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The three-qubit Toffoli gate plays an important role in quantum error correction and complex
quantum algorithms such as Shor’s factoring algorithm, motivating the search for efficient imple-
mentations of this gate. Here we introduce a Toffoli gate suitable for exchange-coupled electron spin
qubits in silicon quantum dot arrays. Our protocol is a natural extension of a previously demon-
strated resonantly driven CNOT gate for silicon spin qubits. It is based on a single exchange pulse
combined with a resonant microwave drive, with an operation time on the order of 100 ns and fidelity
exceeding 99%. We analyze the impact of calibration errors and 1/f noise on the gate fidelity and
compare the gate performance to Toffoli gates synthesized from two-qubit gates. Our approach is
readily generalized to other controlled three-qubit gates such as the Deutsch and Fredkin gates.

I. INTRODUCTION

Silicon quantum dots provide a clear path towards scal-
able quantum information processing with spin qubits
[1–3]. At low temperatures, electron spins in isotopically
enriched silicon can have coherence times exceeding a sec-
ond [4]. Single qubit gate fidelities can exceed 99.9% [5, 6]
and there have been several recent demonstrations of fast
two-qubit gates [7–10] with fidelities reaching 98% [11].
Concurrent with these developments have been improve-
ments in scaling up to large arrays of individually control-
lable quantum dots coupled through nearest-neighbor ex-
change interactions [12–17], with prospects for long-range
spin-spin coupling using superconducting resonators [18–
20]. Future milestones will include the demonstration of
basic quantum algorithms in systems of three or more
silicon spin qubits.

A key challenge in implementing large scale quantum
algorithms is developing efficient gate compilation strate-
gies to improve performance and reduce the overhead in
implementing fault tolerant gates [21–23]. The three-
qubit Toffoli gate (controlled−CNOT gate) is a universal
gate for reversible classical computation. It also plays an
important role in quantum error correction and Shor’s
factoring algorithm [24–26]. It is therefore desirable to
realize fast, high-fidelity implementations of the Toffoli
gate with spins in silicon. Successful demonstrations of
the Toffoli gate have been achieved in a number of quan-
tum information platforms [25–31]. However, a detailed
protocol for implementing a Toffoli gate with silicon spin
qubits has not been put forward.

Here we introduce an efficient implementation of the
Toffoli gate suitable for three individually addressable
exchange-coupled Loss-DiVincenzo spin qubits [1]. Our
implementation is a natural extension of a previously
demonstrated CNOT gate for silicon spin qubits [8, 32].
It is based on an exchange pulse combined with a mi-
crowave drive applied to a target spin whose electron
spin resonance condition depends on the states of the
two neighboring spins. In a linear array of triple quan-
tum dots [see Fig. 1(a)], the central spin most naturally
serves as the target qubit since it is exchange coupled to
two nearest neighbor spins. If desired, the target qubit

can be moved to one of the other two dots using SWAP
gates. We present a detailed analysis of the calibration
conditions for this gate and compare its performance to
Toffoli gates synthesized from two-qubit gates. Our ap-
proach can be used to realize other controlled three-qubit
gates such as the Deutsch and Fredkin gates [33–35].

The paper is organized as follows: In Sec. II we present
an overview of the basic spin-qubit architecture we con-
sider and the physics underlying our implementation of
the Toffoli gate. We then present a detailed discussion of
the calibration procedures for the gate and compute the
average gate fidelities in the presence of calibration errors
in Sec. III. In Sec. IV we analyze the performance of the
gate in the presence of 1/f charge noise. In Sec. V, we
contrast the performance of the resonantly driven Toffoli
gate with Toffoli gates synthesized from two qubit gates
[36]. We present our outlook and conclusions in Sec. VI.

(a) (b)

FIG. 1. (a) Electrically-controllable spin qubits arranged in
a linear array. Locally varying magnetic fields (Bx and Bz)
allow for site-selective quantum control. Electric dipole spin
resonance (EDSR) is achieved by driving the plunger gates
Pi with microwave fields. An external magnetic field Bext

defines the z-direction. Nearest-neighbor exchange coupling is
controlled via barrier gates Bi and an exchange gate between
spins 1 and 2 is depicted here. A sensor dot allows readout
of the spin state of each dot via spin-to-charge conversion.
(b) Quantum circuit diagram for the implementation of the
Toffoli gate with an edge (top panel) or middle (bottom panel)
qubit chosen as the target. In our approach four multi-qubit
gates are needed to implement a Toffoli gate: one i-Toffoli
(iT ), two SWAPs, and one −i C-Phase.
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(a) (c)(b)

FIG. 2. (a) Level diagram for the 3-qubit system, where |s1s2s3〉 specifies the 3-qubit spin state and 0/1 corresponds to spin-
down/spin-up. Lines denote spectroscopically-resolved transitions used to drive a resonant CNOT between qubits 1 and 2 and
resonant i-Toffoli gates. (b) Voltage control sequence to realize the resonant CNOT gate between qubits 1 and 2 when J23 = 0,
which was studied in Refs. [8, 32]. (c) Voltage control sequence to realize a resonant i-Toffoli gate. Exchange couplings J12
and J23 are pulsed on for qubit pairs (1,2) and (2,3). After exchange is turned on, spin s2 is flipped by a resonant EDSR pulse
conditioned on the state of spins s1 and s3. Additional phases on the qubits are cancelled out by carefully choosing the pulse
times tac, tdc and the ratio of Ω2/Jij , as well as by setting J12 = J23.

II. TOFFOLI GATE IMPLEMENTATION

A schematic of the system, which is based on three ex-
change coupled semiconductor quantum dots, is shown
in Fig. 1(a) [12]. A magnetic field gradient in the z-
direction enables site selective control of each spin, while
a transverse field gradient in the x-direction allows for
single spin rotations through electric dipole spin reso-
nance (EDSR) [37]. Plunger gates P1 through P3 are
used to control the occupancy of each dot and drive
EDSR. Barrier gates B2 and B3 control the exchange in-
teraction between nearest-neighbor quantum dots 1 and
2, and 2 and 3, respectively. Spin-state readout can be
performed using spin-to-charge conversion with a charge
sensor quantum dot [2].

The quantum circuit for a Toffoli gate is shown in
Fig. 1(b). Its action on the qubit basis states takes the
form

|a, b, c〉 → |a, b, c⊗ ab〉 (1)

where a, b, c ∈ {0, 1} and ⊗ is the logical exclusive−OR
operation and 0/1 corresponds to spin-down/spin-up. In
our approach, the Toffoli gate can be synthesized from
two SWAP gates, a native three qubit gate that we refer
to as the i-Toffoli gate iT , and the −i C-Phase gate.
The action of the i-Toffoli gate on the qubit basis states
is given by

iT |a, b, c〉 = iab |a, b, c⊗ ab〉 . (2)

The −i C-Phase gate is needed to cancel the factor of i
in the iT gate. Due to the lack of next-nearest-neighbor
interactions, the i-Toffoli is most naturally implemented
with the central qubit chosen as the target.

In the absence of an EDSR drive, the low-energy

Hamiltonian for the three dot system takes the form [32]

H =
∑
i

Bi · si +
∑
i

Jii+1(si · si+1 − 1/4), (3)

where we have set ~ and g∗µB equal to one (g∗ ≈ 2 is the
electron g-factor in Si), Bi is the local magnetic field of
dot i, and Jii+1 is the exchange interaction between dots
i and i + 1. The spectrum of H for a three-qubit sys-
tem at large magnetic fields Bzi = Bext + BMi is shown
in Fig. 2(a). In this diagram, we have taken a linear
gradient (Bz1 + Bz3)/2 = Bz2 ; however, the realization of
two-qubit CNOT gates and the i-Toffoli gate does not
rely on this assumption. Here BMi is the magnetic field
generated by the micromagnet at site i and Bext is the ex-
ternal magnetic field applied along the z-direction. The
far left side of the energy level diagram illustrates the
case of a uniform magnetic field, with no exchange and
no field gradient. Here the |000〉 and |111〉 states are split
off by the Zeeman energy, while the ms = −1/2 mani-
fold {|100〉 , |010〉 , |001〉} and the ms = 1/2 manifold
{|110〉 , |101〉 , |011〉} both have a threefold degeneracy.
The z-component of the magnetic field from the micro-
magnet lifts the degeneracies of each of these manifolds
allowing site-selective control of each qubit. However,
the field gradient on its own does not enable controlled
rotations.

Controlled rotations are made possible by the combi-
nation of field gradients and nearest neighbor exchange
coupling. When the exchange interaction is small com-
pared to the magnetic field gradient [38], turning on J12

shifts the states |01s3〉 and |10s3〉 down in energy and en-
ables a resonantly-driven two-qubit CNOT gate with the
control sequence shown in Fig. 2(b) [8, 32]. Additionally
turning on J23 shifts the states |s101〉 and |s110〉 down
in energy, leading to a spectroscopically distinct 3-spin
transition |101〉 → |111〉. Applying a π-pulse resonant
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with this transition directly leads to the i-Toffoli gate,
where the second spin is flipped only if the two other
qubits are spin up. For a spin-1/2 system, a 2π rotation
brings the state back to itself up to a minus sign or phase
of π; therefore, a π pulse in the {|101〉 , |111〉} subspace
naturally leads to the factor of i inherent to the i-Toffoli
gate.

III. TOFFOLI GATE TUNE-UP

To physically realize the i-Toffoli gate we use the con-
trol sequence shown in Fig. 2(c). Two square wave volt-
age pulses are applied to the barrier gates (B2 and B3) to
turn on nearest-neighbor exchange interactions (J12 and
J23). Driving plunger gate P2 with a microwave field re-
sults in EDSR on the second qubit with Rabi frequency
Ω2. Following the approach outlined in Ref. [32] for the
resonant CNOT gate, we find that after appropriately
controlling the drive time and Rabi frequency to mini-
mize unwanted population transfers, this sequence of op-
erations can be used to drive a high-fidelity π-pulse in the
{|101〉 , |111〉} subspace. In addition to these dynamics,
however, there are also phases that are accumulated on
each of the eight three-qubit states. Similar to the reso-
nant CNOT gate, these phases can be compensated via
careful calibration of pulse lengths (t1dc, t

2
dc, and tac), the

Rabi frequency Ω2, and through the application of single-
qubit Z rotations after the controlled rotation. The Z ro-
tations may be implemented in software. We now present
a detailed analysis of these calibration conditions and the
robustness of the gate to calibration errors.

In the presence of a magnetic field gradient that is
large compared to exchange, and an EDSR microwave
drive applied to qubit 2, the Hamiltonian in the rotat-
ing wave approximation for the three-spin system can be
decomposed as a direct sum of four effective two level
systems

H(0,0) = −∆1 + ∆3

2
I + (∆2 − J̄ − δ2)sz2 + Ω2s

x
2 , (4)

H(0,1) =
∆3 −∆1

2
I + (∆2 − δJ − δ2)sz2 + Ω2s

x
2 , (5)

H(1,0) =
∆1 −∆3

2
I + (∆2 + δJ − δ2)sz2 + Ω2s

x
2 , (6)

H(1,1) =
∆1 + ∆3

2
I + (∆2 + J̄ − δ2)sz2 + Ω2s

x
2 , (7)

where H(s1,s3) is the projected Hamiltonian when qubits
(1,3) are in the states (s1, s3). The parameters in H(s1,s3)

are defined as follows: ∆i = Bzi −ω0i is the local magnetic
field for each dot relative to the EDSR drive frequencies
ω0i used for single-qubit gates performed in the absence
of exchange, δ2 = ω2 − ω02 is the shift of the qubit 2
EDSR drive between its value in the exchange “off” con-
figuration and its value in the exchange “on” configura-
tion (accounting for possible shifts in the magnetic gra-
dients as the exchange is turned on), J̄ = (J12 + J23)/2,
δJ = (J12 − J23)/2, and we have taken the EDSR drive

(a) (b)

FIG. 3. (a) Time evolution of the spin-up probability of qubit
2, p2↑, during the application of the EDSR drive for each of
the four possible spin-configurations of qubits 1 and 3. Tuning
to Ω2 = Ω2(m,n1) ensures that the π-pulse time for qubit
2 when both qubits 1 and 3 are spin-up leads to a full 2π
rotation of qubit 2 when only qubit 1 or 3 are spin-down.
There is only a small rotation error when qubits 1 and 3 are
both spin-down. (b) Increasing from (n1, n2) = (1, 3) to (2, 4)
improves the fidelity from the 99% level to the 99.9% level.

of qubit 2 to be along the x-axis. With these projected
Hamiltonians we can write the unitary for the gate oper-
ation in Fig. 2(c) in a frame rotating with ω02 as

U = U2
dcUacU

1
dc, (8)

U idc = e−i
∑

j ∆js
z
j t

i
dc−i(J12s

z
1+J23s

z
3)sz2t

i
dc , (9)

Uac = e−iδ2s
z
2tac

⊕
(s1,s3)

e−iH(s1,s3)tac . (10)

The i-Toffoli gate is most simply realized in the limit
Ω2 � J̄ with ∆2 = δJ = 0 and taking the EDSR drive
frequency δ2 = J̄ on resonance with the shifted transi-
tion in the (s1, s3) = (1, 1) subspace. In this case, we
can approximately neglect the Ω2 term in H(s1,s3) for
(s1, s3) 6= (1, 1), which implies that these subspaces sim-
ply undergo diagonal phase evolution. In the (s1, s3) =
(1, 1) subspace, however,

e−iH11tac = e−iΩ2s
x
2 tac = ±iσx2 , (11)

where the last equality holds for π-pulse times such that
sin(Ω2tac/2) = ∓1. Correcting for the phases accumu-
lated on each 3-qubit state allows for a direct realization
of the Toffoli gate. In practice, however, the constraint
|Ω2| � J̄ is too restrictive and results in slow gate times,
making the gate susceptible to calibration errors and de-
coherence. We now show how to overcome this limitation
by also calibrating the ratio |Ω2| /J̄ , which allows one to
drive a high-fidelity, controlled spin-rotation on qubit 2
in the minimum amount of time for simple square wave
pulse profiles.

To ensure that the (s1, s3) = (1, 1) subspace under-
goes a π rotation, we first impose the timing constraint
tac = (2m + 1)π/ |Ω2| for integers m ≥ 0. We can allow
m to be small if we require the population dynamics in
the (s1, s3) ∈ {(0, 1), (1, 0)} subspaces to undergo a full
2π rotation with respect to their precession frequencies
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Ω(1,0) =
√
J2

12 + Ω2
2 and Ω(0,1) =

√
J2

23 + Ω2
2, respec-

tively [32]. This condition can be satisfied for J12 = J23

when

Ω(0,1)tac = (2m+ 1)π
√
J̄2/Ω2

2 + 1 = 2n1π, (12)

for an integer n1 > 0. Satisfying Eq. (12) requires

|Ω2(m,n1)| = (2m+ 1)J̄√
4n2

1 − (2m+ 1)2
. (13)

We must still ensure that there are no induced spin flips
on qubit 2 in the (s1, s3) = (0, 0) subspace. There is no
way to simultaneously satisfy a perfect 2π rotation in this
subspace and the (s1, s3) ∈ {(0, 1), (1, 0)} subspaces with
the simple square wave pulses considered here; however,
we show in Fig. 3(a) that the off-resonant driving of the
(s1, s3) = (0, 0) subspace results in a small average gate
infidelity 1− F̄ (iT ) ∼ 0.6 % for m = 0 and n1 = 1. Here,
the average gate fidelity for unitary operators G and U
acting on a d-dimensional Hilbert space Cd is defined as

F̄ (G) =

∫
dψ|〈ψ|G†U |ψ〉 |2, (14)

where G is the ideal implementation the gate, U is the
actual implementation, and the integral is over the Haar
measure on Cd [39]. As shown in Fig. 3(b), decreasing
the Rabi frequency, by changing the timing condition to
n1 = 2, further improves the average gate infidelity to
1−F̄ (iT ) ∼ 0.03 %. The maximum fidelity increases with
n1 because the Rabi drive becomes weaker in this limit,
resulting in less unwanted population transfer outside the
target subspace.

At the end of the gate, there is an effective Z rota-
tion of qubit 2 (relative to the choice of rotating frame)
that depends on the state of the other two qubits. To
remove this conditional Z rotation, we arrive at the set
of calibration and timing conditions

J̄ tdc = 2πn2 −
√

16n2
1 − 3(2m+ 1)2π, (15)

δtdc =
∆2tdc + 2πn3

∆2 + J̄
, (16)

where n2 is a positive integer, n3 is an even integer, tdc =
t1dc + t2dc and δtdc = t2dc − t1dc. A final set of conditions
are that if n1 is odd, then n2 should be odd and Ω2 > 0,
while if n1 is even, then n2 should be even and Ω2 < 0.
The total gate time is

Ttot = tdc + tac =
π

J̄

[
2n2 +

√
4n2

1 − (2m+ 1)2

−
√

16n2
1 − 3(2m+ 1)2

]
.

(17)

Under ideal conditions, the unitary U takes the form

U = e−i
∑

j ∆j(tdc+tac)szj−iJ̄tacs
z
2 iT, (18)

(a) (c)

(b) (d)

FIG. 4. (a–b) Effect of detuning and Rabi frequency errors on
the average fidelity of the native i-Toffoli gate F̄ (iT ). (c–d)
Effect of errors in the exchange coupling on F̄ (iT ). We took
(m,n1, n2, n3) = (0, 1, 3, 0). In a typical experiment Jij/2π =
(10− 20) MHz.

which is equal to the i-Toffoli gate up to single-qubit Z
rotations. These single-qubit Z rotations can be mea-
sured and then corrected in software by modifying the
phase of subsequent EDSR drives on the qubits. After
this calibration step, Fig. 3 shows that F̄ (iT ) can ex-
ceed 99% even for the maximal allowed ratio |Ω2(0, 1)|/J̄ ,
where there is significant population dynamics in the
(s1, s3) 6= (1, 1) subspaces away from the π-pulse times.

High-fidelity implementation of the i-Toffoli gate also
requires careful calibration of the EDSR drive frequency
and amplitude, as well as the exchange couplings. In
Fig. 4, we compute F̄ (iT ) as a function of calibration
errors in the control parameters. Here we have defined
δΩ2 = Ω2 − Ω2(m,n1), δ = δ2 − ∆2 − J̄ , and δJij =
Jij − J̄ . In Figs. 4(a)-(b), we show the dependence of
F̄ (iT ) on miscalibrations in δ and δΩ2, while Figs. 4(c)-
(d) show the effects of miscalibrations in the exchange
interactions δJij . Because the ideal implementation of
the gate is a local minimum in the infidelity, for small
calibration errors, 1− F̄ (iT ) has a quadratic dependence
on these parameters. From Figs. 4(b) and (d), we can see
that high-fidelity operation (F̄ (iT ) > 90%) is achievable
for control parameter errors that are within 5% of the
average exchange coupling J̄ . Taking (m,n1, n2, n3) =
(0, 1, 3, 0) and J̄/2π = 20 MHz, we find a gate operation
time from Eq. (17) of Ttot = 103 ns. In the next section,
we analyze the performance of the i-Toffoli gate in the
presence of 1/f charge noise.
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IV. SENSITIVITY TO CHARGE NOISE

In this section, we present a detailed analysis of the
robustness of the i-Toffoli gate to time-dependent noise
in the control parameters. Spin relaxation rates in these
systems are relatively slow when the Zeeman splitting
is much less than the splitting to the next valley-orbital
state [40]. At low magnetic fields (Bext < 1 T), and even
in the presence of inhomogeneous magnetic fields, spin
relaxation times T1 > 60 ms are feasible [41]. Given that
gate operations are ∼ 100 ns, we are justified in neglect-
ing spin relaxation processes in determining the fidelities
of few-qubit gates. Furthermore, for devices based on
isotopically enriched 28Si, random magnetic fields due
to nuclear spins are strongly suppressed leading to in-
creased T ∗2 times on the order of 10 µs [5, 42], which is
much greater than our iToffoli gate time, but still only
an order of magnitude greater than what is observed in
natural Si. Thus, the dominant source of noise for 28Si
devices with external magnetic field gradients likely arises
from electric field noise (charge noise) that leads to time-
dependent fluctuations in the parameters of the Hamil-
tonian, which we account for below.

To account for the charge noise, we use the parameter-
izations

∆i(t) = ∆0
i + ∆r

i (Ω) + ∆n
i vi(t), (19)

Ωi(t) = Ω0
i [1 + δΩni vi(t)], (20)

Jij(t) = J0
ij{1 + δJrij(Ω) + δJnij [vi(t) + vj(t)]}, (21)

where all of these parameters are assumed to have an im-
plicit dependence on (VPi,VBi), vi(t) is the local noise
term, ∆0

i is the bare detuning of qubit i from the EDSR
reference frequency ω0i, Ω0

i is the bare EDSR Rabi fre-
quency, and J0

ij is the bare exchange. ∆n
i is a noise sen-

sitivity parameter that measures the change in the qubit
frequency in response to the noise perturbation, δΩni is a
noise sensitivity parameter that measures the fractional
change in the EDSR Rabi frequency in response to the
noise, and, similarly, δJnij measures the fractional change
in the exchange interaction between qubits i and j in
response to the noise, under the simplifying assumption
that the exchange couples with equal magnitude to the
noise field for each dot. The parameters ∆r

i and δJrij
account for additional static shifts in the detuning and
exchange, respectively, that arise in the presence of the
EDSR drives.

We neglect spatial correlations in the noise and take a
regularized 1/f spectral density [43, 44]

S(f) = A/f, f` < f < fc, (22)

where A is the amplitude of the 1/f noise, f is in units
of Hz, f` = (2πTcal)

−1 is a low-frequency cutoff, which
is set by an experimental calibration time Tcal, and fc is
a high-frequency cutoff. We take a white noise spectrum
below f` and a 1/f2 dependence above fc.

Direct measurements of EDSR Rabi rotations can be
used to determine Ω0

i and ∆0
i . Ramsey or spin-echo in-

(a) (b)

FIG. 5. (a) Dependence of F̄ (iT ) on the qubit, Rabi, and
exchange quality factors of the system. To produce each curve
we fix the other two quality factors to 100 and vary only the
third quality factor indicated in the legend. We assume γri =
γr and T ∗2,i = T ∗2 , and γeij = γe for all i and j. Qubits 1 and
3 do not undergo any EDSR driving during the i-Toffoli gate
so their Rabi quality factors do not enter into this analysis.
The fidelity saturates to the maximum value determined by
the timing conditions for quality factors & 50. We took

√
A =

0.5 µeV, fc = 10 MHz and Tcal = 103 s. (b) Dependence of

F̄ (iT ) on Tcal for different values of
√
A and fc. The noise

sensitivity parameters were fixed at each value of fc at the
baseline point T 0

cal = 103 s and
√
A = 0.5 µeV [5, 45]. We used

Jij/2π = 15 MHz, (m,n1, n2, n3) = (0, 1, 3, 0), Ttot = 138 ns,
and baseline values of T ∗2 = 10 µs, and Ω2/γr = J̄/γe = 50.

terferometry of a single-spin with its neighboring spin in
an up or down state can be used to measure J0

ij . For
the regularized 1/f spectrum in Eq. (22), the noise sen-
sitivity parameters are determined by the value of T ∗2,i
on dot i and the envelope decay rates of the Rabi γri and
exchange γeij oscillations [43]

∆n
i =

√
1

A log
(
fc
f`

) 1

T ∗2,i
, (23)

δΩni =

√
1

A log
(
fc
f`

) γri
Ω0
i

, (24)

δJnij =

√
2

A log
(
fc
f`

) γeij
J0
ij

. (25)

The shift term ∆r
i can be determined by simultaneously

applying an off-resonant EDSR drive on the other qubits
during a Ramsey sequence. To determine the static shift
parameters δJrij , far off-resonant EDSR drives can be si-
multaneously applied with exchange gates.

In Fig. 5, we include the effects of time-dependent
noise in a simulation of the i-Toffoli gate implementation.
We focus on the performance of the (m,n1, n2, n3) =
(0, 1, 3, 0) gate because it has the shortest operation time
and is, therefore, the most robust against noise. As
shown in Fig. 5(a), the fast gate operation time implies
that high fidelity operation can be achieved with rather
modest quality factors (T ∗2 /Ttot, Ω2/γr, J̄/γe < 100),
where we assume all dots have identical decay parame-
ters T ∗2,i = T ∗2 , γri = γr, and γeij = γe for all i and j.
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In Fig. 5(b), we analyze the dependence of the average
gate fidelity on the calibration time, the high-frequency
cutoff, and the amplitude of the 1/f noise. Due to the
logarithmic scaling of the noise sensitivity parameters on
f`, there is only a weak dependence of the average gate
fidelity on Tcal. Similarly, changing the value fc across
several orders of magnitude results in only minor changes
in the average gate fidelity. On the other hand, modest
reductions in the overall amplitude of electric field noise
can significantly improve the gate fidelities.

V. SYNTHESIZED TOFFOLI GATES

In this section, we compare the performance of our
Toffoli gate to Toffoli gates synthesized from two-qubit
gates [24, 36]. Efficient synthesized versions of the Toffoli
gate are shown in Fig. 6. The circuit in Fig. 6(a) real-
izes the Margolus gate, which is equivalent to the Toffoli
gate controlled by qubits 1 and 3 up to a π-phase on the
state |0, 1, 1〉. The Margolus gate is analogous to our i-
Toffoli gate and, therefore, it is natural to compare the
performance of these two gates. The dominant source of
errors for the Margolus gate is likely to arise from system-
atic errors in the CNOT gates. For small errors εCNOT,
this results in an overall error rate for the Margolus gate
as εM ≈ 3εCNOT. The operation time of the Margolus
gate is 4 times longer than the i-Toffoli after taking into
account the additional π/4 single-qubit rotations. The i-
Toffoli gate introduced in this work is subject to the same
error mechanisms as the resonant CNOT gate studied in
Ref. [8, 32]. As a result, the i-Toffoli gate can realize up
to a 3-fold reduction in error rate and 4-fold reduction in
gate operation time compared to the Margolus gate.

To make a more direct comparison between our im-
plementation and two-qubit synthesized versions of the
Toffoli gate, we have to account for the ability to change
the target qubit and correct the factor of i in the i-Toffoli
gate, which introduces two additional SWAP gates and
one C-Phase gate. Two efficient implementations of the
Toffoli gate using nearest-neighbor two-qubit gates are
shown in Figs. 6(b)-(c). The circuit in Fig. 6(b) requires
the ability to apply controlled ±π/2 rotations about the
x-axis, but this is a straightforward extension of the res-
onantly driven CNOT gate. This circuit involves 7 two-
qubit gates, compared to the resonantly driven Toffoli
that requires one iT gate, and three two-qubit gates.
Thus, the error rate and operation time for the synthe-
sized version of the Toffoli will both be as much as two
times larger than our Toffoli gate implementation. In ad-
dition, this circuit requires additional calibration of the
controlled-V gates. The circuit in Fig. 6(c) requires the
fewest number of primitive two-qubit gates and, there-
fore, has the least demanding calibration requirements.
However, it requires 8 two-qubit gates and 10 total ro-
tation operations (T -gates can be applied in software),
which will double the error rate and operation time of
the gate.

(b)

(c)

(a)

FIG. 6. (a) 3-qubit Margolus gate, which is equal to the
Toffoli gate up to a π-phase on the state |0, 1, 1〉. (b) 3-
qubit control-U gates synthesized from SWAPs and nearest-
neighbor two qubit control-V gates with V 2 = U . For the
Toffoli gate V = e−iπ/4+iπσx/4. (c) Synthesized Toffoli from
nearest-neighbor CNOTs, SWAPs, T -gates, and Hadamards
(H).

Based on this comparison, we can see that the biggest
error rate reduction arises from the implementation of
the iT gate, which can be done in one step with our
approach. As a result, we expect that the iT gate and
its generalizations to other three-qubit controlled gates
will be useful options for primitive gates in compilation
protocols for silicon spin-qubit quantum algorithms.

VI. OUTLOOK AND CONCLUSIONS

Our implementation of the Toffoli gate naturally ex-
tends to other three-qubit controlled gates such as the
Deutsch and Fredkin gates. The Deutsch gate consists
of a two-qubit controlled rotation of a third target qubit
about the x-axis by an arbitrary angle. Such a gate can
be realized in our protocol by modifying the duration of
the resonant EDSR drive on qubit 2. The Fredkin gate
is a SWAP gate on two qubits that is controlled by the
state of a third qubit. To implement the Fredkin gate,
one of the edge spins (e.g. spin 1) should be chosen as
the control qubit. Due to the exchange coupling J12, the
energy of spin 2 will depend on the state of spin 1. As
a result, the energy difference between states |s110〉 and
|s101〉 will depend on s1. Resonantly driving J23 at the
difference frequency of states |110〉 and |101〉 will lead
to Rabi oscillations between these states that are con-
ditioned on the orientation of spin 1. Analogous to the
i-Toffoli gate, driving a π-pulse in this subspace leads
to a direct realization of the Fredkin gate up to relative
phases on each 3-qubit state in the computational basis.

To improve the fidelity and robustness of these three-
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qubit gates, it may be advantageous to employ dynam-
ically corrected gates [46]. Provided the noise dynamics
are slow compared to the gate times, such methods can
lead to substantial improvements in the gate fidelities and
robustness of the gates to calibration errors [6, 47, 48].

In conclusion, we have presented a protocol for an effi-
cient, high-fidelity Toffoli gate that is readily achievable
in silicon spin-qubit devices based on quantum dots. Un-
der realistic conditions, fidelities greater than 99% are
accessible with gate times at or below 100 ns. The gate
is based on a resonant EDSR drive applied to the central
qubit of a 3-qubit array in the presence of finite exchange
couplings J12 and J23. If desired, the target qubit can be
changed from the central qubit using SWAP gates. The
full implementation of the Toffoli gate is two times faster
with half the error rate compared to Toffoli gates synthe-
sized from two-qubit gates, while the i-Toffoli gate has

a 4-fold and 3-fold reduction in time and error rate, re-
spectively, compared to similar 3-qubit gates. We antic-
ipate that the i-Toffoli gate, and its extensions to other
three-qubit controlled gates, will be a useful primitive
gate in quantum compilation approaches for silicon spin
qubits. In the near term, we expect our analysis will help
guide implementations of quantum algorithms with three
or more silicon spin qubits.
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