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Nitride semiconductors are ubiquitous in optoelectronic devices such as LEDs and Blu-Ray optical
disks. A major limitation for further adoption of GaN in power electronics is its low hole mobility.
In order to address this challenge, here we investigate the phonon-limited mobility of wurtzite
GaN using the ab initio Boltzmann transport formalism, including all electron-phonon scattering
processes, spin-orbit coupling, and many-body quasiparticle band structures. We demonstrate that
the mobility is dominated by acoustic deformation-potential scattering, and we predict that the
hole mobility can significantly be increased by lifting the split-off hole states above the light and
heavy holes. This can be achieved by reversing the sign of the crystal-field splitting via strain or
via coherent excitation the A1 optical phonon through ultrafast infrared optical pulses.

I. INTRODUCTION

Wurtzite GaN plays a key role in solid state light-
ing due its wide emission spectrum, high efficiency and
scalable manufacturing1. GaN has a high breakdown
field, high thermal conductivity and high electron mo-
bility, and is therefore an excellent candidate for high
power electronic devices2–5 and radio frequency electron-
ics6. GaN also exhibits high Seebeck coefficient and ex-
cellent temperature stability, which makes it a prime
candidate for high temperature thermoelectric applica-
tions7–9. It can also be used for thermal neutron and
gamma radiation detection10. More generally, group-
III nitrides can be engineered to form continuous al-
loys with a tunable bandgap from 6.2 eV (AlN) through
3.4 eV (GaN) to 0.7 eV (InN)1, finding applications in
blue11 and green12 lasers, photodetectors13, and light-
emitting diodes14. Recently a GaN/NbN semiconduc-
tor/superconductor heterojunction was achieved through
epitaxial growth, paving the way for superconducting
qubits15. Widespread adoption of GaN for applica-
tions such as complementary metal-oxide-semiconductor
(CMOS) and high-power conversion devices is hindered
by the low hole mobility of GaN. In fact, the room
temperature hole mobility of GaN does not exceed
40 cm2/Vs16–22. In comparison, electron mobilities as
high as 1265 cm2/Vs have been reported in the bulk,
and exceeding 2000 cm2/Vs in 2D electron gases23. It is
therefore important to find practical ways to increase the
hole mobility in this semiconductor.

Transport properties in wurtzite GaN have been
investigated theoretically decades ago by Ilegems
and Montgomery24, taking into account conduction-
band nonparabolicity, deformation-potential, piezo-
electric acoustic-phonon scattering, and polar-optical
phonon scattering. More recently, analytical models
based on experimental results have been developed to
accurately describe low-field carrier mobilities in a wide
temperature and doping range25–27, and the electron-

phonon scattering rates of GaN were computed from first-
principles using the EPW software28.

In a recent work29, we clarified the atomic-scale mech-
anisms that are responsible for the low hole mobili-
ties in GaN using the state-of-the-art ab initio Boltz-
mann transport formalism, and we discussed strategies
to significantly increase the hole mobility in wurtzite
GaN. We showed that the origin of the low hole mo-
bility lies in the scattering of carriers in the light-hole
(lh) and heavy-hole (hh) bands predominantly by long-
wavelength longitudinal-acoustic phonons. Using this
understanding, we predicted that the hole mobility could
significantly be enhanced if the split-off hole band (sh)
could be raised above the lh and hh bands. Such band
inversion can be achieved by reversing the sign of the
crystal-field splitting via uniaxial compressive or biaxial
tensile strain. In the present manuscript, we give details
on the computational parameters used in Ref. 29, con-
vergences studies, phase diagram, and we discuss various
strategies to perform momentum integration in the cal-
culation of mobility.

The manuscript is organized as follows. In Sec. II,
we compute the GaN phase diagram and show that the
wurzite phase is thermodynamically stable for the range
of pressures and temperatures investigated. We also
discuss ground-state properties of unstrained GaN. We
then discuss in Sec. III the electronic structure includ-
ing many-body quasiparticle correction, the electron and
hole effective masses as well as spin-orbit and crystal-field
splitting. In Sec. IV, we briefly present the linearized
Boltzmann transport formalism to compute the mobility
of GaN, the associated convergence studies, the band ve-
locity and the Hall factor. We compare our theoretical
results to experiment and analyze the origin of the low
hole mobility in unstrained GaN. In Sec. V, we analyze
the elastic properties, phonon dispersion and electronic
bandstructure of GaN under biaxial and uniaxial strain.
We also show how to increase the hole mobility via biaxial
tensile or uniaxial compressive strain. Finally, in Sec. VI,
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we discuss how to realize high-mobility p-type GaN in ex-
periments. We draw our conclusions in Sec. VII.

II. GALLIUM NITRIDE PHASE DIAGRAM
AND GROUND STATE PROPERTIES

In this section we present the computed phase dia-
gram of bulk GaN, highlighting the approximations and
computational parameters used. Such a diagram is im-
portant to make sure that no phase change occurs within
the range of applied strains and temperature investigated
in this study. We then focus on the stable wurtzite phase
and discuss the optimized structure.

GaN can form the following allotropes: (i) wurtzite
P63mc, (ii) zincblende F4̄3m and (iii) rock-salt Fm3̄m.
The wurtzite phase is the naturally occurring phase,
while the zincblende phase has been stabilized experi-
mentally by epitaxial growth on cubic GaAs [001] sur-
faces30; the rock-salt phase can be obtained under high
pressure31.

We use the fully relativistic norm-conserving Perdew-
Zunger32 parameterization of the local density approx-
imation (LDA) to density functional theory, and the
Perdew-Burke-Ernzerhof33 generalized gradient approxi-
mation (PBE). The pseudopotentials are generated using
the ONCVPSP code34 and optimized via the PseudoDojo
initiative35. The semicore 3s, 3p, and 3d electrons of Ga
are explicitly described, as GW quasiparticle corrections
are sensitive to semicore states. The electron wavefunc-
tions are expanded in a planewave basis set with kinetic
energy cutoff of 120 Ry, and the Brillouin zone is sampled
using an homogeneous Γ-centered 6×6×6 mesh.

Within the quasi-harmonic approximation37, the
Helmholtz free energy of a crystal is given by38:

F (T, V ) = U(V ) + F vib(T, V ) + F el(T, V ), (1)

where U is the static (clamped-ion) energy at 0 K, F vib

is the contribution due to lattice vibrations and F el is the

100 150 200 250 300 350

Volume (Bohr3)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

U
(V

) (
R

y)

Rock salt
Wurtzite
Zinc Blende

FIG. 1: Total energy versus volume at zero temperature for
the rock salt, wurtzite and zinc blende phases of GaN.
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FIG. 2: Phase diagram of GaN. The phonon frequencies are
computed using the PBE functional, without spin-orbit cou-
pling, at 11 different volumes. The experimental values (black
triangles) are from Ref. 36. The light gray rectangle repre-
sents the maximum strain (9.8 GPa at 2% strain) and tem-
perature (500 K) investigated in this paper.

energy due to electronic thermal excitations. We rely on
the adiabatic approximation to treat each term indepen-
dently. The vibrational Helmholtz free energy per cell is
given in the harmonic approximation by38:

F vib(T, V ) =
1

2N

∑
q,ν

~ωq,ν(V )

+
kBT

N

∑
q,ν

ln

[
1− exp

(−~ωq,ν(V )

kBT

)]
, (2)

where N is the number of q-points, the first term is
the contribution to the zero-point energy and the second
term is the phonon contribution at finite temperature.
F el can be neglected as the band gap is much larger than
thermal energies.

The energy minimum of U(V ) + F vib(T, V ) at a given
temperature corresponds to zero pressure and gives the
variation of volume with temperature due to thermal ex-
pansion. To perform these calculations we use the Quan-
tum Espresso39 and thermo pw codes40. The phonon
frequencies were computed using the PBE pseudopoten-
tials, without spin-orbit coupling (SOC), at 11 different
volumes. The resulting energies were fitted using the
Murnaghan equation of state41. We used a 6×6×6 q-
point grid for the phonons. In order to obtain accurate
dielectric permittivity tensors and Born effective charges
we employed a much denser, shifted Monkhorst-Pack grid
with 16×16×16 k-points. To compute phonon dispersion
relations, we applied the crystal acoustic sum rule42,43.
The calculated dependence of the static energy U(V ) on
the volume is shown in Fig. 1.

The complete phase diagram can be obtained by com-
paring the Gibbs free energy of the various allotropes at
each temperature and pressure. The Gibbs free energy
G(T, P ) can be obtained from the Helmholtz free energy
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FIG. 3: Electronic bandstructure of wurtzite GaN using (a) the LDA functional in the optimized ground-state LDA structure,
and (b) quasiparticle G0W0+∆k calculation. We indicate the effective masses at the zone center, obtained from the second
derivatives of the band energy with respect to the wavevector along the ΓM and ΓA directions, respectively. The bandgap is
off scale for clarity. We indicate the naming convention for the three topmost eigenstates at Γ. The energy levels have been
aligned to the band edges. A schematic of the Brillouin zone of wurtzite GaN is given in the upper left corner.

as:

G(T, P ) = F (T, V ) + PV, (3)

where the pressure is obtained by computing the first-
order derivative of the Helmholtz free energy, with re-
spect to volume at fixed temperature:

P = −∂F
∂V

∣∣∣∣
T

. (4)

The Gibbs free energy was computed using the python
toolkit PhaseGO44. The resulting pressure-temperature
phase diagram is given in Fig. 2, where the light gray
rectangle represents the maximum stress (9.8 GPa at 2%
strain) and temperature (500 K) investigated in this pa-
per. We see that the wurtzite structure is always the
thermodynamically stable phase in the strain and tem-
perature considered in this study. We note that our cal-
culated ab initio phase diagram overestimates the coordi-
nates of the triple point (10 GPa, 4700 K) with respect to
experiment (6.2 GPa, 2300 K)36, however this error does
not affect the region of interest for our present study.

Our optimized lattice parameters of wurtzite GaN are
a = 5.961(6.081) bohr and c = 9.716(9.9049) bohr,
and the internal parameter is u = 0.376(0.377) in LDA
(PBE). As expected, the experimentally measured pa-
rameters, a = 6.026 bohr and c = 9.800 bohr45, fall in
between the LDA and PBE data. All subsequent calcu-
lations of electron band structures, phonon dispersion re-
lations, and electron-phonon interactions are performed
using these optimized lattice parameters.

III. GW QUASIPARTICLE CORRECTIONS

The electronic bandstructure computed within the
LDA is presented in Fig. 3(a) for states close to the band
edge along the high-symmetry directions Γ-A (which is
the direction parallel to the c-axis, denoted with a ‖ sym-
bol) and Γ-M (which is the perpendicular direction, de-
noted with a ⊥ symbol). Due to the wurtzite symmetry,
the in-plane Γ-K direction is equivalent to the Γ-M di-
rection, and therefore is not shown.

The calculated direct bandgap is 2.14 eV, strongly un-
derestimating the measured value of 3.5 eV52,62. To over-
come this shortcoming, we calculated the GW quasipar-
ticle band structures of wurtzite GaN within the many-
body G0W0 approximation including SOC, as imple-
mented into the Yambo code63. We used a planewaves ki-
netic energy cutoffs of 120 Ry for the exchange self-energy
and 29 Ry for the polarizability. In addition, we included
1500 bands, a plasma energy of 16.5 eV for the plasmon
pole64, and a 6×6×6 Γ-centered Brillouin-zone grid. We
employed the band extrapolation scheme of Ref. 65 to
speed-up convergence with the number of empty states.
We obtained a corrected bandgap of 3.41 eV, much closer
to the experimental one.

As discussed in Ref. 66, the accuracy of the effec-
tive masses is improved by using a self-consistent, k-
dependent scissor shift. This approximation, which we
call G0W0-∆k, yields a wider bandgap of 3.85 eV. This
value is in agreement with the gaps 3.24 eV and 3.81 eV
obtained in previous calculations49,50. The calculated
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LDA+G0W0+∆k band structure for unstrained GaN is
reported in Fig. 3(b). Throughout this paper, GW-
corrected band structures were obtained via Wannier in-
terpolation67, using 20 Wannier functions for the ground-
state structure and the structures with 1% strain, and 28
Wannier functions for the structures with 2% strain (to

Energy gaps
Eg ∆so ∆cf

Present work (eV) (meV) (meV)
PBE 1.74 9 39
PBE+G0W0 2.60 11 26
PBE+G0W0+∆k 2.94 13 22
LDA 2.14 8 53
LDA+G0W0 3.41 12 35
LDA+G0W0+∆k 3.85 14 30

Previous work
LDA46 - 13 42
LDA47 - 12 37
LDA48 - 16 36
LDA49 1.78 - 49
OEPx+G0W0

49 3.24 - 34
QSGW50 3.81 - -
0.8Σ-QSGW50 3.42 - -
0.8Σ-QSGW51 3.60 5‡ 18‡

0.8Σ-QSGW51 3.60 14 12
Experiment52 3.47 - -
Experiment53 3.47 11 22
Experiment54 - 18 10
Experiment55 - 12 16
Experiment56 3.51 17 25
Experiment57 - 19 10

Effective masses

m
‖
hh m

‖
lh m

‖
sh m⊥hh m⊥lh m⊥sh m

‖
e m⊥e

Present work
LDA 2.05 1.78 0.16 0.70 0.29 1.30 0.19 0.21
LDA+G0W0 1.98 1.68 0.18 0.58 0.33 1.29 0.22 0.19
LDA+G0W0+∆k 1.94 1.66 0.20 0.45 0.37 1.16 0.23 0.20

Previous work
Theory51 1.85 0.55 0.20 0.69 0.50 0.80 0.20 0.22
Theory*49 1.88 0.92 0.19 0.33 0.36 1.27 0.19 0.21
Theory†49 1.88 0.37 0.26 0.33 0.49 0.65 0.19 0.21
Theory48 2.00 1.19 0.17 0.34 0.35 1.27 0.19 0.23
Theory47 2.03 1.25 0.15 0.33 0.34 1.22 0.17 0.19
Experiment57 1.76 0.42 0.30 0.35 0.51 0.68 - -
Experiment58 - - - - - - 0.22 0.24

TABLE I: Comparison between our calculated bandgap Eg,
spin-orbit splitting ∆so, crystal-field splitting ∆cf , and ef-
fective masses of wurzite GaN with earlier theory and ex-
periment. QSGW stands for quasiparticle self-consistent ap-
proach59, 0.8Σ-QSGW is an empirical hybrid method with
20% LDA self-energy60 and OEPx stands for exact-exchange
optimized effective potential49. ‡ Calculation done using the
quasicubic approximation. * Calculation using ∆so = 16 meV
and ∆cf = 25 meV from Ref. 61. † Calculation using ∆so =
19 meV and ∆cf = 10 meV from Ref. 57. The bold values are
recommended and are used throughout this manuscript.

be discussed below). In contrast, we note that the PBE
functional yields much too small a bandgap, even after
G0W0+∆k corrections (2.94 eV). The various bandgaps
and their comparison to previous calculations and exper-
iment are summarized in Table I. We note that the the-
oretical values reported in Table I do not account for the
zero-point renormalization, which has been calculated to
be -150 meV for zinc-blende GaN68.

As shown in Fig. 3, the conduction band bottom of
GaN is singly degenerated, while at the valence band top
we have a lh and a hh, which are split into doublets
by SOC as we move from the Γ to the M point of the
Brillouin zone. We also have a split-off hole resulting
from crystal-field splitting. In order to determine the
spin-orbit splitting ∆so and the crystal-field splitting ∆cf ,
we employ the quasi-cubic model of Refs. 46,69 for the

triplet of states Γ9v, Γ
(1)
7v , and Γ

(2)
7v at the valence band

top, with energies εhh, εlh, and εsh, respectively:

εhh =
1

2
(∆so + ∆cf), (5)

εlh, εsh = ±1

2

√
(∆so + ∆cf)2 −

8

3
∆so∆cf . (6)

Having checked that ∆so � ∆cf , we can simplify these
expressions as:

∆so =
3

2
(εhh − εlh), (7)

∆cf = εlh − εsh +
εhh − εlh

2
. (8)

Using the last two equations, we determine the spin-orbit
splitting and the crystal-field splitting from the calcu-
lated band structure energies εhh, εlh, and εsh and sys-
tematically report them in Table I. As seen in Fig. 3,
the effect of G0W0 and the self-consistent scissor is to
increase the spin-orbit splitting and decrease the crystal-
field splitting. The same effect is observed using either
the LDA or PBE exchange-correlation functional. In
our LDA+G0W0+∆k calculations for unstrained GaN
we find ∆so = 14 meV and ∆cf = 30 meV, in the range
of experimental values ∆so =11-19 meV and ∆cf =10-
25 meV47,53,55–57,70. We note that LDA tends to slightly
overestimate the crystal-field splitting with respect to ex-
periment, in line with previous theoretical findings46–50.
In contrast, PBE yields slightly smaller values for the
crystal-field splitting, but since the bandgap is strongly
underestimated, we proceed with LDA for the remainder
of the paper.

Using the parabolic band approximation, our calcu-
lated effective masses with quasiparticle and scissor-

shift corrections are m
⊥/‖
e = 0.20/0.23me, m

⊥/‖
hh =

0.45/1.94me, m
⊥/‖
lh = 0.37/1.66me, and m

⊥/‖
sh =

1.16/0.2me, respectively. These values are in reasonable
agreement with experimental data ranging from 0.30me

to 2.03me
57,71–74 for holes, and in good agreement with

0.2me
75 for the electrons. A detailed comparison with

previously computed effective masses and experimental
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masses is given in Table I. The largest discrepancy with

respect to experiment are the overestimated m
‖
lh and

m⊥sh effective masses, resulting from an overestimation
of the crystal-field splitting in the LDA. This effect was
already reported in Ref. 49. Indeed, as seen in Table I,

their m
‖
lh and m⊥sh effective masses decrease from 0.92

to 0.37 and from 1.27 to 0.65 when using the calculated
∆cf = 25 meV from Ref. 61 or the experimental value
of ∆cf = 10 meV from Ref. 57. Overall we find that in-
creasing the level of theory (from LDA to LDA+G0W0

to LDA+G0W0+∆k) systematically improves all the ef-
fective masses with respect to the experimental values.
Closer agreement with experiment could be achieved by
including the small effect of polaronic mass enhancement
to the ab-initio calculations76. We also note that the
electron effective mass has been confirmed by quantum
magnetotransport measurements77,78, but a correspond-
ing high accuracy measurement has not been achieved
yet for holes in GaN.

IV. CARRIER MOBILITY IN UNSTRAINED
GAN

A. Linearized Boltzmann transport equation

The carrier drift mobility µ describes the change of
steady-state carrier current Jα = e(neµe,αβ+nhµh,αβ)Eβ
due to an applied external electric field E, where Greek
indices denote Cartesian coordinates, ne and nh the elec-
tron and hole density, respectively. The mobility can
be computed using the linearized Boltzmann transport
equation (BTE)79–87, which for electrons reads:

µe,αβ =
−1

neΩ

∑
n∈CB

∫
dk

ΩBZ
vnk,α∂Eβ

fnk. (9)

Here vnk,α = ~−1∂εnk/∂kα is the group velocity of the
band state of energy εnk, band index n, and wavevector
k. CB stands for conduction bands, ∂Eβ

fnk is the per-
turbation to the Fermi-Dirac distribution induced by the
applied electric field E; Ω and ΩBZ are the volumes of
the crystalline unit cell and first Brillouin zone, respec-
tively. We note that the additional term in the velocity
arising from the Berry curvature contribution vanishes in
bulk GaN due to time-reversal symmetry and does not
contribute to the BTE mobility88. The perturbation to
the equilibrium carrier distribution is obtained by solving
the following self-consistent equation:

∂Eβ
fnk = e

∂f0nk
∂εnk

vnk,βτnk+
2πτnk

~
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(nqν + 1− f0nk)δ(∆εnmk,q + ~ωqν)

+ (nqν + f0nk)δ(∆εnmk,q − ~ωqν)
]
∂Eβ

fmk+q, (10)

where ∆εnmk,q = εnk−εmk+q, f0nk is the equilibrium distri-
bution function, and nqν is the Bose-Einstein occupation.

The matrix elements gmnν(k,q) are the probability am-
plitudes for scattering from an initial electronic state nk
to a final state mk + q via a phonon of branch index ν,
crystal momentum q, and frequency ωqν :

gmn,ν(k,q) =
[ ~

2Mκωqν

]1/2
〈ψmk+q|∂qνV |ψnk〉, (11)

where Mκ is the mass of the atom κ and ∂qνV is the
derivative of the self-consistent potential associated with
a phonon of wavevector q. ψnk is the electronic wave-
function for band n and wavevector k.

The quantity τnk in Eq. (10) is the relaxation time,
and is given by89,90:

1

τnk
=

2π

~
∑
mνσ

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(nqν + 1− f0mk+q)δ(∆εnmk,q − ~ωqν)

+ (nqν + f0mk+q)δ(∆εnmk,q + ~ωqν)
]

(12)

In our calculations we first compute Eq. (12), then solve
Eq. (10) iteratively to obtain ∂Eβ

fnk, and we use the
result inside Eq. (9).

A common approximation for calculating mobilities is
to neglect the second term on the right-hand side of
Eq. (10). In this case the relaxation time is explicitly
given by Eq. (12), and the equations are solved non-self-
consistently. In Ref. 85 we called this simplification the
self-energy relaxation time approximation (SERTA), and
the corresponding mobility is given explicitly by:

µSERTA
e,αβ =

e

neΩ

∑
n∈CB

∫
dk

ΩBZ

∂f0nk
∂εnk

vnk,αvnk,βτnk. (13)

The main advantage of the SERTA is that the grids of k-
points and q-points do not need to be commensurate. In
practice, this allows for a denser sampling of the momen-
tum regions that contribute the most to the mobility, i.e.
regions close to the band edges. These grids typically
converge faster than homogeneous or random grids for
the same number of points. We now detail our computa-
tional setup used to evaluate Eq. (9).

B. Electron-phonon matrix elements and
Brillouin-zone integrals

The key challenge in numerically evaluating Eq. (9) is
related to the fact that the mobility converges very slowly
with the number of k and q-points included85. This
translates into having to compute the electron-phonon
matrix elements gmnν(k,q) from Eq. (11) for millions of
momentum points.

In the case of SERTA calculations, we interpolate the
electron-phonon matrix elements using Wannier func-
tions91, from a coarse 6×6×6 Brillouin-zone grid to a
dense grid with 73,000 k-points and 205,000 q-points.
The q-points follow a Cauchy distribution of width
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FIG. 4: Convergence tests for the electron and hole mobilities of wurtzite GaN. (a-b) Electron and hole mobility vs. temperature,
for different sizes of the Brillouin zone grids of electrons (k) and phonons (q). The calculations are performed within the SERTA
using LDA and Cauchy grids. (c-d) Electron and hole mobilities of GaN using uniform 100×100×100 grids, calculated iteratively
from the self-consistent BTE, as a function of the number of iterations.

0.02 Å
−1

centered at Γ, and are weighted according to
their Voronoi volume92. All the mobility calculations in
this work are based on density-functional theory includ-
ing spin-orbit coupling (SOC) for the Kohn-Sham states,
density-functional perturbation theory for phonons and
electron-phonon matrix elements, and many-body per-
turbation theory for GW quasiparticle corrections, as im-
plemented in the software packages Quantum Espresso39,
Yambo63, wannier9093, and EPW91,94. The convergence
tests for the SERTA drift mobility are presented on
Fig. 4(a-b). We observe a fast convergence with sampling
size. We obtained a room temperature electron and hole
moblity of 452 cm2/Vs and 18 cm2/Vs, respectively.

In the case of the complete self-consistent solution
of Eqs. (9)-(12), we use a homogeneous grid with
100×100×100 k-points and q-points. In this latter case
we rely on the crystal symmetry operations on the k-
point grid to reduced the number of electron-phonon
matrix elements to be explicitly computed. We empha-
size that, while in some systems the SERTA is accu-
rate enough for predictive calculations of carrier mobili-
ties82,85, this is not true in general86. In the present case
of wurtzite GaN, we find that the self-consistent solu-
tion of the BTE yields enhancement factors of about 2 of
the electron and hole mobility upon the values obtained
within the SERTA, as shown on Fig. 4(c-d). This leads
to electron and hole room temperature drift mobilities of
830 cm2/Vs and 42 cm2/Vs, respectively. Therefore it is
very important to always benchmark SERTA results ver-
sus the complete solution of the BTE. The corresponding
Hall mobility of 1034 cm2/Vs and 52 cm2/Vs for electron

and hole, respectively; will be discussed in Sec. IV E.
We found that the self-consistent calculations converge

rapidly, in about 20 iterations, and without the need for
linear mixing. The convergence could be accelerated by
methods such as conjugate gradients82, but since the iter-
ations are fast in comparison to the calculation of scatter-
ing rates, we find it unnecessary to improve the iterative
solver.

C. Band velocity

In Ref. 85 the band velocities vnk,α appearing in
Eqs. (9) and (10) for silicon were computed by neglect-
ing the k-derivatives of the ionic pseudopotentials. We
named this approach the “local velocity approximation”:

vnmk,α = kδmn +
∑
G

cnk(G)∗cmk(G)G, (14)

where cnk are the plane-waves coefficients. The “exact”
band velocity can be computed as95,96:

vnmk,α =
1

~
Hnmk,α −

i

~
(εmk − εnk)Amnk,α, (15)

where Hnmk,α and Amnk,α = i〈unk|∂αumk〉 are the k-
derivatives of the Hamiltonian and position operator in
the direction α, interpolated on the fine momentum grids,
and unk is the periodic part of the wavefunction. In
both cases, the velocity vnk,α is obtained by taking the
diagonal elements of vnnk,α from Eqs. (14) or (15).
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We find that the local velocity approximation is in-
adequate in GaN, and it can lead to an overestimation
of the mobilities by up to 50%. More specifically, the
room temperature electron and hole mobility increases
by 46% and 30%, respectively, when using Eq. (15) in-
stead of Eq. (14). In the case of silicon and the LDA,
the electron and hole mobility increase by 15% and 16%,
respectively when using Eq. (15) instead of Eq. (14). As
shown in Fig. 5, this effect is not sensitive to the choice of
the pseudopotential, but it depends strongly on the sys-
tem under consideration. Throughout this manuscript,
we use the velocities given by Eq. (15).

D. Hall factor

In many experiments it is common to measure the Hall
mobility µH instead of the drift mobility µ of Eq. (9). In
order to perform meaningful comparisons, we calculate
the Hall factor rH and obtain the Hall mobilities µH =
rHµ. Following Ref. 97, p. 118 and Ref. 98, Eq. (3.12),
we calculate the temperature-dependent Hall factor as
the ratio:

rH = 〈τ2〉/〈τ〉2, (16)

where

〈τn〉 =

∫∞
0
τn(x)x3/2e−xdx∫∞
0
x3/2e−xdx

(17)

is an energy-averaged carrier scattering rate, and x =
ε/kBT . The energy-dependent scattering rates are ob-
tained through:

τ(ε) =
∑
n

∫
dk

ΩBZ
δ(ε− εnk)τnk, (18)

where the Dirac deltas are evaluated using Gaussian of
width 1 meV. The calculated Hall factors for electrons
and holes as a function of temperature are reported in
Fig. 6. The values range from 1.07 to 1.37 across the
whole temperature range. These data are for unstrained
GaN. We checked that the Hall factor is not sensitive to
strain for the other cases considered in this work.
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E. Carrier mobility in unstrained GaN

Using Eq. (9), we computed the drift and Hall mobil-
ities for electrons and holes in intrinsic GaN as a func-
tion of temperature. In table II, we compare our re-
sults with available experimental data. We find that the
Hall mobility is about 15% higher than the drift mo-
bility at room temperature, as expected101. Our pre-
dicted electron and hole Hall mobilities at 300 K are
1034 cm2/Vs and 52 cm2/Vs, respectively. They are in
good agreement with the measured values 1265 cm2/Vs23

and 31 cm2/Vs22, respectively. The Hall mobility at
100 K is computed to be 3941 cm2/Vs for electrons and
230 cm2/Vs for holes. Since at room temperature the
Cauchy grid yields mobilities which are converged within
1%, and uniform grids yield mobilities converged within
10%, we use the ratio between the BTE and SERTA mo-
bilities on uniform grids to estimate the BTE mobilities
on dense Cauchy grids. Direct BTE calculations are not
possible on such grids due to the commensurability re-
quirement in Eq. (10). The results reported throughout
the manuscript correspond to this ratio; the conclusions
of the manuscript remain unchanged if we use the BTE
results for homogeneous grids.

In table II, we see that the electron mobility is
1034/52 ≈ 20 times higher than the hole mobility. Ex-
perimentally, this ratio is even larger, 1265/31 ≈ 41. To
understand the origin of the large difference between the
electron and hole mobilities in GaN, we refer to Eqs. (9)-

Electron mobility (cm2/Vs)
Temperature Drift mobility Hall mobility

(K) SERTA BTE BTE Experiments
+scaling

100 2363 3686 3941 333223 220299

200 958 1916 2157 242023 170099

54024 540100

300 457 905 1034 126523 84099

33024 370100

400 247 480 541 40099 16024

245100

500 154 299 326 25099 10024

150100

Hole mobility (cm2/Vs)
100 60 168 230 -
200 31 85 105 8322

300 18 44 52 3122

400 11 25 28 1422

500 7 15 16 -

TABLE II: Electron and hole mobilities of wurtzite GaN, cal-
culated using the ab initio Boltzmann formalism in the self-
energy relaxation time approximation (SERTA) and iterative
form (BTE), compared with experiment. We show both the
drift mobilities computed via Eqs. (9)-(12) and the Hall mo-
bilities obtained by applying the Hall factor shown in Fig. 6
(bold).

(12). In the simplified case of parabolic bands, the mo-
bility in Eq. (9) scales as eτ/m∗ following Drude’s law,
with m∗ and τ being the average effective mass and re-
laxation rate, respectively. As discussed in Section III,
Table I and Fig. 3, the ratio between the conductivity ef-
fective masses 3/(m−1‖ + 2m−1⊥ ) of electrons and holes is

2.4/2.9 for the hh/lh case, respectively. These values are
significantly lower than the observed ratio of electron to
hole mobilities, therefore the difference between electron
and hole effective masses alone cannot fully account for
the order-of-magnitude difference in carrier mobilities.

To determine the origin of the residual difference be-
tween electron and hole mobilities, we analyzed in Ref. 29
the angular averages of the carrier relaxation rate 1/τ .
Although every electronic state has its own lifetime τnk in
our calculation, we have shown previously that the most
representative carrier energy66 comes out from an energy
kBT = 25 meV away from the band edges, and these are
the value that we used for our analysis in Ref. 29.

By examining the scattering rates and their spectral
decomposition ∂τ−1/∂ω in terms of phonon energy, we
found that the dominant scattering channel is from long-
wavelength acoustic phonons around a phonon energy of
2 meV (77% and 84% of the scattering rates for elec-
trons and holes, respectively). The remaining contri-
bution is from polar Fröhlich longitudinal-optical (LO)
phonons near Γ, and located around a phonon energy of
91 meV both for electron and holes. The largest source of
acoustic scattering in the case of holes is from acoustic-
deformation-potential (ADP) scattering.

In the case of ADP scattering, the scattering rate
scales with the electronic density of states, and hence
with the effective masses, as 1/τ ∼ (m∗)3/2101. Using
the angular averages, we computed the electron lifetimes
to be in the range of 17 fs, while the hole lifetimes of
around 4 fs are much shorter. Their ratio is similar
to the ratio between the conductivity effective masses,
(m∗lh)3/2/(m∗e)3/2 = 3.7 and (m∗hh)3/2/(m∗e)3/2 = 4.9.
This highlights the fact that the high density of lh and hh
states plays a central role in reducing the hole mobility.

The combination of higher effective masses and larger
density of states account for most of the mobility dif-
ference between electron and hole in GaN. The remain-
ing difference can be attributed to other effects that are
also responsible for reducing hole mobility. For example
the strong non-parabolicity of the hh in-plane band will
increase the effective masse for states with momentum
sligthly away from the zone center49,102; the fact that
GaN has multiple scattering channels for the holes (two
spin-split sets of bands) will also increase the overall scat-
tering50,74; and longitudinal-optical phonons contribute
about 20% of additional scattering. All these effects are
fully accounted for in our ab initio BTE formalism.

Now that we have a better understanding of the various
mechanisms behind the low hole mobility, we can proceed
to computational design of higher-mobility p-type GaN.
Since the low mobilities stem primarily from the presence
of two adjacent bands with heavy masses, we investigate
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whether we can employ strain to change the energetics
and ordering of the valence band maximum states.

V. CARRIER MOBILITY OF STRAINED GAN

A. Elastic properties

We studied the elastic properties of wurtzite GaN us-
ing the thermo pw code40. The stiffness matrix Cij was
obtained by third-order polynomial fitting under 12 de-
formations geometries of small strain intervals of 0.001
to remain in the linear regime. For each strain, the ions
were relaxed to their equilibrium positions. The stiff-
ness matrix of Laue class D6h for wurtzite crystals has
five independent elastic constants C11, C12, C13, C33 and,
C44. The other coefficients follow the symmetry relation-
ships C23 = C13, C55 = C44 and C66 = (C11 − C12)/2.
The computed stiffness constants are given in table III
and are compared to prior theoretical and experimental
values. In the Voigt approximation, the bulk and shear
moduli are given by103:

9BV =C11 + C22 + C33 + 2(C12 + C13 + C23), (19)

15GV =C11 + C22 + C33 − (C12 + C13 + C23)

+ 3(C44 + C55 + C66), (20)

while in the Reuss approximation, the bulk and shear
modulus are defined as103:

B−1R =S11 + S22 + S33 + 2(S12 + S13 + S23), (21)

15G−1R =4(S11 + S22 + S33)− 4(S12 + S13 + S23)

+ 3(S44 + S55 + S66), (22)

where Sij = C−1ij is the elastic compliance matrix. The
Voigt approximation provides an upper bound for the
bulk and shear moduli, while the Reuss approximation
gives a lower bound. We can therefore define the arith-
metic mean, refered to as the Void-Reuss-Hill approxi-
mation103, as B = (BV +BR)/2 and G = (GV +GR)/2.
We then express effective Young E modulus and Poisson
ratio ν as:

E =9BG/(3B +G), (23)

ν =(3B − 2G)/(6B + 2G). (24)

Using Eqs. (19)-(24), we obtained a bulk modulus of
202 GPa, a Young modulus of 358 GPa, a shear modulus
of 148 GPa, and a Poisson’s ratio of 0.205. As expected
with the LDA, our calculations overestimate the experi-
mental values of 188 GPa31, 295 GPa104, and 116 GPa105

for the bulk, Young and shear modulus, respectively. In
contrast, the calculated Poisson’s ratio sits in between
the experimental values 0.183106 and 0.23107.

B. Phonon dispersion relations

We compute the phonon dispersions and phonon den-
sity of states using density functional perturbation the-

C11 C12 C13 C33 C44 C66

Present work (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
LDA 435 108 65 474 115 163

Previous work
LDA108 346 148 105 405 76 99
LDA109 367 135 103 405 95 116
LDA110 - - 104 414 - -
LDA111 374 127 81 442 99 124
Exp.112 390 145 106 398 105 123
Exp.113 365 135 114 381 109 115
Exp.114 370 145 110 390 90 112
Exp.115 373 141 80 387 94 118

B E G ν

Present work (GPa) (GPa) (GPa)
LDA 202 358 148 0.205

Previous work
LDA102 207 - - -
LDA109 202 - - -
LDA110 207 373 - 0.202
LDA111 196 303 122 0.240
Exp.31 188 - - -
Exp.112 210 356 120 0.198
Exp.113 205 293 116 0.261
Exp.114 207 276 108 0.278
Exp.115 192 286 114 0.252
Exp.104 - 295 - 0.250
Exp.105 - 295 116 0.250

TABLE III: Comparison between calculated elastic constants
Cij , bulk B, Young E, shear G modulus, and Poisson’s ratio
ν (LDA calculations without spin-orbit coupling) with prior
theoretical and experimental work.

ory118,119 as implemented in Quantum Espresso39, for
unstrained GaN as well as under ±1% and ±2% biax-
ial and uniaxial strain. The phonon dispersions of the
unstrained GaN are reported in Fig. 7 in blue. The the-
oretical curves follow closely the experimental data from
inelastic X-ray scattering116 and the Raman measure-
ments117. The calculated unstrained in-plane (ε⊥∞) and

out-of-plane (ε
‖
∞) high-frequency dielectric constants are

5.60 and 5.77, respectively. These values slightly overes-
timate the experimental values of ε⊥∞=5.14120, 5.25121,

5.29122 or 5.35123 as well as ε
‖
∞=5.31120, 5.41121. The

corresponding in-plane and out-of-plane Born effective
charges are 2.59 and 2.73, respectively; these values are
in agreement with earlier theoretical values of 2.60 and
2.74, respectively110.

We now investigate how the phonon dispersions change
under strain. As shown in Fig. 7(a), the zone-center high-
est E1 LO phonon hardens from 91.2 meV to 94.5 meV
under 2% biaxial compressive strain, and softens to
87.5 meV under 2% tensile biaxial strain. The same be-
havior occurs under uniaxial strain, although changes are
more modest, as seen in Fig. 7(b): the highest phonon
mode hardens to 92.2 meV under 2% compression, and
softens to 90.1 meV under 2% traction. This behavior
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can easily be understood by the fact that a fixed uniaxial
strain imposed to a crystal has a smaller effect than a
corresponding fixed biaxial strain. Indeed a ± 2% uni-
axial strain modifies the overall volume from 98.8% to
101.2% while for biaxial strain, the change of volumes
goes from 97.0% to 103.0%.

The high-frequency dielectric constants, ε⊥∞ and ε
‖
∞

are almost insensitive to uniaxial and biaxial strain, re-

spectively; while ε
‖
∞ increases from 5.62 (-2% strain) to

5.96 (+2% strain) under uniaxials strain, and ε⊥∞ in-
creases from 5.44 (-2% strain) to 5.80 (+2% strain) un-
der biaxial strain. Finally, the Ga and N Born effective
charges have opposite values and the largest change is ob-
served for in-plane biaxial strain, going from 2.56 (-2%
strain) to 2.62 (+2% strain).

C. Band structures of strained GaN

We now turn to the changes of electronic properties
under uniaxial and biaxial strain. As seen in Eq. (7), the
lh and hh bands are separated by the spin-orbit splitting
∆so, which we found to be relatively insensitive to the c/a
ratio and internal parameter u, see Fig. 8(a-b). However,
the separation between the lh/hh and the sh bands is
controlled by the crystal-field splitting, ∆cf which is given
by Eq. (8). In contrast to ∆so, the crystal-field splitting
is known to be sensitive to the internal parameter u of
the wurtzite structure, or equivalently to a change of the
c/a ratio102,124. As seen in Fig. 8(a-b), ∆cf increases
from -52 meV to +114 meV following the increase of the
c/a ratio from 1.58 to 1.68. In contrast, the crystal-field
splitting decreases linearly from 155 meV to -80 meV as
the internal parameter u increases from 0.370 to 0.382.
In Fig. 8(c-d), we can see that there is a linear correla-
tion between the applied strain and the c/a or internal

parameter u. In the case of biaxial strain, the c/a ratio
decreases with strain while u increases and the situation
is reversed for uniaxial strain.

We therefore see how by combining Fig. 8(a-b) and
(c-d) we can modify ∆so and ∆cf via strain. In partic-
ular, we see in Fig. 8(e) that the ∆so has a minimum
for unstrained GaN, and slightly increases with strain;
while in Fig. 8(f) we see a drastic linear reduction of ∆cf

with increasing biaxial strain, going from +243 meV to -
137 meV. A smaller linear increase of ∆cf is observed with
increasing uniaxial strain, from -117 meV to +169 meV
for -2% and +2% strain, respectively. We emphasize that
the reason for a smaller splitting in Fig. 8(a-b) is that
these results are obtained at fixed u or c/a ratio, while in
Fig. 8(e-f) both c/a and u are changing with strain, con-
tributing to increase the splitting even more. We see that
in both types of applied strain, a reversal of the crystal
field splitting is observed. Such reversal of the crystal-
field splitting happens for biaxial tensile strain (along
[2110] and [1210]) and for uniaxial compressive strain
(along [0001]). Using linear interpolation of our results
from Fig. 8(f), we estimate that the crystal-field splitting
reversal will happen at +0.46% biaxial tensile strain and
-0.62% uniaxial compressive strain. Under these condi-
tions, the split-off hole band is lifted above the light-hole
and heavy-hole bands, as shown in Fig. 9(a) for the case
of uniaxial compression.

In contrast, in the case of applied uniaxial tensile strain
shown in Fig. 9(b), we can see that the hh band is almost
unaffected with respect to the unstrained cases, while the
sh and lh bands get significantly pushed down in energy.
The largest change of band energy with strain are indi-
cated with black arrows in Fig. 9. A similar but reversed
effect is observed with biaxial strain, as shown in Ref. 29.
In that case the sh band goes above the hh and lh bands
under biaxial tensile strain. This effect alters the order-
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ing of the valence band top, as well as the character of the
wavefunctions. As discussed in Ref. 29, the hole wave-
function at the valence band maximum has a dominant
N-px,y character. In both uniaxial and biaxial strain,
the hole wavefunction keeps this character if no band re-
versal occurs, but as soon as the sh bands goes above
the hh and lh bands, it abruptly changes character to a
dominant N-pz states.

As seen in Section III, the conductivity effective mass
of the sh band is m∗sh = 0.45me at the zone center,
but away from Γ it quickly decreases to m∗sh = 0.22me

due to strong non-parabolicity. This effective mass is
much smaller than the masses of the light and heavy
hole bands. For this reason, we expect the hole mobility
of GaN to sharply increase upon reversal of the sign of
∆cf. In the next section, we validate this assumption
by performing first-principles calculations of mobility on
strained GaN.

D. Mobility of strained GaN

We performed transport calculations for uniaxially and
biaxially strained GaN. We computed the drift mobilities
of GaN for several strain levels and temperatures using
the SERTA approximation with Cauchy grids, and using
the more accurate BTE with uniform grids. The uni-
form grids consist of 100 × 100 × 100 k- and q-points
while the random Cauchy grids consist of 45,000 points.
The calculated mobilities at different temperature within
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Holes Electrons

Homogenous grid Cauchy grid Homogenous grid Cauchy grid

Mobility Mobility Mobility Mobility

Temperature (cm2/Vs) (cm2/Vs) (cm2/Vs) (cm2/Vs)

Strain (K) SERTA BTE Ratio SERTA BTE† SERTA BTE Ratio SERTA BTE†

a b c = b/a d e=c·d f g h = g/f i j=h·i

2% Biaxial
100 289 571 1.98 231 457 1995 3482 1.75 2466 4315
300 54 113 2.09 46 96 438 847 1.93 459 886

1% Biaxial
100 226 478 2.11 177 373 1945 2836 1.46 2754 4021
300 38 84 2.21 32 71 453 835 1.84 506 931

Unstrained
100 54 151 2.80 60 168 1652 2584 1.56 2363 3686
300 17 42 2.47 18 44 420 830 1.98 457 905

-1% Uniaxial
100 176 379 2.15 139 299 1567 2243 1.43 2178 3114
300 30 67 2.23 25 56 404 730 1.81 439 795

-2% Uniaxial
100 249 519 2.08 206 428 2014 2350 1.17 1976 2312
300 53 117 2.21 46 102 431 724 1.68 408 685

TABLE IV: Calculated drift mobilities of GaN for several strain levels and temperatures within the SERTA approximation and
the more accurate BTE using uniform grids, SERTA results using Cauchy grids, and BTE results estimated from these data
(“BTE†”, boldface). We use the ratio between the BTE (b) and SERTA (a) mobilities on uniform grids to estimate the BTE
mobilities on Cauchy grids, e = (b/a) · c.

the SERTA or BTE are presented in Table IV. First we
computed the mobilities on the homogenous grid within
the SERTA and the iterative solution. We observed an
increase in hole mobility ranging between a factor 1.98 to
2.8 across the entire strain and temperature ranges when
using the BTE compared to the SERTA. For electrons
the ratio is slightly more modest, ranging from 1.17 to
1.98.

As expected, the room-temperature hole mobility sig-
nificantly increases from 42 cm2/Vs to 113 (117) cm2/Vs
upon 2% biaxial tensile (uniaxial compressive) strain.
Conversely, the hole mobility remains almost constant
when the crystal experiences no reversal of the crystal
field splitting, i.e. under compressive biaxial or tensile
uniaxial strain.

As discussed in Section IV E, Cauchy grids converge
faster than homogeneous grids, but do not allow for BTE
calculations due to incommensurablilty of the momen-
tum grids. However, we noted that the ratio between
the BTE to SERTA results is converging faster than the
value themselves. Therefore we used the ratio between
the BTE and SERTA mobilities on uniform grids to es-
timate the BTE mobilities on Cauchy grids. The results
are shown in Table IV in bold, and represent our most
accurate estimates.

In contrast to the hole mobility, the electron mobil-
ity remains close to the value for unstrained GaN in the
case of biaxial strain, but decreases slightly in the case
of uniaxial strain due to a small increase in the electron
effective mass. For this reason, the use of biaxial strain
might be more attractive than uniaxial strain, as it leads
to a doubling of the hole mobility with no change to the

electron mobility. However, given that the electron mo-
bility is already high and the reduction under strain is in
the order of 20%, one could easily imagine a successful
device based on uniaxially-strained GaN.
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FIG. 10: Predicted temperature-dependent Hall (a) electron
and (b) hole mobility in wurtzite GaN as a function of biaxial
and uniaxial strain.

Figure 10 shows the electron and hole Hall mobility
of GaN computed for biaxial tensile and uniaxial com-
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pressive strains of 1% and of 2%. At room temperature
the hole Hall mobility increases from 50 cm2/Vs for the
relaxed GaN to 111 cm2/Vs and 119 cm2/Vs for +2%
biaxial and -2% uniaxial strain, respectively. This repre-
sents a 230% increase in hole mobility. In contrast, the
electron mobility is much less affected by strain. The re-
sults confirm our expectation that, as soon as we change
the sign of ∆cf, we have an enhancement in the hole mo-
bility. We emphasize that these results are not sensitive
to the details of the calculations and rests on the change
of ordering between the split-of band and the light hole
and heavy hole bands under applied strain. We confirmed
this finding by performing additional calculations of the
variation of ∆cf with strain using the PBE functional,
obtaining similar results.

VI. FEASIBILITY OF STRAINED GAN

We now investigate the feasibility of realizing high hole
mobility GaN experimentally. First, we have computed
in Fig. 2 the GaN phase diagram and showed that the
wurzite structure remains the lowest-enthalpy phase in
a large pressure and temperature range. Second, we no-
ticed that biaxial strain of up to 4% has already been re-
alized experimentally by epitaxial growth on substrates
such as AlN or 6H-SiC110,125,126. However, in these ex-
periments the large film thickness induces misfit dislo-
cations127 to release the strain in the sample. The dis-
locations increase defect scattering128, yielding low hole
mobility. This may be the reason why high hole mobility
GaN has not been observed to date. Therefore to real-
ize high-hole-mobility GaN we have to devise a plan for
preventing dislocation nucleation.

When growing an epilayer on a substrate with a dif-
ferent lattice parameter, dislocations might occur in the
epitaxial layer. The most common plastic relaxation
mechanism is through the formation of misfit disloca-
tions, to accommodate the strain induced by the sub-
strate129. The relaxation of misfit strain via plastic flow
occurs for an epitaxial layer with a thickness larger than
a critical thickness hc. Numerous models have been de-
veloped over the years to compute the critical thickness.
Energy balance models have been developed130 where the
energy of adding a misfit dislocation is balanced with the
energy gained by the system from its addition. Another
popular model developed by Matthews and Blakeslee131

is based on the force equilibrium method, in which the
forces required to move misfit dislocations are balanced
against the elastic stress field due to dislocation interac-
tions. Such model was later refined by Fischer132 using
an image-force method where the critical thickness hc
for a given strain ε is obtained by solving the following
non-linear equation132 :

hc =
b cosλ

2ε

[
1 + ln

(hc
b

)( 1− ν/4
4π(1 + ν) cos2 λ

)]
. (25)

Here b = 6.026 bohr is the magnitude of the Burgers vec-
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FIG. 11: Critical layer thickness of GaN as a function of
strain, estimated using Eq. (25). The gray area represents
the minimal strain required for crystal-field splitting inver-
sion under uniaxial or biaxial strain.

tor, ν = 0.183 is the experimental Poisson ratio106, and
cosλ = 0.5 is the angle between the dislocation Burgers
vector and its line direction. Cracks will typically ap-
pears for a film thickness above hc

133,134. As shown in
Fig. 11, we see that at 2% strain, films with thickness of
up to 7 nm should not exhibit cracks or misfit disloca-
tions.

It is also possible that the same effect could be achieved
using smaller strain levels. Indeed, as soon as reversal
of the crystal-field splitting is achieved, the hole mobil-
ity should significantly increase. As discussed in Sec-
tion V C, the sh band goes above the lh and hh bands
for strain levels above 0.46% in the case of biaxial tensile
strain, and above 0.62% for uniaxial compressive strain.
These values correspond to critical film thicknesses of
38 nm and 27 nm, respectively; as shown in Fig. 11.
These values are in agreement with observed critical
thicknesses in GaN and AlN, which were found to range
between 3 and 30 monolayers depending on the growth
temperature135. We also note that such type layer thick-
nesses have recently become accessible for GaN136,137,
making our proposal realistic. In addition, as shown in
Table I, our theoretical approach slightly overestimates
the crystal-field splitting with respect to experiment and
some theoretical studies. As a result, the critical strain
required to reverse the crystal-field splitting might be
even lower than our estimate. We emphasize that the
engineering of mobility via strain is a common strat-
egy in semiconductors such as Si, Ge, and III-V com-
pounds138–140, but it has become possible only recently
in the case of GaN22,49,50,102,110,124,141.

Finally, an alternative to induce strain via lattice mis-
match would be to modify the crystal-field splitting by
directly changing the internal parameter u, see Fig. 8(b).
Given that the internal parameter can be tuned by the
A1 transverse-optical phonon at Γ, it should be possi-
ble to reverse the crystal-field splitting by coherently
exciting this optical phonon with femtosecond infrared
pulses142,143. This means that we might be able to con-
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trol the hole mobility in GaN with light instead of strain.

VII. CONCLUSION

In summary, we have computed the phase diagram of
GaN and shown that the wurzite phase is the thermo-
dynamical stable phase for a very wide range of pressure
and temperatures. We have analyzed in detail the elec-
tronic bandstructure using many-body corrections and
spin-orbit coupling, and showed that the crystal-field
splitting heavily depends on the internal parameter of
the wurtzite structure, and could be tuned via strain
engineering. We predicted the room temperature elec-
tron and hole Hall mobilities in unstrained GaN to be
1034 cm2/Vs and 52 cm2/Vs, respectively. We showed
that the hole mobility can be increased by modifying
the ordering of the valence band top such that split-off
holes rise above the light holes and heavy holes. This can
be achieved using either biaxial tensile strain or uniaxial
compressive strain. We analyzed the effect of strain in
GaN including the elastic constants, the high-frequency
dielectric constants, Born-effective charges, and phonons.
We predict over 200% increase in the hole mobility un-
der strain with respect to the unstrained crystal, reaching
values of 120 cm2/Vs under 2% biaxial tensile or uniax-
ial compressive strain. In contrast, the electron mobility
remains mostly unaffected. We propose to realize such
band inversion by reversing the the crystal-field splitting
via strain engineering or via optical phonon pumping.
To avoid cracks or misfit dislocations, we propose the

use of ultra-thin GaN films (7-40 nm) grown for example
by molecular-beam epitaxy on substrates of larger lattice
constant than GaN. We hope that this work will stimu-
late further experimental research in high-hole-mobility
GaN, and will accelerate progress towards GaN-based
CMOS technology and nitride-based high power electron-
ics.
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