrational mode. This limits intrinsic phonon-phonon 115 

scatterings, and its consequences on thermal transport in h-BX systems will be discussed in 116 
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Section III C. Besides crystal symmetry, IFCs are also constrained by translational invariance24, 117 

rotational invariance25–27, Born-Huang equilibrium invariance28 constraints (see Section III A), 118 

and derivative permutation symmetries. We enforced translational invariance on the 3rd order 119 

IFCs and all constraints on the harmonic IFCs of each 2D material.  This results in the correct 120 

physical low frequency dispersion29: two linear acoustic branches (one longitudinal (LA), one 121 

transverse (TA)) and one quadratic flexural acoustic branch (ZA). Without such an enforcement, 122 

numerical issues, such as finite supercell size and small symmetry violations, can give unphysical 123 

linear ZA dispersion30 or imaginary frequencies near the Brillouin zone center. This quadratic 124 

behavior not only varies the phonon velocities, but also the low-frequency scattering rates and 125 

thus phonon lifetimes. Precise representation of these low-frequency modes is essential for an 126 

accurate calculation of the thermal conductivity of 2D materials. 127 

 128 

C. Phonon scatterings 129 

In this paper, we consider thermal resistance from intrinsic anharmonic three-phonon 130 

interactions, point-defect scattering, and boundary scattering. For high quality single crystals 131 

around room temperature (RT), the intrinsic anharmonic scattering dominates thermal transport, 132 

which is determined from scattering processes constrained by transition selection rules for energy 133 

conservation ߱ఒ േ ߱ఒభ െ ߱ఒమ ൌ 0  and momentum conservation ࢗ േ ૚ࢗ െ ૛ࢗ ൌ ࡳ . For a 134 

normal (N) process, ࡳ ൌ ૙; while for an Umklapp (U) process, ࡳ ് ૙, where ࡳ is a reciprocal 135 

lattice vector. For real materials, extrinsic resistance arises due to phonon interactions with lattice 136 
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imperfections. Here we considered phonon-point-defect interactions (isotopes and vacancies) due 137 

to mass perturbations31,32. Defect-induced force constant perturbations and structural relaxation 138 

have been shown to be important for vacancies, but give the same general trends as the mass 139 

perturbation scattering in reducing thermal conductivity, though for significantly lower defect 140 

concentrations33,34. Boundary scattering is caused by limited sample size, which becomes 141 

especially important at low temperature or in nanostructures where phonon mean free paths are 142 

relatively long compared to the sample size. Here we calculated phonon mean free path spectra 143 

for the h-BX monolayers and evaluated width-dependent κ௅  with an empirical boundary 144 

scattering model (see Section III E). 145 

Within the RTA these separate phonon scattering mechanisms can be linearly combined 146 

via Matthiessen’s rule to determine phonon lifetimes as  147 ଵఛഊ ൌ ቀ ଵఛഊቁ௔௡௛௔௥௠௢௡௜௖ ൅ ቀ ଵఛഊቁௗ௘௙௘௖௧ ൅ ቀ ଵఛഊቁ௕௢௨௡ௗ௔௥௬      (4) 148 

Full solution of the BTE in Eq. (1), however, captures the network of interactions that tie the 149 

distributions of all the phonons together and is required to more accurately determine phonon 150 

transport. In particular, the RTA treats N scattering as purely resistive and therefore 151 

underestimates κ௅  as U scattering actually degrades the collective phonon flow. Thus, in 152 

materials with strong N scattering relative to U scattering the κ௅ determined by these two 153 

methods can differ substantially. We compare both methods in this work and demonstrate the 154 

failure of the RTA (see Section III D) in describing κ௅ of the h-BX monolayers.  155 

 156 
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D. DFT details  157 

We used DFT to determine the IFCs, which are the only inputs to the BTE formalism to 158 

calculate κ௅, thus no adjustable parameters are used. DFT calculations were performed using the 159 

QUANTUM ESPRESSO package35,36 with norm-conserving pseudopotentials in the local density 160 

approximation (LDA)37,38. For h-BX, we first optimized the structure using a 31ൈ 31 ൈ 1 161 

q-mesh and a convergence precision for energies and forces taken as 10-10 Ry and 10-6 Ry/Bohr, 162 

respectively. The kinetic energy cutoff for all calculations was 80 Ry. All IFCs were calculated 163 

using atomic perturbations of supercells with 128 atoms and 15 Հ vacuum distance between 164 

periodic layer images. The harmonic IFCs determine the phonon frequencies, eigenvectors, and 165 

velocities (see section III A). The anharmonic IFCs determine the phonon-phonon coupling 166 

matrix elements (see section III B). The lattice thermal conductivity is built from transport 167 

lifetimes determined from full solution of the linearized BTE using the ShengBTE code18. For 168 

graphene, we used the IFCs from the alamaBTE39 database. For 2D materials, the definition of 169 

thickness is fairly arbitrary. In Figure 1a, we use 2D units of thermal conductivity (W/K), which 170 

are independent of the arbitrarily-defined monolayer thickness. In the rest of the manuscript, the 171 

thickness 3.35 Հ (typical value chosen for the thickness of graphene) is used in the thermal 172 

conductivity calculations for comparison with bulk values and physical intuition. Note that this 173 

thickness simply scales the thermal conductivity, which can be easily changed to compare with 174 

other definitions of the monolayer thickness. For c-BAs, we used the same DFT settings as Ref. 7. 175 

For c-BP, we used the LDA projector-augmented wave pseudopotential40. The electronic structure 176 
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calculations were done with 80 Ry plane-wave cutoff kinetic energy and 6 ൈ 6 ൈ 6 k-meshes. 177 

The 2nd order IFCs were calculated by density functional perturbation theory (DFPT)41 with a 178 

k-point mesh of 6 ൈ 6 ൈ 6 using the QuantumESPRESSO package35,36. The 3rd order IFCs were 179 

calculated by the finite displacement method on 128 atoms supercells and cut off at 8th nearest 180 

neighboring atoms. The convergence test of thermal conductivity versus supercell size, mesh size, 181 

cut-off radius for 3rd order IFCs, and scalebroad settings are included in the Appendix A. 182 

 183 

III. RESULTS AND DISCUSSION 184 

Calculated lattice thermal conductivities for monolayer h-BX compounds are given in 185 

Figure 1. The 2D h-BX compounds have higher κ௅ than most other 2D group-IV and III-V 186 

compounds reported in the literature42–45, which typically have buckled structures. After full 187 

structural relaxation, each h-BX system remained flat (inset, Fig. 1a), i.e., buckling of these 188 

monolayers was not energetically favorable as was found for graphene’s elemental cousins, 189 

silicene and germanene44. The calculated RT κ௅  of h-BX monolayers with natural isotopic 190 

abundances are 1045, 323, 399, and 121 W/m·K, respectively, for h-BN, h-BP, h-BAs, and h-BSb 191 

using thickness of 3.35 Հ. The isotopically pure κ௅ at RT are 1242, 374, 457, and 160 W/m·K 192 

for h-BN, h-BAs, and h-BSb, respectively. From 200 to 600 K, κ௅ decreases monotonically for 193 

each system due to enhanced intrinsic anharmonic scattering from thermal population of higher 194 

frequency phonons.  195 

We evaluate κ௅  of h-BX monolayers with conventional criteria used to understand 196 
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thermal conductivity, rules-of-thumb proposed by Slack46.  High lattice thermal conductivity 197 

generally occurs in materials with simple structure, small average atomic mass (mavg), large Debye 198 

temperature (θD), and low aharmonicity. Insights from first principles calculations of κ௅ of bulk 199 

GaN47,BAs4,48, and Li2Se49 demonstrated that these rules should be augmented to consider the 200 

mass difference between constituent atoms in compound materials and how closely the acoustic 201 

branches, and separately the optic branches, are packed together. The former determines the 202 

frequency gap between acoustic phonons and high frequency optic modes, which governs the 203 

number of acoustic-acoustic-optic scattering channels for the heat-carrying acoustic phonons via 204 

energy conservation. The latter determines how many all-acoustic and acoustic-optic-optic 205 

interactions are possible.  Thus, in materials with a large acoustic-optic frequency gap, closely 206 

packed acoustic branches, and small optic bandwidth, scattering resistance is limited and κ௅ can 207 

be large4,48. Figure 1 gives κ௅ of h-BX monolayers as a function of (b) mavg, (c) θD, and (d) mass 208 

ratio, in comparison with their bulk cubic counterparts48 and elemental monolayers44 – graphene, 209 

silicene, and germanene. As shown in Figures 1b and 1c, κ௅ of graphene, silicene, and germanene all 210 

decrease monotonically with increasing mavg and decreasing θD, following the conventional criteria and 211 

similar to the behavior of their bulk cubic counterparts – diamond, silicon, and germanium4,48. 212 

However, κ௅ values for bulk4,7,48 and monolayer BAs deviate from these trends. This deviation and 213 

unusually high thermal conductivity of c-BAs is understood in terms of the large mass ratio 214 

between boron and arsenic atoms and tightly packed acoustic branches4,48. Despite monolayer 215 

h-BAs and bulk c-BAs demonstrating similar trends, h-BAs does not realize an ultrahigh κ௅ as 216 
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naïvely expected, particularly when considering its similarities to graphene which also has 217 

unusually high κ௅  (h-BAs: 399 W/m·K; c-BAs: 1300 W/m·K7; graphene: 2000 – 4000 218 

W/m·K11,50–52).  What is the microscopic basis for the extra thermal resistance in h-BAs 219 

compared with c-BAs and graphene?  In the following sections, we develop physical insights 220 

into the phonon transport behaviors of h-BAs and the other h-BX monolayers by comparing their 221 

fundamental vibrational properties with those of their bulk counterparts and the elemental 222 

monolayers, including phonon dispersions, scattering phase spaces53, and scattering rates. 223 

 224 

A. Phonon band structures and scattering phase space 225 

The phonon dispersion of each 2D h-BX material consists of six branches (Figures 2a-d): two 226 

flexural out-of-plane vibrations (one acoustic ZA and one optic ZO) and four in-plane branches 227 

(longitudinal acoustic (LA), longitudinal optic (LO), transverse acoustic (TA) and transverse 228 

optic (TO)). The calculated phonon dispersion of monolayer h-BN is compared with the 229 

measured dispersion of bulk h-BN by inelastic X-ray scattering54. Note that near the Γ point, the 230 

dispersion of the TA and LA branches are linear, while the ZA branch is quadratic. Similar 231 

quadratic behavior has been shown for the dispersion of flexural acoustic waves in thin 232 

membranes by continuum elastic mechanics55. This quadratic flexure behavior is a characteristic 233 

of lower dimensional materials (e.g., nanotubes56,57, graphene58, borophene29), and necessary for 234 

accurate calculation of their equilibrium κ௅ values. Often in calculations, numerical issues such 235 

as residual strain, finite supercell size, and small symmetry violations can lead to unphysical 236 
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linear dispersion or imaginary frequencies of the ZA branch near the zone center. The quadratic 237 

behavior of the ZA branch (Figures 2a-d) is guaranteed by enforcing rotational invariance25–27              238 ∑ Φఓభఓమሺ0ܾଵ; ݈ଶܾଶሻ௟మ௕మ ఓయሺ݈ଶܾଶሻݔൣ െ ఓయሺ0ܾଵሻ൧ݔ ൌ ∑ Φఓభఓయሺ0ܾଵ; ݈ଶܾଶሻ௟మ௕మ ఓమሺ݈ଶܾଶሻݔൣ െ  ఓమሺ0ܾଵሻ൧   239ݔ

(5) 240 

and Born-Huang equilibrium conditions28 241  ሾߤଵߤଶ; ସሿߤଷߤ ൌ ሾߤଷߤସ;  ଶሿ       (6) 242ߤଵߤ

with 243 ሾߤଵߤଶ; ସሿߤଷߤ ൌ െ ∑ ∑ Φఓభఓమሺ0ܾଵ; ݈ଶܾଶሻൣݔఓయሺ݈ଶܾଶሻ െ ఓరሺ݈ଶܾଶሻݔఓయሺ0ܾଵሻ൧ൣݔ െ ఓరሺ0ܾଵሻ൧௟మ௕భ௕మݔ   244 

(7) 245 

by nominally altering the ‘as-calculated’ DFT harmonic IFCs using a χ2 minimization 246 

procedure24,59.  Here, ݔఓሺ݈ܾሻ is the ߤ௧௛ Cartesian position of the ܾ௧௛ atom in the ݈௧௛ unit 247 

cell. The quadratic nature of the ZA branch in each h-BX material is most clearly demonstrated 248 

by the group velocities approaching zero near the Brillouin zone center (Figures 2e-h).   249 

The group velocities of the heat-carriers play a critical role in determining material 250 

thermal conductivity. The group velocities of the h-BX monolayers (Figures 2e-h) generally 251 

decrease with increasing average mass in going from h-BN to h-BSb. This is expected as the 252 

acoustic frequencies, and thus low frequency velocities, generally scale inversely with the square 253 

root of the heaviest atomic mass60. The non-monotonic behavior of κ௅  values of h-BX 254 

monolayers with mavg in Figure 1b and for c-BX48 violates this reasoning, thus demonstrating the 255 

critical importance of phonon scattering resistance in determining κ௅. This will be discussed in 256 

detail below. 257 
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Comparing phonon band structures of h-BX monolayers (Figures2a-d), the phonon band 258 

gap below the upper optical branches (TO and LO) increases significantly from h-BN (0.88 THz) 259 

to h-BSb (14.14 THz) as a result of increasing mass ratio. Unlike bulk c-BX systems, h-BX 260 

monolayers have a mid-frequency ZO phonon branch near the top of the transverse acoustic 261 

spectrum in each material. This does not shift appreciably with increasing mass and mass ratio. 262 

This ZO branch may play an important role in scattering of the heat-carrying acoustic modes in 263 

h-BX monolayers, and may partly explain the lower κ௅ value in h-BAs compared with c-BAs, 264 

though does not explain the discrepancy when compared with graphene which has a similar ZO 265 

branch. The effects of ZO phonon scattering and the h-BAs/c-BAs/graphene discrepancies will be 266 

discussed in more detail in Sections III B and III C below.   267 

Two features determine the phonon scattering that limits thermal conductivity: (1) 268 

strength of scattering interactions as determined by anharmonicity and (2) amount of scattering 269 

channels available as determined by energy and momentum conservation conditions. The latter 270 

has been shown to be a strong indicator of calculated κ௅ values when comparing over a variety 271 

of materials53,61. This is quantified for each system considered here by calculating the scattering 272 

phase space (P3) of each phonon mode ߣ by integrating over energy and momentum conserving 273 

delta functions53 274 

 ଷܲఒ ൌ ଶଷ௠య ቀ ଷܲఒሺାሻ ൅ ଵଶ ଷܲఒሺିሻቁ                           (8) 275 

where  276 

ଷܲఒሺേሻ ൌ ଵே ∑ ሺ߱ఒߜ േ ߱ఒᇲ െ ߱ఒᇲᇲሻࢗߜേࢗᇱ,ࢗᇱᇱାࡳఒ′,ఒ′′                (9) 277 
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where m is the number of phonon branches and േ correspond to absorption and emission 278 

processes, respectively. And the total scattering phase space is ଷܲ௧௢௧௔௟ ൌ ଵே ∑ ଷܲఒఒ . In addition to 279 

energy and momentum conservation, we note that reflection symmetry of the planar 2D materials 280 

introduces an additional selection rule (as discussed in Section II B) that forbids three-phonon 281 

processes involving odd numbers of out-of-plane vibrations and thus further restricts the phonon 282 

scattering phase space12,23. This reflection symmetry has been considered in determining the 283 

phase space calculations in this work. The calculated total scattering phase space values for 284 

graphene, h-BN, h-BP, h-BAs, and h-BSb are 0.00327 ps, 0.00396 ps, 0.00484 ps, 0.00584 ps, 285 

and 0.00785 ps, respectively. Graphene has the smallest total scattering phase space among the 286 

calculated materials, and the total scattering phase space increases monotonically with mavg from 287 

h-BN to h-BSb. This is understood in terms of the larger atomic mass scaling down the phonon 288 

frequency, and thus increasing the phase space as the energy conserving delta function in Eq. (9) 289 

scales like ߜሺ߱ߚሻ ൌ ଵఉ  is the scaling factor of ߱53. As demonstrated in Figure 3, 290 ߚ ሺ߱ሻ, whereߜ

for the ZA, TA, LA and ZO modes, the mode-dependent scattering phase space generally shows 291 

the same increasing trend with mavg as that of the total scattering phase space, but the difference 292 

of ଷܲ is weaker for TO and LO modes going from h-BN to h-BSb. The non-monotonic behavior 293 

of κ௅ is difficult to understand in terms of the phonon scattering phase space increasing and the 294 

mode velocities decreasing with increasing mavg.  295 

Besides the number of scattering channels, the strength of the scattering processes can be 296 

important when comparing scattering rates among different materials.  To do this, we estimated 297 
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the anharmonicity of each material by evaluating the mode-dependent Grüneisen parameters60 298 ߛఒ ൌ െ ఆఠഊ డఠഊడఆ                               (10) 299 

Figure 4 gives the mode-dependent Grüneisen parameters of the ZA branch for h-BP and h-BAs. 300 

The ߛఒ values for the other branches can be found in Appendix Figure A4(a). As shown in 301 

Figure 4, h-BAs has smaller magnitude ZA ߛఒ than those of h-BP (and smaller for the other 302 

branches in Figure A3), which indicates the anharmonicity of h-BAs is weaker than h-BP. This 303 

also partly explains the higher κ௅ of h-BAs compared with that of h-BP. Note that the mode 304 

Grüneisen for ZA modes diverge at the Γ point, indicating that a small expansion in the lattice 305 

generates a very significant relative increase in phonon frequencies for these modes near the 306 

Brillouin zone center. This is connected with the quadratic behavior becoming linear with lattice 307 

strain. 308 

 309 

B. Full BTE solution and failure of the RTA 310 

In general, 2D materials are expected to have relatively strong normal scattering relative 311 

to Umklapp resistance, which leads to the failure of the RTA and gives rise to interesting 312 

hydrodynamic transport behaviors62,63. In such cases, the full self-consistent solution to the BTE 313 

is required to accurately describe thermal transport. Figure 5 gives the ratio of Umklapp to 314 

normal scattering rates ߬௎ିଵ/߬ேିଵ as a function of phonon frequency for the h-BX monolayers 315 

considered here.  Normal scattering dominates over Umklapp scattering (i.e., ߬௎ିଵ/߬ேିଵ < 1) for 316 

most frequency regimes, particularly for the ZA branches and other low-frequency acoustic 317 
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modes.   318 

The κ௅ for h-BX monolayers from both RTA and full BTE solution calculations are given 319 

in Appendix Figure A6, which demonstrates that the RTA fails to accurately describe thermal 320 

transport in the h-BX monolayers due to the strong normal scattering. For example, the RT κ௅ of 321 

h-BN changes from 213 W/m·K (RTA value) to 1045 W/m·K after iteration. Another interesting 322 

point: the thermal conductivity contributions from the different acoustic branches are comparable 323 

before iteration as shown in Table 1. After iteration, however, the contributions from the ZA 324 

branch increases significantly (e.g., for h-BN this increases from 33% to 89%), as the dominance 325 

of normal scattering is more significant for the ZA modes compared with the other branches. As 326 

shown in Figure 5, ߬ேିଵ ൐ ߬௎ିଵ over the whole ZA frequency range, but for LA and TA ߬ேିଵ > 327 ߬௎ିଵ only for their low frequency modes. During the iteration, the significant increase in the 328 

thermal conductivity contributions from the ZA branch implies that the flexural phonon plays an 329 

import role in single layer h-BX thermal transport.  330 

C. Comparison of phonon transport between h-BAs and c-BAs 331 

Both c-BAs (RT κ௅=1300 W/m·K) and h-BAs (RT κ௅=399 W/m·K) show high κ௅ and 332 

deviate from the typical trends defined by the conventional criteria for understanding thermal 333 

conductivity when compared with the other BX materials.  However, κ௅ of h-BAs is 70% 334 

lower than that of bulk c-BAs despite expectations that this flat monolayer material would 335 

conduct heat at least as well given that κ௅  of monolayer graphene is larger than that of diamond.  336 

High κ௅ in c-BAs is attributed to the large phonon band gap and acoustic branch bunching48.  337 
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Figure 6a compares the phonon dispersions of h-BAs and c-BAs.  Both systems have a large 338 

phonon band gap due to the large mass ratio between B and As atoms. For c-BAs, such a large 339 

band gap significantly suppresses the acoustic-optic scattering channels. Unlike c-BAs, however, 340 

h-BAs has a mid-frequency ZO branch near the top of the acoustic frequency spectrum. Thus, in 341 

h-BAs energy conservation for acoustic interactions with the ZO branch is easier to satisfy. To 342 

quantitatively analyze the thermal conductivity reduction due to the ZO phonon modes we 343 

artificially removed the scattering processes involving these and found that the κ௅ contributed 344 

by TA and LA phonons increases 4 ~ 5 times but only increases by 20% for ZA phonons. With 345 

ZO phonon scattering, the isotopically pure κ௅ is 457 W/m·K, and the contributions from ZA, 346 

TA, and LA are 175.7, 127.7 and 109.5 W/m·K, respectively. After removing the scattering 347 

processes involving ZO modes, κ௅ increases to 1470 W/m·K, and the contribution from ZA, TA, 348 

and LA phonons are 214, 581, and 527 W/m·K, respectively. ZO modes significantly suppress the 349 

κ௅ of TA and LA branches. To make further evaluation, we calculated the mode-dependent 350 

phonon scattering phase space (Figure 6b). It shows that the scattering phase space of h-BAs is 351 

significantly larger than that of c-BAs in particular for the 4 ~ 6 THz phonon frequency range 352 

that makes the significant contribution to thermal transport in c-BAs.  353 

Another possible explanation for lower ߢ௅ in h-BAs compared to bulk c-BAs is the 354 

acoustic branches are much more separated in the former due to the quadratic behavior of the ZA 355 

branch at low frequency in h-BAs. Therefore, the 2D acoustic phonon band structure introduces 356 

more all-acoustic scattering channels in h-BAs compared with that in c-BAs. To quantify the 357 
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acoustic bunching, we computed and compared the aaa and aao scattering phase space of c-BAs 358 

and h-BAs in Figure 6c. It is found that acoustic bunching does not necessarily decrease the 359 

scattering phase space. At high frequency, the acoustic bunching in c-BAs makes its scattering 360 

phase space smaller than h-BAs. However, at low frequency, due to the quadratic feature in 361 

phonon dispersion, the acoustic bunching becomes weaker, but the aaa scattering phase space for 362 

ZA branch is also smaller.   363 

To further quantify the differences in anharmonic scattering between h-BAs and c-BAs, 364 

we calculated the branch-dependent phonon scattering rates for these materials for particular 365 

interacting channels: acoustic-acoustic-acoustic (aaa), acoustic-acoustic-optical (aao), 366 

acoustic-optical-optical (aoo), and optical-optical-optical (ooo). In particular, some of the 367 

scattering rates of the lowest frequency (h-BAs – ZA; c-BAs – TA1) and second lowest frequency 368 

(h-BAs – TA; c-BAs – TA2) branches are compared in Figure 6d, 6e and Appendix Figure A5. 369 

The aao scattering rates for c-BAs are very weak due to the large phonon band gap, and thus are 370 

not shown. However, for h-BAs, aao scattering rates are non-negligible though much weaker than 371 

aaa scattering. This indicates stronger acoustic-optical interactions in h-BAs than in c-BAs, 372 

except at low frequencies where aoo scattering becomes important49. We note that aoo 373 

interactions involving a ZA phonon and two ZO phonons are forbidden by symmetry in the h-BX 374 

monolayers. To summarize, these calculations suggest that h-BAs has higher scattering rates and 375 

lower ߢ௅ than c-BAs partly due to increased interactions between acoustic and ZO phonons for 376 

all phonon polarizations.   377 
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An interesting kink occurs in the TA scattering rates involving aaa processes for h-BAs 378 

around 4.3 THz (Figure 6e). The frequency for which this kink occurs is exactly twice the 379 

maximum frequency of the ZA branch. This result can be explained in terms of energy 380 

conservation and the reflection symmetry selection rule discussed in Section III B.  An 381 

important symmetry-allowed scattering channel for the TA modes involves their interaction with 382 

two lower frequency ZA modes (inset, Figure 6d). For TA phonons below ~ 4.3 THz such 383 

scatterings are also allowed by energy conservation. However, for TA phonons above ~4.3 THz, 384 

energy cannot be conserved as this is two times the maximum energy of the ZA branch. Therefore, 385 

the suppressed scattering channels lead to a significant drop of scattering rates as shown by the 386 

kink in Figure 5d. 387 

Higher order anharmonicity is expected to be important for thermal transport at high 388 

temperatures or in strongly anharmonic materials. However, in both c-BAs5 and graphene64, 389 

four-phonon anharmonic scattering has been shown to give significant thermal resistance, even at 390 

room temperature, due to relatively weak three-phonon scattering in each system. Three-phonon 391 

scattering alone gives calculated RT ߢ௅ of 2200 W/m·K4 and 3200 W/m·K65 in c-BAs and 392 

graphene, respectively, which reduce by 35% 5 and 75% (using an empirical potential)64 when 393 

including four-phonon interactions. The monolayer h-BX materials considered here have 394 

significantly lower ߢ௅  values than both c-BAs and graphene, suggesting that four-phonon 395 

scattering is not as important in determining their thermal transport properties. Unfortunately, the 396 

computational cost is too large to test this here. In addition, phonon frequency renormalization 397 
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can be introduced by high order anharmonicity and the failure of the quasi-harmonic 398 

approximation has been observed, even at room temperature and below, in tin selenide66, but 399 

strong phonon renormalization is expected in strongly anharmonic materials with low thermal 400 

conductivities. 401 

 402 

D. Comparison of phonon transport between h-BAs and graphene 403 

In the previous section, increased acoustic-optical phonon scattering in h-BAs due to a 404 

mid-frequency ZO branch was suggested as one of the causes of lower κ௅ in h-BAs than that in 405 

c-BAs. However, graphene has an ultrahigh thermal conductivity despite also having a 406 

mid-frequency ZO branch that provides scattering channels of the heat-carrying acoustic phonons.  407 

Here we compare the microscopic vibrational properties of monolayer h-BAs and graphene to 408 

further understand 2D transport.   409 

The phonon dispersions of h-BAs and graphene are compared in Figure 7a demonstrating 410 

two major differences: (1) h-BAs has a large phonon band gap that is absent in graphene, and (2) 411 

the graphene dispersion has a much larger overall frequency scale than that of h-BAs. Graphene’s 412 

comparatively small mavg and strong covalent bonding (large θD) drive this overall frequency 413 

scale difference and give sound velocities more than two times greater in graphene than in h-BAs 414 

(Figure 7b). As shown in Figure 7c, the phase space ଷܲ of graphene is much smaller than that of 415 

h-BAs, which indicates fewer scattering channels in graphene and reduced scattering rates.  As 416 

discussed in Section III A, ଷܲ tends to scale inversely with the frequency scale of the overall 417 
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dispersion. In addition, despite lacking a phonon band gap between the LO and TO branches and 418 

the acoustic spectrum, these optic branches have such high frequency that energy conservation 419 

forbids aao interactions for ZA and LO/TO modes.  In other words, the large frequency scale 420 

mimics a phonon band gap for the ZA modes, which were shown to carry ~75% of the heat in 421 

graphene for certain cases11.  Note that aao scattering among ZA and ZO modes are also 422 

forbidden by mirror reflection symmetry.  The scattering phase space of h-BAs and graphene are 423 

given in Figure 7c, which demonstrates significantly more scattering channels in h-BAs and 424 

results in higher scattering rates.  425 

E. Mean free path spectra and size-dependent thermal conductivity 426 

Rational ways to control thermal properties via size-effects are of high scientific and 427 

technological interest, e.g., using nanostructuring for improved thermoelectrics or designing 428 

transport at multiple length scales for thermal management in electronic devices. In particular, 429 

phonon mean free path (MFP) spectra have been intensively studied to understand the spectral 430 

contributions of the thermal conductivity over characteristic length scales of the heat carriers.  431 

Ab initio transport calculations have been directly tested by sophisticated measurements enabled 432 

by recently developed laser-based thermal spectroscopies6,8,67. Here, we calculated the MFP 433 

spectra in the h-BX monolayers and investigated the effects of finite sample width on their κ௅. 434 

MFPs describe the characteristic lengths that phonons travel, on average, before scattering. In 435 

general, MFPs are mode dependent and can span across several orders of magnitude, from 436 

~1nm to ~1mm. These spectral features are quantified by calculating the contributions to the 437 
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overall thermal conductivity from phonons with MFPs smaller than a reference length ΛԢ67,68. 438 

ఈఉሺΛԢሻߢ ൌ ଵఆே ∑ ఒఉఒݒఒఈݒఒܥ ߬ఒΘሺΛԢ െ  ఒ|߬ఒሻ                (9) 439ࣇ|

where Θ is the Heavyside function and the other terms have been defined above. Figure 8a gives 440 

the calculated MFP spectra of the h-BX monolayers, as well as c-BAs, c-BP, and graphene.  A 441 

large portion of the phonons in the h-BX monolayers have MFPs over 1 µm that contribute ~50% 442 

of the total κ௅ at RT. Also, the heat carriers of h-BX monolayers have MFPs distributed over a 443 

wide range, while the heat carriers in c-BAs and c-BP all have MFP values within one order of 444 

magnitude. Also, the MFP spectra of the h-BX monolayers have different behaviors from c-BXs. 445 

Take h-BAs for example, after a rapid increase below 1.3 µm, the accumulated h-BAs thermal 446 

conductivity begins a steady climb towards the peak. This feature arises from a large number of 447 

ZA phonons with long MFPs contributing to transport (see Appendix Figure A7a). For MFPs > 448 

1.3 µm, only ZA modes contribute to the thermal conductivity. This behavior is not seen in the 449 

bulk cubic materials such as c-BAs and c-BP. Such MFP spectra are directly related to 450 

size-dependent κ௅ and can provide important guidance for multiscale thermal transport. 451 

To further evaluate size-dependent thermal transport in the h-BX monolayers, we included 452 

boundary scattering from finite nanoribbon width, but with infinite length along the transport 453 

direction (see Figure 8b), by modifying a model69 used in ShengBTE18. Specifically, the heat flux 454 

is applied along the nanoribbon and the deviation function ۴ (see Equation 2) is a function of the 455 

spatial position across the width in the solution of the BTE. Here, the boundary is treated as 456 

totally diffusive, so ۴ఒ ൌ 0 at the boundary and is described with exponentially decaying 457 
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behavior from the center69. The cross-section averaged ۴ఒ can be derived within the iteration 458 

framework, from which the effective lattice thermal conductivity of the nanoribbon is obtained.70 459 

Figure 8b gives the width-dependent thermal conductivity κ௅ሺܹሻ of h-BX monolayers and 460 

graphene nanoribbons normalized by their bulk values. Finite sample width strongly affects the 461 

thermal conductivity for widths on the order of a micron.  For example, for ܹ= 0.4 µm, 462 

κ௅ሺܹሻ is reduced to 50%, 56%, 63%, and 69% of their bulk values for h-BAs, h-BN, h-BP, and 463 

h-BSb, respectively. This analysis also indicates that finite size effects should be more easily 464 

observed in h-BAs at considerably larger lengths than for the other materials.  465 

 466 

F. Defect scattering and isotope effects 467 

Defects inevitably exist in materials of practical interest and can often play a critical role 468 

in determining thermal transport. As discussed in Section II C, imperfections such as vacancies 469 

and other point defects can introduce additional phonon scattering which suppresses κ௅ from its 470 

intrinsic value. To evaluate the effects of defects on thermal transport in h-BX monolayers, we 471 

considered phonon-defect scattering from mass variance due to vacancy defects on the X site 472 

(arsenic, nitrogen, phosphorus, and antimony). Note that defect-induced force constant changes 473 

are not considered here. κ௅ of the h-BX monolayers are given in Figure 9 as a function of 474 

vacancy concentration ranging from 0.001% to 1%. A stronger effect is seen for κ௅ of h-BAs 475 

and h-BSb than for h-BN and h-BP, partly because vacancies induce a larger perturbation to the 476 

heavier As and Sb atoms. Isotopes can also play an important role in limiting thermal 477 
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conductivity, though giving a smaller mass perturbation than vacancies. Arsenic is naturally 478 

isotopically pure, while Sb has an even mix of 121Sb (57.21%) and 123Sb (42.79%). Therefore, 479 

phonon-isotope scattering in h-BSb provides significant thermal resistance, 24% decrease of κ௅, 480 

even before considering phonon-vacancy scattering.  481 

IV. SUMMARY AND CONCLUSIONS 482 

From ab initio phonon Boltzmann transport calculations we investigated the lattice 483 

thermal conductivities of hexagonal single layer h-BX compounds: boron nitride, boron 484 

phosphide, boron arsenide, and boron antimonide.  Large κ௅ was observed for these single 485 

layer h-BX materials making them promising building blocks for thermal management 486 

applications. Microscopic physical insights were developed in comparing h-BX monolayer κ௅ 487 

values with those of their bulk counterpart materials (c-BAs and c-BP), as well as prototypical 488 

2D materials (graphene, silicene, and germanene). In particular, large κ௅, dimensionality-induced 489 

transport differences, and the possibility of hydrodynamic behaviors were discussed in terms of 490 

features of the phonon dispersions: a-o gap, acoustic bunching, ZA phonon heat carriers, and 491 

mid-frequency ZO phonon scattering. Strong normal scattering plays a key role in thermal 492 

transport for 2D h-BX materials, especially for ZA phonons. Furthermore, reflection symmetry of 493 

the 2D flat plane of h-BX materials restricts phonon-phonon scattering, thus leading to larger κ௅ 494 

values than buckled 2D materials. For h-BAs, the mid-frequency ZO branch and decreased 495 

acoustic bunching due to quadratic dispersion introduce extra thermal resistance compared with 496 

c-BAs. Phonon MFPs and size-dependent κ௅  of the h-BX monolayers were calculated to 497 
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understand length scale effects on thermal transport, which are important for future device design. 498 

The effects of phonon-point-defect interactions were also estimated by calculating κ௅  with 499 

vacancy defects in a mass-disorder model. This ab initio κ௅ study gives predictions of the 500 

thermal properties of 2D boron-based compounds for thermal management applications and 501 

provides fundamental microscopic insights into phonon transport physics.   502 
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Appendix A: Convergence test of the lattice thermal conductivity. 503 

We have performed the convergence test of thermal conductivity versus the cut-off radius for 504 

3rd order IFCs, supercell size, and mesh size, as well as the sensitivity test on the scalebroad 505 

settings. The convergence of thermal conductivity is tested with different cutoff radii (from 5th to 506 

8th nearest neighboring atoms) for 3rd order IFCs on 128 atoms supercells, as shown in Figure A1. 507 

Results are converged within 10% when the cutoff radius reaches 8th nearest neighboring atoms. 508 

Thermal conductivities are calculated using IFCs from 72 and 128 atom supercells,shown in 509 

Table 2. Figure A2 shows calculated thermal conductivities with five different ShengBTE18 510 

scalebroad settings: 0.9, 1.0, 1.05, 1.1, and 1.2. Results are converged when the scalebroad 511 

setting is above 1.1. In this work, thermal conductivity is obtained by using 1.1 as a scalebroad 512 

setting and fitting points to a curve of the form ߢ௅ ൌ ௅|ேభ՜ஶൣ1ߢ െ ݁ିேభ/஺൧, where ߢ௅|ேభ is the 513 

thermal conductivity under mesh size ଵܰ ൈ ଵܰ ൈ 1, and A is a fitting parameter.  514 

Appendix B: Intrinsic phonon scattering rates. 515 

Appendix C: Mode Grüneisen parameters. 516 

Appendix D: Labeling phonon polarizations and determining phonon scattering rates for 517 

various types of processes: aaa, aao, and aoo. 518 

In Figure A5, we distinguish the three-phonon processes into different types: 519 

acoustic-acoustic-acoustic (aaa), acoustic-acoustic-optical (aao), and acoustic-optical-optical 520 

(aoo). We developed the following method to determine the phonon polarizations. To identify the 521 

polarization for each phonon mode, we started by labeling of the polarizations for phonons with 522 
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small q-points near the Γ point, i.e. before any branch crossing takes place. For these small 523 

q-points, the phonon modes follow the standard sequence of ZA, TA, LA, ZO, TO and LO with 524 

increased frequency. Then, we traced down each phonon branch to check the energy scale to 525 

determine if any two branches cross each other. In addition, to carefully verify the branch 526 

crossing, we zoomed in using a large q-mesh density along all high symmetry directions. If 527 

crossing takes place, the phonon polarizations are reversely labeled between the corresponding 528 

two branches. For example, we have identified that for h-BAs, the ZO crosses the LA branch. 529 

However, for h-BN, we identified that there is no crossing between the LO and TO branches, 530 

despite these two branches seem to cross each other in the low-resolution Figure 2a in the 531 

manuscript.  532 

Appendix E: Comparisons on RTA and full-BTE lattice thermal conductivity 533 

Appendix F: Thermal conductivity contributed by the phonon modes with different MFP 534 

 535 
  536 
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Figures for 683 
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 686 
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 688 

 689 

  690 
 691 

Figure 1. Ab initio calculated thermal conductivity vs temperature and classical metrics. (a) 692 
Calculated lattice thermal conductivity ߢ௅  in 2D units as a function of temperature for 693 
monolayer graphene (green), h-BN (black), h-BP (blue), h-BAs (red) and h-BSb (orange) with 694 
natural isotopic abundances. (inset) top view of the hexagonal structure of a diatomic 2D 695 
honeycomb crystal.  Room temperature ߢ௅  of different materials with natural isotopic 696 
abundances versus (b) average atomic mass (mavg), (c) Debye temperature (θD), and (d) mass ratio 697 
(mx/mB): monolayer h-BX (red), elemental monolayer materials (black), and separately bulk 698 
cubic-BX (black). Curves in (b-d) are guide lines to illustrate the dependence trend.  699 
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 700 

 701 
 702 

Figure 2. Calculated phonon dispersions and mode-dependent group velocities.  Calculated 703 
phonon dispersions in high symmetry directions for hexagonal monolayer (a) h-BN, (b) h-BP, (c) 704 
h-BAs, and (d) h-BSb. Circle symbols in (a) correspond to experimental data for bulk h-BN 705 
determined by inelastic x-ray scattering52. (e-h) For the same systems, calculated lower frequency 706 
phonon group velocities versus phonon frequencies of different polarizations: ZA (red), TA (blue), 707 
LA (green), and ZO (orange).  708 
 709 
 710 
  711 
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 712 
 713 

 714 
Figure 3. Phonon scattering phase space. Contour plot of the three-phonon phase space for 715 
each phonon branch in h-BX monolayers and graphene: (a) ZA, (b) TA, (c) LA, (d) ZO, (e) TO 716 
and (f) LO, in the irreducible segment of the Brillouin zone.  717 
 718 
 719 
 720 
 721 
  722 
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 723 
Figure 4. Mode-dependent Grüneisen parameters (ߛఒ) for ZA branch of h-BAs (red) and 724 
h-BP (black) as a function of frequency. 725 
 726 
 727 
 728 
 729 
 730 
  731 
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 732 

 733 

Figure 5. Comparison of the ratio of Umklapp and normal scattering of h-BX monolayers. 734 
Calculated ratio of mode-specific scattering rates of Umklapp (߬௎ିଵ) and normal (߬ேିଵ) scattering 735 
rates for lower frequency phonons in (a) h-BN, (b) h-BP, (c) h-BAs and (d) h-BSb. Colors are 736 
used to distinguish different phonon polarizations: ZA (red), TA (blue), LA (green) and ZO 737 
(orange). 738 
 739 
 740 
  741 
  742 
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 743 

 744 
Figure 6. Comparison of the dispersions and phonon transport properties of h-BAs and 745 
c-BAs. (a) Calculated phonon dispersions, (b) Total calculated scattering phase space versus 746 
phonon frequency, (c) Mode-dependent scattering phase space calculations versus phonon 747 
frequency.  (d) Calculated phonon scattering rates at room temperature versus scaled frequency 748 
for the lowest frequency branches in h-BAs (ZA) and c-BAs (TA1). (e) The same as (d) but for 749 
the second lowest frequency branches in h-BAs (TA) and c-BAs (TA2).  The figures show the 750 
scattering rates determined by different three-phonon processes: acoustic-acoustic-acoustic (aaa), 751 
acoustic-acoustic-optic (aao), and acoustic-optic-optic (for aoo, see Figure A5). The scattering 752 
rates are scaled by the highest frequency of each polarization for easier comparison. The inset of 753 
(d) illustrates a ZA + ZA ՞ TA scattering process, which results in the kink observed in 754 
scattering rates for the TA branch.  755 
  756 
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 757 

Figure 7. Comparison of vibrational properties of monolayer h-BAs and graphene. 758 
Calculated (a) phonon dispersions, (b) group velocities, and (c) three-phonon phase spaces for 759 
h-BAs (red) and graphene (black). In (c) the frequencies are scaled by the highest phonon 760 
frequency for easier comparison.  761 

762 
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 763 
Figure 8. Phonon mean free path spectra and size-dependent thermal conductivity of h-BX 764 
monolayers. (a) Cumulated thermal conductivity (κ௔௖௖) versus phonon mean free path (Λ) of 765 
h-BX monolayers compared with c-BP, c-BAs, and graphene. (b) Size-dependent thermal 766 
conductivity (κ௅ሺܹሻ). A nanoribbon geometry is used with diffuse scattering considered from 767 
edges of finite width W. Thermal conductivities in both figures are calculated for room 768 
temperature and are normalized by their corresponding bulk values (κ௅).  769 
 770 
  771 
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 772 
 773 
Figure 9. Defect scattering effects. (a) Normalized thermal conductivity κvacancy as a function of 774 
vacancy concentration from 0.001 to 1 (atomic %) at room temperature for h-BX monolayers. The 775 
vacancies are treated as mass defects similar to isotopes with zero mass.  776 
  777 
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 778 

 779 
Figure A1. The convergence test of thermal conductivity versus the cutoff radius for 3rd order 780 
IFCs. 781 
  782 
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 783 
Figure A2. Calculated lattice thermal conductivity κ௅ in 2D units with respect to q-point grid 784 
density N for (a) h-BN, (b) h-BP, (c) h-BAs and (d) h-BSb at room temperature. 785 
  786 
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 787 
 788 

 789 
Figure A3. Intrinsic scattering rates. Contour plot of the calculated phonon scattering rates at 790 
room temperature for each phonon branch in h-BX monolayers (a) ZA, (b) TA, (c) LA, and (d) 791 
ZO in the irreducible segment of the Brillouin zone.   792 
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 793 
Figure A4. Mode-dependent Grüneisen parameters (ࣅࢽ) for (a) h-BAs (solid squares) 794 
compared with h-BP (hollow triangles), (b) h-NB, and (c) h-BSb. Colors are used to 795 
differentiate polarizations: TA (blue), LA (green), ZO (orange), TO (purple), LO (yellow), and 796 
ZA (red). 797 
  798 
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 799 
Figure A5. Calculated scattering rates for hexagonal monolayer h-BX materials for the various 800 
types of processes: aaa (solid blue squares), aao (solid red squares) and aoo (solid green squares). 801 
The phonon frequencies are scaled by the highest frequency for every phonon branch. The aaa 802 
scattering in h-BAs increases monotonically with increasing frequency, while for bulk c-BAs 803 
these decrease in the middle to high frequency range. For h-BAs, aaa scattering dominates. 804 
 805 
  806 
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 807 
Figure A6. Calculated lattice thermal conductivity κ௅ in 2D units as a function of temperature 808 
for monolayer graphene (green), h-BN (black), h-BP (blue), h-BAs (red) and h-BSb (orange) with 809 
natural isotopic abundances. Solid curves correspond to full BTE solutions, while dashed curves 810 
correspond to RTA values.  811 
 812 
  813 
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 814 
Figure A7. Calculated phonon mean free path distribution at room temperature for (a) h-BAs and 815 
(b) c-BAs.  The top panels give the accumulated thermal conductivity normalized to their bulk 816 
values.  The bottom panels give the mode-dependent mean free paths correlated with their 817 
frequencies. 818 
  819 
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Table 1. Calculated thermal conductivity contributions from the different acoustic branches. 820 

 

Contribution (%) 

ZA TA LA 

RTA BTE RTA BTE RTA BTE 

h-BN 32.8 89.1 32.1 6.9 28.6 3.5 

h-BP 17.8 68.0 36.5 15.3 18.5 6.2 

h-BAs 5.3 43.2 48.8 29.4 42.9 25.8 

h-BSb 9.5 37.1 44.3 31.1 44.5 31.7 

 821 
  822 
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Table 2. Calculated thermal conductivity κ௅ vs. supercell size. 823 

Supercell 
κ௅ (W/m·K) 

h-BN h-BP h-BAs h-BSb 

72 atoms 1045 323 399 121 

128 atoms 1134 292 388 153 

 824 
 825 
 826 


