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Abstract

Phonon heat conduction over length scales comparable to their mean free paths is a topic of con-

siderable interest for basic science and thermal management technologies. However, debate exists

over the appropriate constitutive law that defines thermal conductivity in the non-diffusive regime.

Here, we derive a generalized Fourier’s law that links the heat flux and temperature fields, valid

from ballistic to diffusive regimes and for general geometries, using the Peierls-Boltzmann trans-

port equation within the relaxation time approximation. This generalized Fourier’s law predicts

that thermal conductivity not only becomes nonlocal at length scales smaller than phonon mean

free paths but also requires the inclusion of an inhomogeneous nonlocal source term that has been

previously neglected. We provide evidence for the validity of this generalized Fourier’s law through

direct comparison with time-domain thermoreflectance (TDTR) measurements in the nondiffusive

regime without adjustable parameters. Furthermore, we show that interpreting experimental data

without the generalized Fourier’s law can lead to inaccurate measurement of thermal transport

properties.

I. INTRODUCTION

Fourier’s law is a macroscopic constitutive law of heat conduction, and it provides the

definition of thermal conductivity and forms the basis of many methods to determine its

value. However, Fourier’s law fails when a temperature gradient exists over a length scale

comparable to or smaller than the mean free paths (MFPs) of heat carriers. In this regime,

the heat flux and temperature fields may differ from the predictions of heat diffusion theory

based on Fourier’s law. These discrepancies have been observed at a localized hotspot created

by a doped resistor thermometer in a suspended silicon membrane[1] and more recently in

optical pump-probe experiments including soft x-ray diffraction from nanoline arrays,[2,

3] transient grating,[4, 5], time-domain [6–9] and frequency-domain[10] thermoreflectance

methods. In particular, due to the absence of scattering the transport properties become

nonlocal,[11–13] in contrast to Fourier’s law in which the heat flux at a certain location is

determined by the temperature gradient only at that location. A constitutive law in the

non-diffusive regime is desirable to provide a rigorous definition of thermal conductivity and

a theoretical basis for experimental methods to characterize the associated nonlocal effects.

Lattice thermal transport in crystals is generally described by the Peierls-Boltzmann
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equation (PBE), first derived by Peierls,[14] from which the thermal conductivity is given

in terms of the microscopic properties of phonons.[14, 15] However, solving the PBE for a

general space-time dependent problem remains a challenging task due to the high dimension-

ality of the integro-differential equation. Thus, most prior works have determined solutions

of the PBE in certain limiting cases.

Guyer and Krumhansl[11] first performed a linear response analysis of the PBE, deriving

a space-time-dependent thermal conductivity by assuming the Normal scattering rates were

much larger than Umklapp scattering rates, and they applied their solution to develop a

phenomenological coupling between phonons and elastic dilatational fields caused by lattice

anharmonicity. Hardy and coworkers reported a rigorous quantum-mechanical formulation

of the theory of lattice thermal conductivity using a perturbation method that included

both anharmonic forces and lattice imperfections.[16–18] This quantum treatment of lattice

dynamics was then verified by both theoretically and experimentally demonstrating the

presence of Poiseuille flow and the second sound in a phonon gas at low temperatures when

Umklapp processes may be neglected.[19–23] The variational principle was also used to

solve the PBE with Umklapp scattering incorporated.[24, 25] Levinson developed a nonlocal

diffusion theory of thermal conductivity from a solution of the PBE with three-phonon

scattering in the low frequency limit.[12]

Advances in computing power have enabled the numerical solution of the PBE with

inputs from density functional theory, fully ab initio. For instance, bulk lattice thermal

conductivities are now routinely computed from first principles using an iterative solution of

the PBE[26–30] or from variational approaches.[31] Chaput[32] presented a direct solution

to the transient linearized PBE with an imposed constant temperature gradient. Cepellotti

and Marzari[33] introduced the concept of a ”relaxon”, an eigenstate of the symmetrized

scattering operator of the PBE first used by Guyer et. al.[11] and Hardy[21]. They applied

this treatment to solve steady-state problems in two-dimensional systems with a constant

temperature gradient imposed in one direction[34].

Solving the PBE with the full collision operator, even in its linearized form, is difficult

for complicated geometries. Therefore, various theoretical frameworks based on a simpli-

fied PBE have been developed to describe nonlocal thermal transport for general problems.

Non-diffusive responses observed in experiments[4, 6, 10, 35–37] have been explained us-

ing the phonon-hydrodynamic heat equation[38], a truncated Levy formalism[39], a two-
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channel model in which low and high frequency phonons are described by the PBE and

heat equation[40], and a Mckelvey-Shockley flux method[41]. Methods based on solving

the PBE under the relaxation time approximation (RTA), where each phonon mode re-

laxes towards thermal equilibrium at a characteristic relaxation rate, have been developed

to investigate nonlocal transport in an infinite domain[13, 42–44], a finite one-dimensional

slab[45, 46], and experimental configurations such as transient grating[44, 47] and thermore-

flectance experiments[39, 48–50]. An efficient Monte Carlo scheme has been used to solve

the PBE under the RTA in complicated geometries involving multiple boundaries[51–53].

Although the PBE under the RTA has been widely adapted to solve for the temperature

field in complicated geometries, RTA descriptions of non-diffusive thermal transport have

not been explicitly tested experimentally. Moreover, a formalism that links heat flux and

temperature for arbitrary geometries in the non-diffusive regime is lacking. Therefore, a

formal definition of nonlocal thermal conductivity is still under debate.

Here, we derive a generalized Fourier’s law to describe non-diffusive thermal transport

for general geometries using the linearized PBE within the RTA. The generalized Fourier’s

law requires the inclusion of an inhomogeneous nonlocal term arising from the source or the

boundary conditions of the particular problem. By including the inhomogeneous contribu-

tion to the heat flux, the space- and time-dependent thermal conductivity is independent

of the specific geometry or inputs. Evidence of the correctness of the generalized Fourier’s

law is provided by favorable comparisons with a series of TDTR measurements in the non-

diffusive regime. We also show that neglecting the inhomogeneous contribution to the heat

flux leads to inaccurate measurement of thermal transport properties in the non-diffusive

regime. Our work provides a formal definition of nonlocal thermal conductivity in the

non-diffusive regime and a theoretical basis to study non-diffusive thermal transport using

existing experimental methods.
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II. THEORY

A. Governing Equation

We begin by briefly reviewing the derivation of the transport solution to the PBE. The

mode-dependent PBE under the relaxation time approximation for transport is given by

∂gµ(x, t)

∂t
+ vµ · ∇gµ(x, t) = −gµ(x, t)− g0(T (x, t))

τµ
+ Q̇µ(x, t), (1)

where gµ(x, t) = ~ωµ(fµ(x, t) − f0(T0)) is the deviational energy distribution function at

position x and time t for phonon states µ (µ ≡ (k, s), where k is the wavevector and s is the

phonon branch index). f0 is the equilibrium Bose-Einstein distribution, and g0(T (x, t)) =

~ωµ(f0(T (x, t)) − f0(T0)) ≈ Cµ∆T (x, t), where T (x, t) is the local temperature, T0 is the

global equilibrium temperature, ∆T (x, t) = T (x, t)− T0 is the local temperature deviation

from the equilibrium value, and Cµ = ~ωµ∂f0/∂T |T0 is the mode-dependent specific heat.

Here, we assume that ∆T (x, t) is small such that g0(T (x, t)) is approximated to be the

first term of its Taylor expansion around T0. Finally, Q̇µ(x, t) is the heat generation rate

per mode, vµ = (vµx, vµy, vµz) is the phonon group velocity vector, and τµ is the phonon

relaxation time.

To close the problem, energy conservation is used to relate gµ(x, t) to ∆T (x, t) as

∂E(x, t)

∂t
+∇ · q(x, t) = Q̇(x, t), (2)

where E(x, t) = V −1
∑

µ gµ(x, t) is the volumetric energy, q(x, t) = V −1
∑

µ gµ(x, t)vµ is

the vector heat flux, and Q̇(x, t) = V −1
∑

µ Q̇µ(x, t) is the volumetric mode-specific heat

generation rate. Here, the sum over µ denotes a sum over all phonon modes in the Brillouin

zone, and V is the volume of the crystal. The solution of Eq. (1) yields a distribution

function, gµ(x, t), from which temperature and heat flux fields can be obtained using Eq. (2).

Like the classical diffusion case, the exact expression of the temperature field varies from

problem to problem. However, in a diffusion problem, the constitutive law that links the

temperature and heat flux fields is governed by one expression, Fourier’s law. Here, we

seek to identify a similar relation that directly links temperature and heat flux fields for

non-diffusive transport, regardless of the specific problem.

To obtain this relation, we begin by rearranging Eq. (1) and performing a Fourier trans-
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form in time t on Eq. (1), which gives

Λµx
∂g̃µ
∂x

+ Λµy
∂g̃µ
∂y

+ Λµz
∂g̃µ
∂z

+ (1 + iητµ)g̃µ = Cµ∆T̃ + Q̃µτµ, (3)

where η is the Fourier temporal frequency, and Λµx, Λµy and Λµz are the directional mean

free paths along x, y, and z directions, respectively. Equation (3) can be solved by defining

a new set of independent variables ξ, ρ, and ζ such that

ξ = x, (4a)

ρ =
Λµy

Λµ

x− Λµx

Λµ

y, (4b)

ζ =
Λµz

Λµ

x− Λµx

Λµ

z, (4c)

where Λµ =
√

Λ2
µx + Λ2

µy + Λ2
µz. The Jacobian of this transformation is Λ2

µx/Λ
2
µ, a nonzero

value if vµx 6= 0. The physical picture of the proposed coordinate transformation is to find

a set of characteristic curves that align with vector (vµx, 0, 0). If vµx is zero, there would

be no x-direction mode-specific heat flux for that phonon mode. Then the corresponding

characteristic curves do not exist, and it is unnecessary to apply the current analysis to that

phonon mode.

After changing the coordinates from (x, y, z) to the new coordinate system (ξ, ρ, ζ), (vµξ =

vµx, 0, 0) is the set of elements for the velocity vector vµ in the new coordinates, and Eq. (3)

becomes a first order partial differential equation with only one partial derivative

Λµξ
∂g̃µ
∂ξ

+ αµg̃µ = Cµ∆T̃ + Q̃µτµ, (5)

where αµ = 1 + iητµ. Assuming that ξ ∈ [L1, L2], Eq. (5) has the following solution:

g̃+
µ (ξ, ρ, ζ, η) = P+

µ e
−αµ ξ−L1

Λµξ +

∫ ξ

L1

Cµ∆T̃ + Q̃µτµ
Λµξ

e
−αµ ξ−ξ

′
Λµξ dξ′ for vµξ > 0, (6a)

g̃−µ (ξ, ρ, ζ, η) = P−µ e
αµ

L2−ξ
Λµξ −

∫ L2

ξ

Cµ∆T̃ + Q̃µτµ
Λµξ

e
−αµ ξ−ξ

′
Λµξ dξ′ for vµξ < 0. (6b)

P+
µ and P−µ are functions of ρ, ζ, η and are determined by the boundary conditions at ξ = L1

and ξ = L2, respectively. Using the symmetry of vµξ about the center of the Brillouin zone,

i.e., vµξ = −v−µξ, Eqs. (6a) & (6b) can be combined into the following form:

g̃µ(ξ, ρ, ζ, η) = Pµe
−αµ ξ

Λµξ +

∫
Γ

Cµ∆T̃ + Q̃µτµ
|Λµξ|

e
−αµ

∣∣∣∣ ξ′−ξΛµξ

∣∣∣∣
dξ′, (7)
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where

Pµ =

 P+
µ e

αµ
L1

Λµξ if vµξ > 0

P−µ e
αµ

L2
Λµξ if vµξ < 0

(8)

and

Γ ∈

 [L1, ξ) if vµξ > 0

(ξ, L2] if vµξ < 0
. (9)

The mode-specific heat flux along the ξ direction is given by vµξg̃µ expressed as:

q̃µξ = Pµvµξe
−αµ ξ

Λµξ +

∫
Γ

Q̃µ(ξ′, ρ, ζ, η)e
−αµ

∣∣∣∣ ξ−ξ′Λµξ

∣∣∣∣
dξ′ +

∫
Γ

Cµvµξ
|Λµξ|

∆T̃ (ξ′, ρ, ζ, η)e
−αµ

∣∣∣∣ ξ−ξ′Λµξ

∣∣∣∣
dξ′.

(10)

Applying integration by parts to the third term in Eq. (10), we can write the heat flux

per mode as:

q̃µξ = −
∫

Γ

κµξ(ξ − ξ′)
∂T̃

∂ξ′
dξ′ +Bµ(ξ, ρ, ζ, η), (11)

where

Bµ(ξ, ρ, ζ, η) = Pµvµξe
−αµ ξ

Λµξ +
Cµ|vµξ|
αµ

e
−αµ ξ

Λµξ

[
∆T̃ e

αµ
ξ′

Λµξ

]
Γ

+ sgn(vµξ)

∫
Γ

Q̃µ(ξ′, ρ, ζ, η)e
−αµ

∣∣∣∣ ξ−ξ′Λµξ

∣∣∣∣
dξ′, (12)

is solely determined by the boundary condition and the volumetric heat generation rate.

κµξ(ξ) is the modal thermal conductivity along the ξ direction given by

κµξ(ξ) = CµvµξΛµξ
e
−αµ

∣∣∣∣ ξ
Λµξ

∣∣∣∣
αµ|Λµξ|

. (13)

Equation (11) is the primary result of this work. This equation links temperature gradient

to the mode-specific heat flux for a general geometry. Since this constitutive equation of heat

conduction is valid from ballistic to diffusive regimes, we denote it as a generalized Fourier’s

law. It describes that for a specific phonon mode µ, heat only flows in the ξ direction in the

new coordinate system (ξ, ρ, ζ) since the velocities in ρ and ζ directions are zero.

There are two parts in Eq. (11). The first part represents a convolution between the

temperature gradient along the ξ direction and a space-and time-dependent thermal con-

ductivity, κµξ(ξ). As reported previously, this convolution indicates the nonlocality of the

thermal conductivity.[13, 43, 46] However, a second term exists that is determined by the

inhomogeneous term originating from the boundary conditions and source terms. Similar
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to the first term, the contribution from the external heat generation to the heat flux, given

by
∫

Γ
Q̃µ(ξ′, ρ, ζ, η)e

−αµ
∣∣∣∣ ξ−ξ′Λµξ

∣∣∣∣
dξ, is nonlocal, meaning the contribution at a given point is

determined by convolving the heat source function with an exponential decay function with

a decay length of Λµx.

While the nonlocality of thermal conductivity was identified by earlier works on phonon

transport[6, 11–13, 20, 39, 43, 54], the contribution from the inhomogeneous term has been

neglected. Recently, Allen and Perebeinos[43] considered the effects of external heating and

derived a thermal susceptibility based on the PBE that links external heat generation to

temperature response and a thermal conductivity that links temperature response to heat

flux. However, their derived thermal susceptibilities and thermal conductivities are subject

to the specific choice of the external heat generation. In this work, we demonstrate that there

exists a general relation between heat flux and temperature distribution without specifying

the geometry of the problem. The space- and time-dependent thermal conductivity in the

first term of Eq. (11) is independent of boundary conditions and external heat generation.

The dependence of heat flux on the specific problem is accounted for by the inhomogeneous

term.

Although the derived generalized Fourier’s law does not resolve the inherent challenges

in solving the PBE, the simplicity of this formula allows us to explore the physical origins of

nonlocal thermal transport. To obtain the total heat flux in the original coordinate system,

e.g. qx, qy, and qz in Cartesian coordinates, all the functions involved in Eq. (11) must

be mapped from the coordinate system (ξ, ρ, ζ) to (x, y, z). The mapping between the

coordinate systems is problem specific and typically requires numerical rather than analytical

treatment. Analytical mappings exist for three special cases corresponding to three typical

experimental configurations used to study non-diffusive thermal transport. We now consider

these cases.

B. Diffusive limit

We first examine the diffusive limit. In this limit, the spatial and temporal dependence

of thermal conductivity disappears, and it asymptotically approaches its bulk value. To

demonstrate this limit, we first identify two key nondimensional parameters in Eq. (11): the

Knudsen number, Knµ ≡ Λµξξ
−1, which compares the phonon MFP with a characteristic
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length, in this case ξ, and a transient number, Ξµ ≡ ητµ, which compares the phonon

relaxation times with a characteristic time, in this case η−1. In the diffusive limit, both Ξ

and Kn are much less than unity. Then, Eq. (7) is simplified to Cµ∆T̃ , and Eq. (11) becomes

q̃µξ = −
∫

Γ

CµvµξΛµξ
∂T̃

∂ξ′
δ(ξ − ξ′)dξ′ = −κµξ

∂T̃

∂ξ
, (14)

since in this limit we can perform the following simplifications

lim
Ξ→0

αµ ≈ 1, (15)

lim
Ξ, Kn→0

e
−αµ ξ

|Λµξ| ≈ 0, (16)

lim
Ξ, Kn→0

e
−αµ

∣∣∣∣ ξ−ξ′Λµξ

∣∣∣∣
2|Λµx|

≈ δ(ξ − ξ′). (17)

The equation of energy conservation becomes

−
∑
µ

κµξ
∂2T̃

∂ξ2
+ iη

∑
µ

Cµ∆T̃ =
∑
µ

Q̃µ. (18)

Since ∂
∂ξ

= ∂
∂x

+ ∂
∂y

Λµy
Λµx

+ ∂
∂z

Λµz
Λµx

, Eq. (18) can be mapped back to Cartesian coordinates as

−κx
∂2T̃

∂x2
− κy

∂2T̃

∂y2
− κz

∂2T̃

∂z2
+ iη∆T̃

∑
µ

Cµ =
∑
µ

Q̃µ, (19)

where κi =
∑

µCµvµiΛµi is the thermal conductivity along axis i = x, y, or z. Here, we

assume that the off-diagonal elements of the thermal conductivity tensor are zero, i.e.,

κij =
∑

µCµvµiΛµj = 0 when i 6= j. Equation (19) is the classical heat diffusion equation.

C. Transient grating experiment

We now check another special case of Eq. (11) by applying it to the geometry of a one-

dimensional transient grating experiment.[4, 55] Since it is a 1D problem, ξ in Eq. (11) is

equivalent to x. In this experiment, the heat generation rate has a spatial profile of eiβx in an

infinite domain, where β ≡ 2π/L and L is the grating period. The boundary term vanishes,

i.e., ξ ∈ (−∞,∞), and both the distribution function and temperature field exhibit the

same spatial dependence. Then, the total heat flux is expressed as

q̃x(x, η) = iβT̃ (η)eiβx
∑
µx>0

κµx
α2
µ + Λ2

µxβ
2

+
∑
µx>0

Qµ

δ

eiβxαµΛµx

α2
µ + Λ2

µxβ
2
, (20)
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where the total volumetric energy deposited on a sample is given by
∑

µQµ, and the duration

of the energy deposition is δ. A derivation of Eq. (20) is given in Appendix A.

The time scale of a typical TG experiment is on the order of a few hundred nanoseconds

while relaxation times of phonons are typically less than a nanosecond for many semicon-

ductors at room temperature. Therefore, we assume that Ξ� 1, and Eq. (20) is simplified

to

q̃x(x, η) = iβT̃ (η)eiβx
∑
µx>0

κµx
1 + Λ2

µxβ
2

+
∑
µx>0

Qµ

δ

eiβxΛµx

1 + Λ2
µxβ

2
. (21)

which is consistent with what has been derived in our earlier work.[40, 55] The first part of

Eq. (21) represents the conventional understanding of nonlocal thermal transport, a Fourier

type relation with a reduced thermal conductivity given by

κx =
∑
µx>0

κµx
1 + Λ2

µxβ
2
, (22)

while the second part of the equation represents the contribution from the heat source to

the total heat flux, which increases as the Knudsen number Λµx/L increases. In a TG ex-

periment, the presence of a single spatial frequency simplifies the convolutions in Eq. (11)

into products, and the only time dependence of the heat flux comes from the tempera-

ture. Therefore, the decay rate of the measured transient temperature profile is directly

proportional to the reduced thermal conductivity. In general, the spatial dependence of the

temperature field is less complicated in a TG experiment than in other experiments, making

the separation of the intrinsic thermal conductivity contribution from the inhomogeneous

contribution easier.

D. Generalized Fourier’s law with infinite transverse geometries

The third special case considered here is when the y and z directions extend to infinity.

The analytical mapping of Eq. (11) to Cartesian coordinates can be completed via Fourier

transform in y and z. After Fourier transform, Eq. (11) becomes

q̃x(x, fy, fz, η) = −
∫ L2

L1

κx(x− x′, fy, fz, η)
∂T

∂x′
dx′ +

∑
µ

B̃µ(x, fy, fz, η), (23)

where thermal conductivity κx is given by

κx(x, fy, fz, η) =
∑

µx>0,µy ,µz

κµx
e
− 1+iΞµ+ifyΛµy+ifzΛµz

|Λµx|
x

(1 + iΞµ + ifyΛµy + ifzΛµz)|Λµx|
. (24)
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fy and fz are the Fourier variables in the y and z directions, correspondingly, and B̃µ(x, fy, fz, η)

is the Fourier transform of Bµ(x, ρ, ζ, η) with respect to fy and fz. The exact expression of

B̃µ and a derivation of Eq. (23) are given in Appendix B. In this case, both temperature

field and the inhomogeneous term have spatial and temporal dependence. Their dependence

on the boundary conditions and heat source should be accounted for when extracting the

intrinsic thermal conductivity from the observables such as total heat flux or an average

temperature.

III. GENERALIZED FOURIER’S LAW IN TDTR

We now discuss the application of generalized Fourier’s law to a TDTR experiment, an

optical pump-probe method that is able to create a local heating with variable length scales

and probe the resulting thermal transport. In a TDTR experiment, the sample typically

consists of two layers, a metal transducer film with a finite thickness, d, and a semi-infinite

substrate. The in-plane directions are regarded as infinite and thus Fourier transforms in

the y and z directions are justified. The cross-plane heat flux is then described by Eq. (23)

with x ∈ [0, d] in the transducer film and x ∈ [d,∞) in the substrate. Prescribed boundary

conditions are applied to determine the unknown boundary coefficients, Pµ, that are carried

over from Eq. (8). At x = 0, a specular boundary is assumed, given by:

q+
1µx(x = 0, fy, fz, η) = q−1µx(x = 0, fy, fz, η), (25)

where the subscript 1 indicates the transducer layer. The superscript + and − correspond

to the mode-specific heat flux containing P+
µ and P−µ , respectively. At x =∞, the heat flux

disappears. Mathematically, this condition is given as:

q+
2µx(x =∞, fy, fz, η) = 0, (26)

where the subscript 2 indicates the substrate layer. At the interface, x = d, we use the

elastic transmission interface condition given by

q+
2µx = T12(µ)q+

1µx + [1− T21(µ)]q−2µx (27)

q−1µx = T21(µ)q−2µx + [1− T12(µ)]q+
1µx. (28)
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The spectral transmissivity from layer 1 to 2, T12(µ), is related to transmissivity from layer

2 to 1, T21(µ), through the principle of detailed balance given by

T12(µ)C1µv1µ = T21(µ)C2µv2µ (29)

Plugging the heat flux expression into the equation of energy conservation, the temperature

field can be obtained. The details of the interface treatment and procedures to obtain

the temperature response in a TDTR experiment can be found in Ref. [9]. The surface

temperature response (x = 0) in a TDTR experiment has the following mathematical form:

Z(t,T ) =

∫ ∞
−∞

∫ ∞
−∞

∑
µ

Hµ0(fy, fz, T12(µ), t)Qµ(fy, fz)dfydfz. (30)

∑
µHµ0(T12(µ), t) is the surface temperature response to a Dirac delta function δ(fy, fz).

We consider a sample consisting of an aluminum film on a silicon substrate. Phonon

dispersions for Al and Si and lifetimes for Si were obtained from first-principles using density

functional theory (DFT).[56] We assumed a constant MFP for all modes in Al; the value

ΛAl = 60 nm is chosen to yield a lattice thermal conductivity κ ≈ 123 Wm−1K−1. We

have explicitly shown that phonon MFPs of Al has little effect on the final TDTR signals

in Ref. [9] where more details on the justification of this approach can be found.

In the same work[9], we have treated the spectral transmissivity profile of phonons across

the Al/Si interface, T12(µ), as unknown fitting parameters and extracted an optimal profile

by minimizing the objective function |Z(T12(µ), t) − Z0(t)|, where the surface temperature

Z0(t) is the measurable quantity in time under a uniform film heating (fy = fz = 0). In that

work, we assumed the generalized Fourier’s law was the correct description of non-diffusive

transport. However, even if the constitutive relation is wrong, the Z(T12(µ), t) can still be

fit to Z0(t) by changing the transmissivity profile. To test if the relation itself is correct or

not, we can take advantage of the decoupling of the in-plane and cross-plane directions via

the interface and incorporate the y and z dependency into the problem.

To include the in-plane spatial dependency, we compare the calculated TDTR responses

using the generalized Fourier’s law with pump-size-dependent TDTR measurements on the

same Al/Si sample measured in Ref. [9], where the 1/e2 diameter D of a Gaussian pump

beam was varied between 5 to 60 µm at different temperatures. As the pump size decreases

and becomes comparable to the thermal penetration depth along the cross-plane direction

(x-axis of the schematic in Fig. 1(a)), in-plane thermal transport is no longer negligible
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and requires a three-dimensional transport description. P+
µ (fy, fz, η) is determined from the

interface conditions given by Eqs. (27) & (28), and for a given fy, fz, and η it is determined

by the spectral transmissivity of phonons as given in Ref. [9].

IV. RESULTS

We now provide experimental evidence for the generalized Fourier’s law by comparing

the predicted and measured surface thermal responses to incident heat generation in TDTR

experiments. In the diffusive regime, energy conservation, Fourier’s law and the boundary

conditions can fully describe a transport problem. In the nondiffusive regime, the replace-

ment of Fourier’s law is the generalized Fourier’s law described in this work. If the generalized

Fourier’s law is the correct description of non-diffusive transport, it will accurately predict

the surface temperature response for the various parameters in TDTR experiments such as

heating geometry, modulation frequency, and ambient temperature of the sample.

We compared the measured signals directly to predictions from the nonlocal transport

governed by the generalized Fourier’s law and the strictly diffusive transport governed by

Fourier’s law. To ensure a consistent comparison between the constitutive relations, the

thermal conductivity of silicon is obtained using the same DFT calculations, and the interface

conductance G is given by[57]

1

G
=

4∑
µC

Si
µ v

Si
µ TSi→Al

− 2∑
µC

Al
µ v

Al
µ

− 2∑
µC

Si
µ v

Si
µ

(31)

where TSi→Al is the phonon transmissivity from Si to Al. This expression was first derived

by Chen and Zeng, which considers the non-equilibrium nature of phonon transport at the

interface within the phonon transmissivity.[57]

Figures 1 (a) & (b) show the measured TDTR amplitude and phase versus delay time

for a pump size of 15 µm at room temperature along with predictions from the generalized

Fourier’s law and original Fourier’s law. As in Ref. [9], the intensity of the shaded regions

correspond to the likelihood of the measured transmissivity profile plotted in the inset of

Fig. 1(b). A higher likelihood of a transmissivity profile is indicated by a higher intensity

of the shaded area, and thus the PBE simulation using a transmissivity profile with higher

likelihood better fits the experimentally measured TDTR signals. Excellent agreement be-

tween predictions from the generalized Fourier’s law and experiments are observed. On the
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FIG. 1. Experimental (a) amplitude and (b) phase versus time (symbols) from TDTR for an Al/Si

sample with a pump beam size of 15 µm at T = 300 K for modulation frequencies of 0.97 MHz and

4.77 MHz. Predictions from the generalized Fourier’s law (shaded regions) and original Fourier’s

law (curves) are also shown. The shaded regions around the PBE simulations correspond to the

likelihood of the measured transmissivity possessing a particular value (darker area corresponds

to more probable). Using the measured transmissivity profile from uniform heating,[9] the pre-

diction from the generalized Fourier’s law agrees well with the TDTR measurements, while the

Fourier results overestimate the phase and underestimate the amplitude at later times. Inset in

(a): schematic of the sample subject to a Gaussian beam heating. Inset in (b): the measured

transmissivity of longitudinal phonons TSi→Al(ω) that is obtained with 1D transport in Ref. [9].

other hand, Fourier’s law fails to accurately account for the experimental data, overestimat-

ing the phase and underestimating the amplitude after 2 ns in delay time. Note that the

different transmissivity profiles in the inset of Fig. 1(b) give a value of interface conductance

G = 223± 10 MWm−2K−1 using Eq. (31), and this deviation in G leads to uncertainties in

the TDTR signals that are within the linewidth of the plotted curves.

Using the framework of the generalized Fourier’s law, we are able to identify the source

of the discrepancy between Fourier’s law and the generalized Fourier’s law. For the case of

Al/Si, the discrepancy originates from the interface conditions. The low frequency phonons

have transmissivity close to unity, while the high frequency phonons are mostly scattered

by the interface. Examining the form of Eq. (23), low frequency phonons in the first term
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FIG. 2. Measured (symbols) and predicted (shaded regions) phases versus pump size at room

temperature and a fixed delay time of (a) 1.5 ns and (b) 6 ns for modulation frequencies of 0.97

MHz and 4.77 MHz. At temperatures of 100, 150, 200, and 250 K, measured and predicted phases

are plotted versus modulation frequency at a fixed delay time of (c) 1.5 ns and (d) 6 ns for a pump

size of 15 µm. The lines show the prediction by Fourier’s law with temperature-dependent thermal

conductivities from DFT and the interface conductance given by Eq. (31).

(nonlocal thermal conductivity) are suppressed due to non-diffusive transport; however,

they carry most of the heat across the interface which increases their contribution to the

second term in Eq. (23). These two factors cancel each other. Thus, the TDTR experiments

routinely give a value close to the bulk Si thermal conductivity. This cancellation is not
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guaranteed to occur for all systems. We first highlighted this finding qualitatively in Ref.

[9]. However, the complicated numerics required to solve for the temperature field in that

work masked the underlying physical effects that occur in non-diffusive transport. The

framework of the generalized Fouriers law immediately reveals how boundary condition

affects the heat flux without solving for the temperature field and provides a straightforward

way to examine if a Fourier type relation with a reduced thermal conductivity is valid in a

particular experiment setting.

In Figs. 2(a) & (b), comparisons of phases at different pump sizes between the generalized

Fourier’s law, original Fourier’s law and experimental data are given at 300 K. In Figs. 2(c)

& (d), we compare the measured phase versus modulation frequency at a fixed pump size

to predictions from the generalized Fourier’s law and original Fourier’s law at 100, 150, 200

and 250 K. The data are given for two different delay times, 1.5 ns and 6 ns. The seeming

discontinuities and abrupt changes in curvature in Figs. 2(a) & (b) are artifacts of interpo-

lations betweeen a finite number of calculated points in the curve. The figure shows that

predictions from the original Fourier’s law do not reproduce the experimental results. The

deviation of Fourier’s law predictions from the experimental results becomes larger when

the temperature decreases, modulation frequency increases, or pump size decreases, all indi-

cating that non-diffusive effects increase with these changes. On the other hand, predictions

from the generalized Fourier’s law agree well with the experimental measurements for the

various temperatures, modulation frequencies and pump sizes, providing evidence for its

validity to describe the nonlocal thermal transport in different regimes.

V. DISCUSSION

The above comparisons between the simulations and experiments with different heating

geometries and at different temperatures provide evidence that the generalized Fourier’s law

is an appropriate replacement of Fourier’s law in the nondiffusive regime. We now use this

formalism to examine TDTR measurements on boron arsenide (BAs).

Boron arsenide has recently attracted attention because of its ultra-high thermal conduc-

tivity determined from measurements based on the TDTR technique and reported by several

groups.[60–62] Moreover, pump-size-dependent measurements have also been conducted in

an attempt to access information of the phonon MFPs in BAs.[61] The thermal conductivity

16



5 10 20 30 40 50 60
Pump diameter ( m)

0.7

0.8

0.9

1.0

1.1

1.2

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

-1
K

-1
)

0.51 MHz
5.52 MHz
10.1 MHz

Profile 1

Profile 2

0 2 4 6 8 10
Phonon frequency (THz)

0.1

0.3

0.5

0.7

Tr
an

sm
iss

ivi
ty

LA

TA

TA

0 2 4 6 8 10
Phonon frequency (THz)

0.05

0.15

0.25

0.35
Tr

an
sm

is
si

vi
ty

 

TA

LA

TA

BAs at 300 K

Al
D

Profile 1: 
G = 115 MWm-2K-1

Profile 2: 
G = 253 MWm-2K-1

a)

b)

c)

FIG. 3. Spectral transmissivity profiles from BAs to Al versus phonon frequency that give an

interface conductance of (a) 115 MWm−2K−1 and (b) 253 MWm−2K−1 using Eq. (31). The

profiles are used to generate the synthetic TDTR data. (c) Effective thermal conductivity versus

pump size, obtained by fitting the synthetic TDTR data at the modulation frequencies of 0.51

(solid curves), 5.52 (dashed curves), and 10.1 (dotted curves) MHz, using the transmissivity profile

(a) (solid symbols) and (b) (open symbols) to a diffusion model based on Fourier’s law. Both

3-phonon and 4-phonon scattering is included in the DFT calculations of single crystalline BAs.

The calculated bulk thermal conductivity of BAs is 1412 Wm−1 K−1.[58, 59]

measurements are based on interpreting the raw TDTR data as fit to a diffusion model based

on Fourier’s law with thermal conductivity of BAs and interface conductance between Al

and BAs as two fitting parameters.

However, due to the presence of phonons with long MFPs compared to the TDTR thermal

length scale, Fourier’s law is no longer valid at the length scales probed by TDTR. As

predicted by DFT-based PBE calculations[58, 59], more than 70% of phonons in single

crystalline BAs have mean free paths longer than 1 µm. Therefore, properly interpreting

the data requires using the generalized Fourier’s law.

Equation (11) needs close examination to understand the microscopic information con-
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tained in the surface temperature responses measured in experiments. In a two-layer struc-

ture like the one used in TDTR, the second term in Eq. (11) does not vanish and has a

non-local nature through the source term. This nonlocality implies that even though only

the transient temperature at the metal surface is observed, the measurement contains in-

formation from the entire domain. We have demonstrated in Ref. [63] that the spectral

distribution of the source term alters the surface temperature response. In other words,

even though the first term in Eq. (11) remains the same, the observable at the surface is

altered by the inhomogeneous source term originating from the interface.

To illustrate this point, we choose two transmissivity profiles TBAs→Al as shown in Figs. 3

(a) & (b). The profiles share a similar dependence on phonon frequency but with a different

magnitude. The nominal interface conductance is calculated to be 115 and 253 MWm−2K−1,

respectively, using Eq. (31). Along with the ab initio properties of BAs at room temperature,

we calculate the TDTR responses at the Al surface with different pump sizes at three

modulation frequencies. The calculated TDTR responses are then fit to the typical diffusion

model based on Fourier’s law to extract the effective thermal conductivity, as was performed

in Refs [60–62].

The results are shown in Fig. 3(c). The key observation is that the effects of modulation

frequency and pump size on the effective thermal conductivity depend on the transmissivity

profiles. A decrease in the effective thermal conductivity is observed in both profiles as the

pump size decreases or the modulation frequency increases. However, the magnitude of the

reduction and the absolute value compared to the bulk value depend on the transmissivity.

While the effective thermal conductivity seems to be approaching the bulk value at a large

pump size and low modulation frequency using profile 1, the effective thermal conductivity

using profile 2 exceeds the bulk value under the same conditions. The reduction of the

effective thermal conductivity using profile 1 as pump size decreases is less than 5% at a

given modulation frequency, while the reduction using profile 2 can be as much as 40%.

Our calculations therefore indicate that in the nondiffusive regime, simply interpreting

measurements from a method such as TDTR using Fourier’s law with a modified ther-

mal conductivity may yield incorrect measurements. Not only is Fourier’s law unable to

describe the nonlocal nature of thermal conductivity, but it also does not include the ef-

fects of inhomogeneous terms. Therefore, when interpreting TDTR measurements of high

thermal conductivity materials, Fourier’s law is not the appropriate constitutive relation.
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Although this insight has been previously discussed, under the framework of the generalized

Fourier’s law we have a simple equation showing how microscopic interface conditions enter

the constitutive relation and thus clearly demonstrating that extra caution is necessary when

interpreting TDTR measurements of high thermal conductivity materials.

VI. CONCLUSIONS

In summary, we derived a generalized Fourier’s law using the Peierls-Boltzmann equa-

tion under the relaxation time approximation. The new constitutive relation consists of two

parts, a convolution between the temperature gradient and a space- and time-dependent

thermal conductivity, and an inhomogeneous term determined from boundary conditions

and heat sources. By comparing predictions from this new constitution law to a series of

time-domain thermoreflectance measurements in the nondiffusive regime, we provide exper-

imental evidence that the generalized Fourier’s law accurately describes thermal transport

in a range of transport regimes. We also show that interpreting nonlocal thermal trans-

port using Fourier’s law can lead to erroneous interpretation of measured observables. To

correctly extract microscopic phonon information from the observation of nonlocal thermal

transport, it is necessary to separate the inhomogeneous contribution from the nonlocal

thermal conductivity based on the generalized Fourier’s law.
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Appendix A: Derivation of Eq. (20)

In a one-dimensional (1D) problem, Eq. (11) becomes
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q̃µx = −
∫

Γ

CµvµxΛµx
e
−αµ

∣∣∣x−x′Λµx

∣∣∣
αµ|Λµx|

∂T̃

∂x′
dx′ +

∫
Γ

Q̃µ(x′)e
−αµ

∣∣∣x−x′Λµx

∣∣∣
dx′, (A1)

where

Γ ∈

 [−∞, ξ) if vµξ > 0

(ξ,∞] if vµξ < 0
.

In a 1D transient grating experiment, both temperature profile and mode-specific heat

generation rate have a spatial dependence of eiβx, i.e., T̃ (x, η) = eiβxT̃ (η) and Q̃µ(x) =

Qµδ
−1eiβx. Summing Eq. (A1) over all the phonon modes and using the symmetry of vµx

about the center of the Brillouin zone, i.e., vµx = −v−µx, the total heat flux is expressed as

q̃x = −iβ∆T̃ (η)
∑
µx>0

∫ ∞
−∞

CµvµxΛµx
eiβx

′
e
−αµ

∣∣∣x−x′Λµx

∣∣∣
αµ|Λµx|

dx′ +
∑
µx>0

∫ ∞
−∞

Qµ

δ
eiβx

′
e
−αµ

∣∣∣x−x′Λµx

∣∣∣
dx′. (A2)

Now define y = x′ − x. Then the above equation becomes:

q̃x = −iβ∆T̃ (η)eiβx
∑
µx>0

∫ ∞
−∞

∑
µx>0

CµvµxΛµx
eiβye

−αµ
∣∣∣ y
Λµx

∣∣∣
αµ|Λµx|

dy + eiβx
∑
µx>0

∫ ∞
−∞

Qµ

δ
eiβye

−αµ
∣∣∣ y
Λµx

∣∣∣
dy

= −iβT̃ (η)eiβx
∑
µx>0

κµx
α2
µ + Λ2

µxβ
2

+ eiβx
∑
µx>0

Qµ

δ

αµΛµx

α2
µ + Λ2

µxβ
2
. (A3)

Appendix B: Derivation of Eq. (23)

When the y and z directions can be regarded as infinite, the analytical mapping to the

Cartesian coordinates can be completed via Fourier transform in y and z. To show it, we first

define g(x, y, z) = f(ξ, ρ, ζ) with the coordinate transform given by Eq. (4). G and F are the

functions after Fourier transform in y and z. Using the affine theorem of two-dimensional

Fourier transform, we obtain

G(x, fy, fz) = e
−i

(
fy

Λµy
Λµx

+fz
Λµy
Λµx

)
x
F (x,−fy

Λµ

Λµx

,−fz
Λµ

Λµx

)
Λ2
µ

Λ2
µx

, (B1)

where fy and fz are the Fourier variables in the y and z directions, respectively.

Applying Eq. (B1) to Eq. (10) gives

q̃µξ = P ∗µ(fy, fz, η)vµxe
− 1+iγµ

Λµx
x

+ sgn(vµx)

∫
Γ

Q̃µ(x, fy, fz, η)e
− 1+iγµ
|Λµx|

|x−x′|
dx′

+

∫
Γ

Cµvµx
|Λµx|

∆T̃ (x′, fy, fz, η)e
− 1+iγµ
|Λµx|

|x−x′|
dx′, (B2)
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where γµ = ητµ + fyΛµy + fzΛz and P ∗µ(fy, fz, η) is determined as∫ ∫
P (ρ, ζ, η)eifyy+ifzzdydz = Pµ(−fy

Λµ

Λµx

,−fz
Λµ

Λµx

, η)
Λ2
µ

Λ2
µx

e
−i

(
fy

Λµy
Λµx

+fz
Λµz
Λµx

)
x

= P ∗µ(fy, fz, η)e
−i

(
fy

Λµy
Λµx

+fz
Λµz
Λµx

)
x
. (B3)

Applying integration by parts to the third term in Eq. (B2) and summing up all the

phonon modes gives

q̃x(x, fy, fz, η) = −
∫ L2

L1

κx(x− x′, fy, fz, η)
∂T

∂x′
dx′ + B̃(x, fy, fz, η), (B4)

where thermal conductivity κx is given by

κx(x, fy, fz, η) =
∑

µx>0,µy ,µz

κµx
e
− 1+iγµ
|Λµx|

x

(1 + iγµ)|Λµx|
, (B5)

and

B̃(x, fy, fz, η) =
∑
µ

P ∗µ(fy, fz, η)vµxe
− 1+iγµ

Λµx
x

+
∑

µx>0,µy ,µz

Cµ|vµx|
1 + iγµ

[
∆T (L2)e

− 1+iγµ
Λµx

(L2−x) −∆T (L1)e
− 1+iγµ

Λµx
(x−L1)

]
+

∑
µx>0,µy ,µz

|Λµx|
1 + iγµ

[
Qµ(L2)e

− 1+iγµ
Λµx

(L2−x) −Qµ(L1)e
− 1+iγµ

Λµx
(x−L1)

]

−
∑

µx>0,µy ,µz

|Λµx|
1 + iγµ

∫ L2

L1

∂Qµ

∂x′
e
− 1+iγµ
|Λµx|

|x′−x|
dx′. (B6)
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