
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optical signatures of the chiral anomaly in mirror-
symmetric Weyl semimetals

Aaron Hui, Yi Zhang, and Eun-Ah Kim
Phys. Rev. B 100, 085144 — Published 28 August 2019

DOI: 10.1103/PhysRevB.100.085144

http://dx.doi.org/10.1103/PhysRevB.100.085144


Optical Signatures of the Chiral Anomaly in Mirror-Symmetric Weyl Semimetals

Aaron Hui
School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, USA

Yi Zhang∗

International Center for Quantum Materials, Peking University, Beijing, 100871, China and
Department of Physics, Cornell University, Ithaca, New York 14853, USA

Eun-Ah Kim
Department of Physics, Cornell University, Ithaca, New York 14853, USA

(Dated: August 16, 2019)

The chiral anomaly is a characteristic phenomenon of Weyl fermions, which has condensed matter
realizations in Weyl semimetals. Efforts to observe smoking gun signatures of the chiral anomaly
in Weyl semimetals have mostly focused on a negative longitudinal magnetoresistance in electronic
transport. Unfortunately, disentangling the chiral anomaly contribution in transport or optical mea-
surements has proven non-trivial. Recent works have proposed an alternative approach of probing
pseudoscalar phonon dynamics for signatures of the chiral anomaly in non-mirror-symmetric crys-
tals. Here, we show that such phonon signatures can be extended to scalar phonon modes and
mirror-symmetric crystals, broadening the pool of candidate materials. We show that the presence
of the background magnetic field can break mirror symmetry strongly enough to yield observable
signatures of the chiral anomaly. Specifically for mirror-symmetric Weyl semimetals such as TaAs
and NbAs, including the Zeeman interaction at |B| ≈ 10T, we predict that an IR reflectivity peak
will develop with an EIR ·B dependence.

I. INTRODUCTION

The Weyl semimetal has been generating excitement
as a new experimentally realizable class of topological
materials in three dimensions.1,2 The materials are so
named due to the existence of Weyl points in the mo-
mentum space, where two non-degenerate bands inter-
sect and disperse linearly. Weyl points are monopoles of
Berry curvature and characterized by their chirality, a
topological invariant describing the parallel/anti-parallel
(right/left-handed) locking between their momentum and
spin or pseudo-spin. One of the exciting phenomena pre-
dicted in the Weyl semimetal is the condensed matter
realization of the chiral anomaly: the chiral charge - the
population difference between the left and right-handed
Weyl fermions - is not conserved after quantization.

The non-conservation of chiral charge means that, un-
der the application of parallel E and B fields, particles
will be pumped between left-handed and right-handed
Weyl points. Therefore, in the presence of a chiral
anomaly, one can think of the B-field as creating a topo-
logically protected channel of charge between left and
right-handed Weyl points, whose conductivity and di-
rection are controlled by the magnetic field. The pres-
ence of this channel leads to the so-called chiral mag-
netic effect,3–7 where a current will develop along the
magnetic field in the presence of a chemical potential dif-
ference between Weyl nodes with opposite chirality. In
order to balance the charge transfer, scattering between
Weyl nodes is required; this scattering process is rare
because the Weyl nodes are generically well-separated,
so this conduction channel has high conductivity. In
the limit of large B, intra-node scattering is suppressed

within each chiral Landau level, consisting only of a sin-
gle linear branch. The inter-node scattering time, which
is longer than the B = 0 intra-node scattering time, then
controls the conductivity in this limit. Therefore, the
chiral anomaly leads to a B-field dependent enhancement
in the conductivity.3 Negative longitudinal magnetoresis-
tance was therefore proposed as a signature of the chiral
anomaly in Weyl semimetals.8–10

Indeed, negative magnetoresistance has been observed
in a number of Weyl semimetals;11–21 however, negative
magnetoresistance was not unique to Weyl semimetals
and could potentially be caused by other effects.22–27 For
instance, negative magnetoresistance was also measured
in the non-Weyl semimetal materials PdCoO2, PtCoO2,
SrRuO4, and Bi2Se3.25,28 To complicate matters further,
the point contacts used for magnetoresistance measure-
ments were susceptible to current jetting, where the cur-
rent is focused by a magnetic field, artificially enhancing
the measured conductivity and potentially overwhelming
the chiral anomaly signature.29,30 For these reasons, the
chiral anomaly interpretation of electronic transport re-
sults has been controversial.

In search of sharper signatures of the chiral anomaly
and Weyl semimetals, a number of proposals have been
put forth.31–43 In this paper, we will be particularly inter-
ested in phonon-induced optical signatures. Through an
axial (chirality-dependent) electron-phonon coupling, a
phonon can induce a dynamical chemical potential differ-
ence between Weyl points with opposite chirality, which
in turn gives rise to a dynamical realization of the chi-
ral anomaly. Recent works have found that this can
result in anomalous optical features in IR and Raman
spectroscopy.44–47 However, based on symmetry consid-
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erations, it was argued that a phonon mode in a 1D rep-
resentation can only have an axial coupling if it is pseu-
doscalar (changes sign under improper rotations).45 As
the allowed phonon modes are constrained by the crystal
symmetry, pseudoscalar phonons only exist in crystals
where the mirror symmetries are sufficiently broken.45

Therefore, previous works ruled out such chiral-anomaly
induced optical phenomena in Weyl semimetal candi-
dates with many mirror planes, such as TaAs and
NbAs.45,46

We claim, by contrast, that such optical signatures
of the chiral anomaly can occur in all mirror-symmetric
crystals for both scalar and pseudoscalar phonons, due
to the role of a necessary magnetic field. Previous
analyses45,46 assumed the Weyl points to be locally iden-
tical (up to chirality) and the linear dispersion to be
isotropic. If one breaks these assumptions and allows the
Fermi velocities to differ, a scalar phonon can also de-
velop an effective, non-vanishing axial coupling. Such a
difference in Fermi velocities can be induced by the mag-
netic field necessarily present in the experiments. Be-
cause of this, it is important to consider the effect of
magnetic field on symmetries neglected in previous anal-
yses.

The magnetic field, a pseudovector, changes sign under
improper rotation; under the reflection x→ −x, the mag-
netic field transforms as (Bx, By, Bz)→ (Bx,−By,−Bz).
Therefore, it breaks all mirror symmetries except for the
mirror plane normal to it, if such a mirror plane exists.
The Zeeman effect and the Landau level quantization are
examples of such mirror-symmetry-breaking effects. In
the presence of at most one mirror plane, an effective
pseudoscalar phonon is allowed to exist, so the axial com-
ponent of the phonon coupling for this mode is generically
non-zero. Since optical signatures of the chiral anomaly
require the presence of a static magnetic field, no sym-
metry restrictions on Weyl semimetals are required to
see this signature. In this paper, by considering a suit-
able microscopic model, we show that the Zeeman effect
and the Landau level quantization can result in substan-
tial Fermi velocity asymmetry that can drive detectable
optical signatures of chiral anomaly.

The outline of the paper is as follows: In Section II, we
introduce a tight-binding model Hamiltonian in the same
symmetry class as TaAs and NbAs and analyze the effect
of mirror-symmetry-breaking Zeeman effect and Landau
level quantization on the fermion dynamics. In Section
III, we discuss the electron-phonon coupling and its sym-
metry constraints for optical signatures. In Section IV,
given the magnetic field’s mirror-asymmetric effect on
the Fermi velocities, we estimate the strength and vis-
ibility of the IR reflectivity signal corresponding to the
dynamically-driven chiral anomaly. Finally, we conclude
our results and discuss their distinction from multiferroic
materials in section V.

II. TIGHT-BINDING MODEL OF 3D WEYL
FERMIONS WITH MAGNETIC FIELD

To quantitatively analyze the symmetry-breaking ef-
fect of the magnetic field, we consider the following 3D
electronic tight-binding model with crystal symmetries
identical to the Weyl semimetals TaAs and NbAs:48

H0 =t
∑
〈ij〉,s

c†iscjs +
∑
i,s

∆ic
†
iscis

+ iλ
∑

〈〈ik〉〉,ss′
c†iscks′

∑
j

dijk · σss′ (1)

where t is the nearest neighbor hopping, ∆i = ±∆ is
a staggered potential whose sign depends on the sublat-
tice being a Ta(Nb) or As site, and λ is the amplitude
of the spin-orbit interaction between next-nearest neigh-
bors. s =↑, ↓ denotes spin, and σ are the Pauli matrices.
The vector dijk = dij × djk, where j is an intermediate
site between i and k, and dij is the displacement vector
from i to j.

In the absence of the magnetic field, the model is time-
reversal invariant and breaks inversion symmetry. Two
mirror planes exist in the xz and yz directions. For large
values of λ, the model is a 3D topological insulator; for
large values of ∆, on the other hand, the model is a nor-
mal insulator. In between, a time-reversal-invariant Weyl
semimetal exists in a finite phase space, for instance,
at t = 500meV, ∆ = 350meV, λ = 100meV; we will
use these parameters throughout this paper. Comparing
this model at B = 0T to DFT calculations of the TaAs
band structure1,12,49 and the measured Fermi velocities
around the Weyl points,48 we find qualitative agreement.
More details on the low-energy electronic properties of
the model can be found in the Appendix.

In the presence of a magnetic field, we generally expect
the Hamiltonian to change in two ways. One modifica-
tion is the Zeeman effect, describing the coupling of the
electron spin to the magnetic field given by

Hz = gµB
∑
iss′

c†iscis′B · σss′ (2)

with g the g-factor, µB the Bohr magneton, and B the
magnetic field. We estimate a large g-factor g ≈ 50 for
typical topological Weyl semimetal materials with strong
spin-orbit coupling, such as TaAs and NbAs, by analogy
to measurements in related materials.50,51 The inclusion
of the Zeeman effect at finite B breaks the time-reversal
symmetry and all mirror plane symmetries except the
mirror plane normal to the magnetic field, if it exists.

The other modification, which we refer to as the Lan-
dau level quantization, comes from the minimal coupling
of the electromagnetic vector potential to the electron
current. To incorporate this effect, we perform the Peierls
substitution on the kinetic term and the spin-orbit inter-
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FIG. 1. The magnitude of the Fermi velocity as a function
of the azimuthal angle φ in the kx − ky plane for a pair of
Weyl points, denoted in green and magenta, originally re-
lated by the mirror symmetry at |B| = 0T . The solid and
dashed lines denote the upper and lower branches of the Weyl
dispersion, respectively. For a magnetic field |B| ∼ 10T in
the x̂/2 +

√
3ŷ/2 direction, the differences developed between

these curves demonstrate the mirror-symmetry breaking of
the Zeeman effect.

action:

c†iscjs → eiAijc†iscjs

c†iscks′ → eiAikc†iscks′ (3)

where Aij and Aik are the electromagnetic vector poten-
tials (integrated) from i to j and from i to k, respectively.
We’ve chosen to set the electron charge e = 1 (and ~ = 1,
as usual). We also use the lattice constants of TaAs to
convert the magnetic flux into the magnetic field in unit
of Tesla. As is well known, minimal coupling to a mag-
netic field leads to a quantization of the electronic dis-
persion into separate Landau bands. In particular, the
dispersion normal to the magnetic field becomes quan-
tized, so the dispersion becomes one-dimensional with
bandgap controlled by the magnetic field. Similar to
the Zeeman effect, Landau level quantization also breaks
time-reversal symmetry and all mirror plane symmetries
except the (possibly existent) mirror plane normal to the
magnetic field.

Let us focus on the impact of magnetic-field-induced
mirror symmetry breaking on the low-energy dispersion
of the Weyl nodes near the kz ≈ 0 plane in the Bril-
louin zone. For clarity, we will consider the effects of
the Zeeman effect (Eq. 1 and 2) and the Landau level
quantization (Eq. 1 and 3) separately.

For the Zeeman interaction, we diagonalize the Hamil-

tonian H0 + Hz in ~k space as Eq. 2 preserves lattice
translation symmetries. We find that even with a mag-
netic field as large as |B| = 10T , the Weyl nodes only
displace a scale ∼ 0.1% of the Brillouin zone (see the
Appendix). Therefore, the impact of the Zeeman effect

FIG. 2. The kx dispersion of the four Landau bands closest
to the Weyl node energy in the presence of the Landau level
quantization of a magnetic field |B| ∼ 12T in the x̂ direc-
tion. The eight gapless linear branches are the chiral Landau
bands descending from the eight Weyl nodes, respectively,
and responsible for the electronic properties at low energy. A
finite (indirect) gap separates the other Landau bands. As
an example, the chiral Landau bands in the red circle as the
descendants of a pair of Weyl nodes are illustrated in Fig. 3.

FIG. 3. (a) A schematic plot of the kx dispersion of a pair of
Weyl nodes of opposite chirality (labeled with blue and red)
related by a My mirror symmetry at zero field, and (b) the
chiral and anti-chiral Landau bands selected out in the pres-
ence of a magnetic field along the x-direction. Since the chi-
ral and anti-chiral Landau levels can generically have distinct
Fermi velocities, they explicitly break the My symmetries and
contribute to an effective axial electron-phonon coupling.

due to the k-dependence of the electron-phonon coupling
is likely small, and we neglect this contribution. On the
other hand, the symmetry breaking from the magnetic
field has a more prominent effect on the Fermi velocities,
especially in topological semimetal models and materi-
als with strong spin-orbit interactions, so that the Zee-
man spin-splitting effect strongly impacts electron veloc-
ity. In Fig. 1, we see that the Fermi velocities of the Weyl
points connected via mirror symmetries initially identi-
cal at zero field clearly become different when a magnetic
field is turned on.

For Landau level quantization, we focus our attention
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on the linear, chiral Landau bands. We specialize to
B = Bx̂ for simplicity and introduce the electromag-
netic vector potential via Eq. (3). Consequently, the
dispersion along ky and kz becomes quenched, and the
discrete Landau bands disperse only along kx, which re-
mains as a good quantum number. Using exact diag-
onalization for the Hamiltonian within a magnetic unit
cell, we obtain the one-dimensional kx dispersion - see
Fig. 2 for an example at |B| ∼ 12T. It is important
to note that the branch of the dispersion that evolves
into the chiral Landau band depends on the chirality of
each Weyl node,3 schematically shown in Fig. 3. There-
fore, despite the identical zero-field dispersion of a pair
of mirror-symmetric Weyl nodes, the differing chiralities
ensure that the chiral and anti-chiral Landau bands se-
lected out by the magnetic field generally have distinct
Fermi velocities. Interestingly, such a difference between
the Fermi velocity of the chiral and anti-chiral Landau
bands is a form of mirror-symmetry breaking, depending
on the anisotropy of the original Weyl fermions instead
of the strength of the magnetic field. The remainder of
the Landau bands will be gapped by the magnetic field,
so that the chiral branches dominate near the Fermi en-
ergy, see Fig. 2. As a result, chiral anomaly effects may
become visible if the cyclotron energy of B is sufficiently
large and the Fermi energy sufficiently close to the Weyl
node.

In summary, the mirror symmetry connecting a pair
of Weyl nodes is explicitly broken by a magnetic field.
The magnetic-field-induced difference between the Weyl
nodes’ Fermi velocities, induced by the Zeeman effect and
the chiral selectivity of Landau level quantization, are
physical manifestations of the broken mirror symmetry.
We will discuss its phenomenological consequences for
the dynamical chiral anomaly in Sec. IV.

III. ELECTRON-PHONON COUPLING AND
SYMMETRY CONSTRAINTS

To understand the impact of the Weyl fermion dynam-
ics and its symmetry constraints on the electron-phonon
coupling, we consider the interaction between phonons
and a pair of Weyl nodes with opposite chirality τ = ±1:

Hep =
∑
kq

∑
σσ′τ

(∑
λ

uλσσ′,τ (q)vqλ

)
c†kστ ck−qσ′τ (4)

where vqλ is the phonon displacement operator in mode λ
at momentum q and σ, σ′ describe the pseudospin of the
electrons. We have neglected inter-node electron scat-
tering, since it requires a large momentum transfer q to
connect the well-separated Weyl nodes in the momen-
tum space. Decomposing the electron-phonon coupling
into its irreducible representations,

uλσσ′,τ = uλ00δσσ′ + uλ0 · σσσ′ + τ(uλ0zδσσ′ + uλz · σσσ′)

(5)

The two latter terms correspond to the (chirality-
dependent) axial coupling responsible for the chiral
anomaly. We focus on the axial coupling constant uλ0z
since the contribution from uλz is suppressed by a factor
of vτ/c, as we will see later.

The symmetries of the system impose constraints on
the electron-phonon coupling. In particular, uλz van-
ishes in the presence of time-reversal symmetry, while
uλ0z vanishes in the presence of two non-coplanar mirror-
symmetry planes.45–47 Therefore, it seems that the mir-
ror symmetry in the crystal should be sufficiently broken
to host a nontrivial phonon signature as a result of the
chiral anomaly. We find, on the other hand, that the
imposed magnetic field can break the mirror symmetries
sufficiently for the signatures to appear in a much broader
pool of Weyl semimetal candidates.

For our tight-binding model in Eq. (1), we expect the
magnetic-field-induced changes to uλσσ′,τ due to the small
displacements of the Weyl point locations to be sub-
dominant; instead, the key ingredient that leads to inter-
esting phonon behavior is the induced change in Fermi
velocity, which we discuss the next.

IV. ESTIMATING THE EFFECT OF
MAGNETIC FIELD ON THE FERMI VELOCITY

In this section, we study the chiral anomaly contri-
bution to the phonon dynamics by integrating out the
electronic degrees of freedom. The low-energy effective
theory of our tight-binding model, described by Eq. (1-3),
can be captured by the following single-particle Hamilto-
nian

Hτ = vτ (k̂)τσ · (−i∇ + eA)− eA0 (6)

which describes a Weyl point with chirality τ = ±1 and

anisotropic Fermi velocity vτ (k̂). The terms A0,A are
the electromagnetic vector potential.52 Because phonons
do not couple electrons between Weyl nodes, the integra-
tion over electronic degrees of freedom factorizes between
Weyl points (at the leading order); we can restrict our at-
tention to a single pair.

For a pair of Weyl nodes with isotropic and identi-

cal Fermi velocity vτ (k̂) = vF , on integrating out the
fermions one finds that the chiral anomaly contributes
to a mode-effective phonon charge δQ, and hence to a
dielectric susceptibility χ:46

δQ−qλ(−q0) = i
e2Vc
√
N

π2~2
B

q2
(q0u

λ
0z − vFq · uλ0 ) (7)

χλjj′(q0,q) =
1

MVc
δQqλjδQqλj′

ω2
qλ + iκuλ00q · δQqλ − q20

(8)

where (q0,q) is the frequency-momentum vector of the
phonon, Vc is the unit cell volume, M is the total mass of
ions in the unit cell, N is the number of unit cells, and B
is the static background magnetic field. κ =

√
N/(Me),
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FIG. 4. The relative difference (induced by the Zeeman ef-
fect) between the Fermi velocities of a pair of Weyl nodes
as a function of the strength of the magnetic field B in the
x̂/2 +

√
3ŷ/2 direction. The ratio is averaged over all direc-

tions. Assuming that uλ00 is the only non-zero electron-phonon
coupling component at B = 0, this quantity measures the ra-
tio uλ0z/u

λ
00 generated by the inclusion of the magnetic field

and the broken symmetry between v+ and v− (see Eqs. (9)
and (10)).

q2 = q20 − v2Fq2, and ωqλ is the bare phonon dispersion
of mode λ. Since q0 = cq for light, the uλ0 term is sup-
pressed by vF /c. When the IR light is on resonance with
the phonon driving the chiral anomaly, the dielectric con-
stant diverges and the reflectivity develops a peak with a
form factor EIR ·B. Also, such chiral anomaly contribu-
tion to χλjj′ clearly depends on a non-zero axial coupling

constant uλ0z.
In comparison, our generalized model in Eq. (6) takes

into account the anisotropic Fermi velocity around a
Weyl node as well as the different Fermi velocities be-
tween the Weyl nodes. We consider a totally-symmetric
scalar phonon mode at zero field, where all components of
the electron-phonon coupling are 0 except uλ00. For sim-
plicity, this system can be mapped back to the isotropic
case by rescaling the fermions by vτ c

†
τ cτ → vF c

†
τ cτ , which

changes the electron-phonon coupling and induces com-
ponents in the non-identity piece:

uλ00 →
vF
2

(
1

v+
+

1

v−

)
uλ00 (9)

uλ0z →
vF
2

(
1

v+
− 1

v−

)
uλ00 (10)

The rescaling of the fermions also changes A0, but it does
not affect the phonon charge and dielectric susceptibility
in Eqs. (7) and (8) so we neglect the change. As is mani-
fest after rescaling, the difference of the Fermi velocity is
equivalent to an axial component uλ0z in the isotropic set-
ting since uλ0z/u

λ
00 = |v+−v−|/(v++v−). For the Zeeman

effect, a non-zero difference develops between the Fermi

FIG. 5. The relative difference (induced by the Landau level
quantization) between the chiral Landau level Fermi velocities
descending from a pair of Weyl nodes as a function of the
magnetic field B along the x̂ direction. Similar to Fig. 4,
the value of |v+ − v−| / (v+ − v−) measures the ratio uλ0z/u

λ
00

generated by the magnetic field. The black dotted line is the
value evaluated with the zero-field dispersion.

velocities of the pair of Weyl nodes related by the original
mirror symmetry. The difference is generally greater at
larger magnetic field, see Fig. 4, and uλ0z ∼ 0.02uλ00 at 10T
within our model. For Landau level quantization, on the
other hand, the non-zero difference between v+ and v−
originates from the anisotropy of the dispersion around
each Weyl point. Also, the difference is less dependent
on B, see Fig. 5, as long as B is large enough to separate
the non-chiral Landau bands and suppress their contri-
bution. Landau level quantization gives uλ0z ∼ 0.3uλ00
within our highly anisotropic model, yet it is also possi-
ble that uλ0z → 0 irrespective of B when the anisotropy
vanishes, e.g. for two isotropic Weyl points.

Now that we have obtained an estimate for the effective
uλ0z, let’s estimate the strength of the corresponding IR
signature. For example, we focus on the A1 phonon mode
in TaAs. We take ω = 8 THz to match the experimental
observation of an A1 phonon mode in TaAs53, Vc = 125Å,
and M = 10−25kg. We also take uA1

0z ∼ 0.02uA1
00 , which

is reasonably obtainable given either the Zeeman effect
with g = 50 at |B| = 10T or Landau level quantization
with the anisotropy in the NbAs and TaAs Weyl dis-
persion, as previously demonstrated. We also estimate√
NuA1

00 ∼ 1Ry/aB on dimensional grounds46, and ne-
glect the uz contribution given vF � c. As a result, we
obtain |δQ| ≈ .8e. Next, we calculate the impact of the
chiral anomaly on the susceptibility. If we drive the IR
frequency at q0 = 7.9 THz, corresponding to a resonance
width of 6.7 cm−1, we find that χA1

zz = 60ε0. Compar-
ing to the experimentally measured zero-field reflectivity

R =
|1−√εr|2
|1+√εr|2 on TaAs crystals53, the chiral anomaly con-

tribution to the reflectivity should be of sufficient weight
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FIG. 6. Proposed experimental setup to measure the IR sig-
nature of the chiral anomaly. In the presence of collinear
EIR and B fields, a peak in optical reflectivity is expected for
inducing pseudoscalar phonon modes that couple strongly to
the Weyl fermion electrons. Such effect also displays a EIR ·B
dependence as one rotates EIR relative to B in experiments.

to be observable over the background of χ ≈ 400ε0.
Therefore, we propose an EIR ·B dependent peak in the
IR reflectivity as a signature of the chiral anomaly fol-
lowing the experimental setup in Fig. 6, even for scalar
phonon modes and mirror-symmetric Weyl semimetals.54

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have focused on utilizing the mirror-
symmetry breaking of the magnetic field to realize dy-
namical chiral anomaly in mirror-symmetric crystals and

exhibit optical signatures for scalar phonons in IR spec-
troscopy. We would like to emphasize that so long as
a magnetic field is present, at most one mirror symme-
try remains, so that the axial phonon coupling uλ0z is
generically allowed from symmetry considerations and a
chiral-anomaly induced IR response should be present.
For the specific case where a single mirror plane remains,
a pseudoscalar phonon mode normal to the mirror plane
is still allowed45,47. Since both the effective pseudoscalar
phonon and the Weyl fermion chirality change sign un-
der mirror symmetry, the axial component of electron-
phonon coupling is not restricted to zero, and the corre-
sponding IR signature of the dynamical chiral anomaly
survives.45,47

Inducing changes in dielectric susceptibility via a mag-
netic field is a magnetoelectric effect and not completely
new.46 However, magnetoelectric effects are typically as-
sociated with multiferroic materials (e.g., Cr2O3) and
previous studies have focused on linear magnetoelec-
tric effects (e.g., P ∝ B). For the chiral anomaly,
the effect is cubic with a characteristic E · B signature
(i.e. P ∝ (E ·B)B), and known Weyl semimetals are
not multiferroic. Therefore, we believe that the chiral-
anomaly-activated phonon dynamics and IR signatures
should be visible in generic Weyl semimetals.
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Appendix: Low-energy Weyl dispersion and Weyl nodes of the tight binding model

The tight-binding model of Eq. (1) in the main text has four pairs of Weyl nodes on the kz = 0 plane at |B| = 0T,
shown as the red dots in Fig. 7 left panel. These Weyl nodes are related to each other by the reflection planes in the
xz and yz directions. The low-energy electronic dispersion is approximately linear near each of the Weyl nodes, see
Fig. 7 right panel.
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In the presence of a magnetic field B, these reflection symmetries are generally broken. As a result, the locations
of the Weyl nodes are no longer mirror symmetric. However, with the inclusion of the Zeeman effect (Eq. (2)), the
displacements of the Weyl node locations are relatively small at experimentally relevant parameters, and unlikely to
impact the electron-phonon coupling through its k-dependence in a meaningful way.

FIG. 7. Left: the momentum-space locations of the Weyl nodes on the kz = 0 plane show the mirror symmetry is broken in
the presence of a magnetic field |B| = 10T along the x̂/2 +

√
3ŷ/2 direction. Note that even for a large g-factor g = 50 and a

large magnetic field of 10T, the Weyl nodes only displaces by a scale ∼ 0.1% of the Brillouin zone. The inset shows a magnified
view of the pair of Weyl points in the orange box. Right: The zero-field dispersion in the ky − kz plane is approximately linear
near the Weyl nodes.


