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We report the theoretical discovery and characterization of higher-order Floquet topological
phases dynamically generated in a periodically driven system with mirror symmetries. We demon-
strate numerically and analytically that these phases support lower-dimensional Floquet bound
states, such as corner Floquet bound states at the intersection of edges of a two-dimensional system,
protected by the nonequilibrium higher-order topology induced by the periodic drive. We charac-
terize higher-order Floquet topologies of the bulk Floquet Hamiltonian using mirror-graded Floquet
topological invariants. This allows for the characterization of a new class of higher-order “anoma-
lous” Floquet topological phase, where the corners of the open system host Floquet bound states
with the same as well as with double the period of the drive. Moreover, we show that bulk vortex
structures can be dynamically generated by a drive that is spatially inhomogeneous. We show these
bulk vortices can host multiple Floquet bound states. This “stirring drive protocol” leverages a
connection between higher-order topologies and previously studied fractionally charged, bulk topo-
logical defects. Our work establishes Floquet engineering of higher-order topological phases and
bulk defects beyond equilibrium classification and offers a versatile tool for dynamical generation

and control of topologically protected Floquet corner and bulk bound states.

I. INTRODUCTION

Topological phases of matter are characterized by an
intimate relationship between the patterns of motion
in the bulk and those at the boundaries of the sys-
tem. While there is no general theory of this bulk-
boundary correspondence, it is known to hold in certain
classes of topological phases, e.g. those of non-interacting
fermions protected by internal and crystalline symme-
tries [1-5]. The interface between two such phases with
the same symmetries and different topological invariants
binds gapless modes. For example, a one-dimensional in-
terface between the two-dimensional quantum spin Hall
phase and a trivial insulator supports an odd number of
gapless helical edge modes [6-8].

In recent years, topological classification of phases of
matter has been extended to systems that are driven pe-
riodically out of equilibrium [9-11]. In these systems,
bulk-boundary correspondence acquires a new, temporal
character: for a drive frequency 2, the localized bound-
ary modes may now coexist at the same interface at dif-
ferent values of the quasienergy, e = 0 (Floquet zone
center) and e~ = Q/2 (Floquet zone edge) [12, 13]. At
high frequencies, the dynamics self-averages to equilib-
rium and the quasienergies asymptotically approach the
energies of the average Hamiltonian. Thus, the boundary
modes at the quasienergy zone edge disappear and the
Floquet topology coincides with the equilibrium topology
of the average Hamiltonian. As the frequency is lowered,
topological transitions at the Floquet zone edge and cen-
ter are induced and Floquet topology acquires a richer
structure than any equilibrium topology [14-21]. Apart
from their richer topological structure, Floquet topolog-
ical phases promise practical advantages over their equi-
librium counterparts, such as more control. Indeed, the

topological phase of the system can be tuned, usually
with great precision, by the drive protocol (drive ampli-
tude, frequency, and shape), thus allowing phase transi-
tions in situ.

More recently, the notion of bulk-boundary correspon-
dence has been generalized to higher-order topological
phases in equilibrium, whose surfaces at one lower dimen-
sion remain gapped, yet support gapless modes localized
at their lower-dimensional boundaries, such as hinges and
corners [22-26]. For example, a two-dimensional elec-
tric quadrupole topological insulator binds corner states
with fractional charge e/2. Such higher-order topolog-
ical phases have been predicted to exist in engineered
lattices of cold atoms [23] and in natural elemental bis-
muth [27], and have been observed in a mechanical sys-
tem of coupled microwave resonators [28, 29], optical
waveguides [30], topolectrical circuits [31], mechanical
metamaterials [32], and elastic acoustic structures [33].
In this work, we show that higher-order Floquet topo-
logical phases can be realized and controlled in a pe-
riodically driven system, supporting lower-dimensional
Floquet bound states at the Floquet zone center and/or
edge.

Specifically, we study a driven model with mirror
symmetries that realizes Floquet topological quadrupole
phases and supports Floquet corner states. We show that
with open boundary conditions this system supports Flo-
quet bound states at the corners. With periodic bound-
ary conditions, we characterize these phases using mirror-
graded Floquet topological invariants. In particular, we
show these invariants correctly predict the higher-order
anomalous Floquet topological phase that supports Flo-
quet corner states at both Floquet zone center and edge.

Furthermore, we study drive protocols that are spa-
tially inhomogeneous. We design specific protocols that



can be used to “stir” topological bulk defects, namely
vortices, that host lower-dimensional Floquet bound
states in the bulk. Thus, we expand the notion of higher-
order topology to systems with spatiotemporal nonuni-
formities.

The paper is organized as follows. In Section II, we re-
view the model, its symmetries, and the characterization
of its equilibrium higher-order topology. Here, we also
introduce our notation of Floquet theory and the gen-
eral scheme of defining Floquet topological invariant for
a drive protocol with time-reflection symmetry. In Sec-
tion ITI, we use this scheme to study the driven model and
characterize, analytically and numerically, the higher-
order Floquet topology as a function of frequency. In
Section IV, we introduce spatially inhomogeneous drive
protocols that stabilize bulk vortex structure support-
ing Floquet bound states localized at their cores. We
conclude in Section V with a discussion and outlook for
future work. We present some details of our calculation
and arguments in two Appendices.

II. MODEL AND FLOQUET THEORY

In this section, we introduce the model that exhibits
higher-order topological phases with an emphasis on the
algebra of its symmetries. For completeness, we also
briefly review the method of characterizing its higher-
order topology in equilibrium in the presence of certain
symmetries as well as the Floquet theory of periodic dy-
namics. This will set the stage for describing higher-order
Floquet topologies in Section III.

A. Model

We demonstrate our findings in a driven w-flux dimer-
ized square lattice as a minimal model of a two-
dimensional quadrupole Floquet topological insulator.
The Hamiltonian is [34]

H= Z wyse'?cle, (1)
(rs)

where ¢, annihilates a spinless fermion at site r = (z,y),
wys = W}, are hopping amplitudes between nearest neigh-
bors (rs), and ¢.s are Peierls phases implementing the
magnetic flux penetrating the lattice. In the Landau
gauge ¢rrie, = TYX - €y, where we have used natural
units A = ¢ = e = 1. The hopping amplitude in the
direction e, of a nearest neighbor is modulated as

Wrr+te, = wu[l —Re (n;kufr)L (2)

where 7y, = ela8eueimr e are directional complex
signs [34]. Here, f, is a complex function that spec-
ifies the hopping modulation locally. For a uniform
fr = f = |fle?x we have

Werrx = w11 F (=1)%| f]sin x], (3)
Werry = w21 F (—1)Y|f|cos x], (4)
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FIG. 1. (a) The m-flux dimerized square lattice with spatially
modulated hopping amplitudes. The elements within a unit
cell are labeled 1 through 4, and each plaquette carries a m
flux, which may be represented in the Landau gauge by an
alternating pattern of 4 for hopping amplitudes along the
rows. (b) The Brillouin zone showing the principal (k1 and
k2) and the diagonal (k] and k) mirror symmetry directions.

i.e. a uniform hopping modulation by Re f (Im f) in the
z (y) direction. See Fig. 1 for a depiction of the model
and the mirror symmetry axes.

In this case, the unit cell has four basis points; thus,
for a unit cell at position R with the site r at its corner,
1/)% = (CI7Ci+ﬁ’CI+y’CI+&+y) defines a unit-cell spinor.
For a system with L sites and periodic boundary con-
ditions, we can write the Hamiltonian in the Bloch ba-
sis ¥y, = %e_(”/‘l)”? >R eik'RwR with lattice momentum
k = (ki, ko), as H = 3, ¢) H(k),, with Bloch Hamil-

tonian
H(k) = A1 D1 (k1) + A2 Da(k»). (5)
Here, A; = y0v;, D;j = |d;|e'* % for j = 1,2, with
|d; |6 = w;[1+ f; + (1 — f;)e™)

= 2uw;e'ti/? (cos %J —ifjsin kzj) . (6)
where fi = Ref, fo = Imf, Ci = —im1, C2 = 7275,
and v,, a € {0,1,2,3}, are Dirac matrices satisfying the
Clifford algebra {va,7v8} = 2gap with the metric g =
diag(1,—1,—1,-1), and v5 = —iyo717273- We use the
Weyl basis v =01 ® 1, vy =i02 R0, and 75 = 03 ® 1 in
terms of Pauli matrices o.
We may also write the Hamiltonian as H = ) I'a@a,
where the anticommuting matrices 'y = Ay, 'y = 1A4,Ch,
I's = Ay, I's = iA5C5, and the 4-vector

= (|d1] cos ¢1,|d1|sin @1, |da| cos ¢, |da| sin ¢2).  (7)

There are four bands with doubly degenerate energies
+E(k), where E(k) = |£(k)|.

B. Symmetries

The above model is a two-dimensional generalization
of the one-dimensional Su-Schrieffer-Heeger (SSH) model



[35] equipped with the proper Clifford algebra [36]. Here,
we focus on the algebra of the symmetries that determine
its spectral and topological properties regardless of the
choice of unit-cell basis or gauge. The Hamiltonians

H;(kj) = A;Dj(kj), (8)

represent a SSH model in the k; direction. In each di-
rection, the Hermitian unitary operator C; = C’]T =C; !
represents a chiral symmetry:

{4;,C;} =0= C;H;(k;)C; = —H;(kj).  (9)
The commutation algebra
[C1,Co) = [Ch, Ag) = [Ca, A1) = {A1, A2} =0 (10)

ensures that these two SSH Hamiltonians anticommute
with each other, {H;, Hy} = 0. Consequently, the oper-
ator C' = C1Cy = Y973, {C, A}, is the chiral symmetry
of the full Hamiltonian H = Hy + Hs, {C,H} = 0.

Due to the enlarged dimension of the unit cell, each di-
rection now has a continuum of discrete symmetries. For
example, mirror symmetries MjHj(k‘j)M;l = H(-kj)
are given by M; = A;U;, where U; is a unitary that
commutes with H;. This is the U(2) group generated
by {1,C;, A;C;,iA;C}, where j # j is the complement
of j. Imposing the condition [M;, H;] = 0 then chooses
M; = A;C5 as the mirror symmetry of the full Hamilto-
nian. Thus, M; = ¢y3 and My = ~3y5. We have

{My, Mo} = {M;,C;} = [M;,Cj] = [M;, Aj] = 0. (11)

Since M7 and Ms anticommute, I = —iMyMs = 5 is a
Hermitian unitary representing the inversion symmetry.

We note the action of two diagonal mirror symmetries,
M{ : (kl,kQ) — (—]ﬂg,—kl) and Mé : (kl,kQ) — (kg,kl).
Supplied with proper Hermitian unitaries,

M{ _ ei(ﬂ-/4)A3€i(ﬂ-/4)1M1A2, (12)
Mé _ ei(Tr/4)Agei(7r/4)ICh (13)
where A3 = —iA 1 As, these operations connect different

Bloch Hamiltonians by mapping the hopping modulation
vector f = (f1, f2) = (f2, f1) = M4f and the average
hopping vector w = (w1, ws) — (w2, wy) = Miw,

~1
M;H (k;w,f)M; " = H(Mk; Myw, Myf). (14)
Note that
[Mj,C] = {M], My} = 0. (15)

For w; = wy and fi; = fa, the model has diagonal sym-
metries M} as well as a four-fold rotational symmetry
generated by Ry = MyMj].

This model also has antiunitary paticle-hole symme-
try, PH(k)P~! = —H*(—k) with P = P7! = y;15K,
and time-reversal symmetry, TH (k)T = H*(—k) with
T =T ' =iCP = K, where K is the complex con-
jugation operator. Therefore, the model belongs to the

BDI Altland-Zirnbauer class [37]. These symmetries sat-
isfy

{P,M;} = [T, M;] =0, (16)
{P,T} = [P,C] = [T,C] = 0. (17)

C. Higher-Order Topological Phases

In equilibrium, when all parameters are time-
independent, and for uniform modulation f = |f|e®X, the
model exhibits four phases: a trivial insulating phase for
0 < x < 7/2, a z- or y-edge-polarized insulating phase
for 0 < x F7/2 < /2, and a second-order topological
insulating phase for —m < x < —m/2. One can tune be-
tween the trivial and second-order topological phases by
closing the bulk gap at m = 0. However, one may also
keep the bulk gap open, m # 0, and cross between the
trivial and edge-polarized, or edge-polarized and topolog-
ical quadrupole phases. With open boundary conditions,
the gap closes in the edge spectrum, and the second-order
topological phase show corner bound states.

With periodic boundary conditions, these phases have
been characterized [22, 23] in terms of nested Wilson
loops of Wannier bands. A simpler characterization of
these phases becomes possible when the model admits
diagonal mirror symmetries Mj{, i.e. when f; = f5 and
wy = ws. In this case, a bulk mirror-graded topological
invariant [5, 38, 39] can be defined as

I/j = 71/]4_ VJ_, (18)
2

where vj4 are the winding numbers of Hji(k;nj), the
Hamiltonian projected on the mirror eigenspace of M]’
with eigenvalues +1, along the symmetric lines of M;
in the Brillouin zone, k., = (k,—k) and k/,, = (k, k).
For an open system, the invariant line under diagonal
mirror symmetry keeps two corners intact. Thus, the
bulk-boundary correspondence relates the mirror-graded
bulk invariant to topologically protected bound states at
these corners.

Since the diagonal mirror symmetries commute with
the chiral symmetry, H (kj,;), M} and C can all be block-
diagonalized simultaneously. In each block C}+ are chiral
symmetries of H;x(k;,;), for which one may define, in
the usual way, the winding number W of a chirally sym-
metric Hamiltonian. In the chiral basis, such a Hamil-
tonian H({) parametrized by a compact variable ¢, is
off-diagonal,

0 Af 1 0logdet h(Q)
H= (h 0) = WI[H] = %%Tcﬂ(. (19)

Therefore,
vit = W[Hjx (kp,;)]- (20)

We note that the presence of two anticommuting diagonal
mirror symmetries dictates v;4 = —v;_, thus v; = v;,.



Indeed, in Ref 39. it was shown that this mirror-graded
invariant captures the higher-order topology of the topo-
logical quadrupole phase. In Section III, we shall use this
characterization to demonstrate the higher-order Floquet
topological phases.

D. Floquet Theory of Periodically Driven Model

Here, we review Floquet theory and fix our notation to
describe the periodic dynamics of the system. The driven
model has a periodic Hamiltonian H(t), with period T =
27 /), via a time-periodic hopping modulation f,.(t). The
dynamics is given by the time-ordered evolution operator

—@'/ttl H(s)ds] . (21)

We shall use Floquet theory to separate the motion
within a drive cycle and the stroboscopic evolution of
successive cycles.

According to Floquet theorem [40], the solutions of the
Schrédinger equation take the form e~*e? |u, (t)), where
quasienergies e, € [—Q/2,/2] are conserved and the
periodic Floquet modes |us(t)) = |uq(t + 7)) are eigen-
states of the Floquet evolution operator, Up(t) |uq(t)) =
e~ |u, () . Here,

U(t',t) = Texp

Up(t) = U(t +71,t) = e "THr®) (22)

defines the Floquet Hamiltonian Hp(t) = Hp(t + 7).
E. Floquet Topological Invariants

Consider an instantaneous Hamiltonian, which has a
unitary temporal mirror symmetry,

M, H (ty, +t)M; " = H(t,, —t), (23)

around reflection-symmetric times t,,, = 0 and 7/2. Un-
der this symmetry, the Floquet operator is mapped to
f]}(tm) = MUp(t,) M, where Up is obtained from
H = —H. In the presence of a chiral symmetry, H =
C~'HC, and U}, = CU}.C. Thus, the Floquet Hamilto-
nian at reflection-symmetric times is chirally symmetric,

C,Hp(ty)C7t = —Hp(tm) (24)

with Ct = MtC’, if [O, Mt] = 0, and Ct = ZMtC if
{C, M;} = 0. Moreover, any symmetry S of the instan-
taneous Hamiltonian, [S, H(t)] = 0, is also a symmetry
of the Floquet Hamiltonian, [S, Hr(t)] = 0, at any initial
time. In the following, we will assume that the temporal
and spatial mirror symmetries commutes, [M;, M;] = 0.
Then, C; will have the same commutation algebra as C
with the spatial mirror symmetries.

Consistent with these symmetries, the Floquet Hamil-
tonians H (t,,) have their own stable topological indices,

4

vp(tm). Accordingly, two topological invariants are de-
fined [41]

vr(0) + nvp(7/2)
2 )

vh = (25)
associated with quasienergies €7 = 0,)/2, where the sign
n=e """ = +1. For example, a chirally symmetric Flo-
quet Hamiltonian has a topological invariant defined as
its winding number v (t,,) = W[Hp(tn)]. Indeed, any
other topological invariant of a system with chiral and
time-mirror reflection symmetry, such as the invariants
defined through nested Wilson loops or mirror-graded
eigenspaces, can be converted in this fashion to Floquet
topological invariants characterizing the topology of the
periodic dynamics.

We will now use this method to study the higher-order
Floquet topologies induced in our driven model.

III. HIGHER-ORDER FLOQUET
TOPOLOGICAL INSULATOR

For simplicity of our presentation, we will focus on two-
step drive protocols, in which the hopping modulation f
periodically switches between two values f;; with a du-
ration 71, and fio with a duration 79 = 7 — 77. This is
simple enough to allow analytical and exact numerical
calculations, yet rich enough to demonstrate the physics
of interest. This two-step protocol is time-mirror sym-
metric with M; = 1 and reflection-symmetric times in
the middle of each step, which we set at 0 and 7/2, re-
spectively. The Floquet evolution operator at these times
are

Up(0) = U ULU,,, Up(r/2)=ULUU,, (26)

where U;, = e~/ with H, = H(wy,,f;,), for drive
step 4 = 1, 2. The two Floquet evolution operators are re-
lated by the half-cycle micromotion operator ® = Uy, Uy,
as Up(0) = ®TUp(7/2)®.

A. Floquet corner states

We first present the numerical evidence for higher-
order topological phases in open boundary conditions.
In Fig. 2, we show the Floquet spectrum of the driven
model as the frequency of the drive is lowered. The
hopping modulations f;; and f;5 are both chosen to be
in the trivial phase of the static model. At sufficiently
high frequencies, the periodic dynamics is described by a
time-independent Floquet Hamiltonian Hr = H, where
H=H®© = [ H(t)dt/T is the average Hamiltonian over
a cycle. Thus, the Floquet topology is the same as the
equilibrium topology of this average Hamiltonian, which
is trivial in our case.

As the frequency is lowered, the coupling between Flo-
quet modes in different Floquet zones increases and the
Floquet topology can change when the quasienergy gap



FIG. 2.

Floquet spectrum of the driven model. (a) The
quasienergies of a system with open boundary conditions vs.
drive frequency, 2. The system has 50 x 50 sites and drive
parameters, w1y, = wet, = wy, and fi, = \ftj\e”“ for time
steps 4 = 1,2, with wy, = 2.25, |fu| = v2/1.8, ws, = 1.005,
| fe2| = \/5/2017 and duration 71 = 12 = 7/, are chosen to
be in the trivial phase of the instantaneous Hamiltonian and
respect diagonal mirror symmetries. The frequency is shown
in units of inter-unit-cell hopping A = w,(1 — f,), taken to
be the same for both drive steps. Floquet bound states are
seen in different ranges of frequency at €™ = 0 and ¢~ = Q/2.
The probability density of the four degenerate Floquet bound
states, at ¢ (b) and ¢~ (c) are shown. The drive frequency
here is Q/\ = 4.1, marked with a dashed line in (a).

at the Floquet zone edge (e~ = €/2) and/or center
(eT = 0) close, either in the bulk or at the edges. With
our choice of drive parameters, the changes of topology
are accompanied by quasienergy gap closings in the bulk
as seen in Fig 2(a). These nontrivial topologies host
Floquet bound states at the corners of the system, see
Fig 2(b), which signal the higher-order nature of the Flo-
quet topological phase.

At reflection-symmetric times, the Floquet Hamilto-
nian has all the same symmetries as the instantaneous
Hamiltonian. Thus, when H;, have diagonal mirror sym-
metries, so do the Floquet Hamiltonians Hp(t,,). Thus,
the topological phase transitions can only occur along
paths in parameter space (w, f), which respect these sym-
metries. With diagonal mirror symmetries, these transi-
tions can only happen when the bulk gap closes.

B. Floquet Hamiltonians of Two-Step Drive

The algebraic form of the Floquet Hamiltonians is dic-
tated by the symmetries to be,

HF(tm) = Alel(k) + AQDFQ(k) (27)

The main difference with H (¢) here is that the operators
Dp; = |dpj|ei¢FJCJ' now depend on both components of
the lattice momentum k. While the algebraic structure
of the Floquet Hamiltonian Hp(t,,) is the same as the
instantaneous Hamiltonian, its dependence on lattice mo-
mentum k and parameters w and f can be quite different
and complicated. In this way, the periodic drive gener-
ates a whole family of different Hamiltonians consistent
with the algebra of symmetries.

In order to see this explicitly, we calculate the Floquet
Hamiltonians for the two-step drive. For two Hamil-
tonians, H;, and H,, of the two-step drive, we have
{H,,Ht,} = 2ds, - y,. Using these commutation re-
lations, one may find closed-form expressions of the Flo-
quet Hamiltonians. We present the details in Appendix A
and summarize the results here. The quasienergy bands
+e, with € > 0, are found from

cos(Te) = cos(m1 By, ) cos(2Ey,)
— (s, - dy,) sin(ri By, ) sin(rEy,),  (28)

The 4-vector for the Floquet Hamiltonian is found to be
€

dp(tm) = C1 (tm)dAtl + CZ(tm)‘gtz ’ (29)

sin(7e)
where the unit vector ¢ = «/E, and
¢1(0) = sin(Ey, 71 ) cos(Et, T2)
— (i, - di,) [1 = cos(Ey,m)]sin(Ey,m),  (30)
c2(0) = sin(maEy,). (31)

To obtain the expressions for ¢, = 7/2, one swaps 1 <> 2
everywhere in Egs. (30) and (31).

C. High-Frequency Approximation

In the high-frequency limit, we can also use the Baker-
Campbell-Hausdorff formula,

XY = XY +H[X Y+ 15 (XX Y4V [V, XD+

)

to find
— . T1To —
HF(tm) =H+ elgtm%[ﬂ'v [HtlaHt'z]] + 0(7'3), (32)

where H = (1 Hy, + 72 Hy,)/T is the average Hamilto-
nian, and e**m = 41 for the two reflection-symmetric
times. For example, taking w, = wy = w to be time-
independent, we find |dp;|e’*Fi given by Eq. (6) with w
and f; replaced with wr and fr;, where
2
Or - emtm% S AL cosk;), (33)

w ;
j=1,2

2
wg — mlmw T1T2
?fFj:fj_e ¢ 12[Afjj;;l—kcoskj)

+ (=1)? for1 (1 — cos kjj)} : (34)
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FIG. 3. Floquet topological invariants for the driven model
with diagonal mirror symmetries and periodic boundary con-
ditions. The drive parameters are the same as in Fig. 2. The
mirror-graded Floquet topological invariants V? = %[VF(O) +
vi(1/2)] for € = 0 (a) and ¢~ = Q/2 (b) vs. drive fre-
quency. The insets show a magnification in a lower frequency
range. (c,d) The variation of mirror-graded topological invari-
ant of the Floquet Hamiltonian, vr(t), as a function of the
initial time in the cycle, ¢ (see text for definitions). The sta-
ble mirror-graded invariants, vp (¢m), at reflection-symmetric
times tm = 0 and 7/2 are marked with triangles.

Here, the average f = (71fi, + Tofi,)/7, the difference
Af = fi, — fr,, and for = Im(f} f;,). Details of this
calculation are also presented in Appendix A.

D. Mirror-Graded Floquet Topological Invariants

Choosing the instantaneous Hamiltonian to have di-
agonal mirror symmetries, i.e. w; = wy and f1 = fo
for both steps of the drive, we obtain Floquet Hamil-
tonians at reflection symmetric times, which also have
the diagonal mirror symmetries. Thus, we can define
stable mirror-graded topological invariants for these Flo-
quet Hamiltonians. Following the definition of Eq. (25),
we can thus compute the mirror-graded Floquet topolog-
ical invariants of the periodic drive.

In Fig. 3, we plot the mirror-graded Floquet topologi-
cal invariants of the model with periodic boundary condi-
tions and the same parameters as in Fig. 2. In Fig. 3(a,b),
the Floquet invariants are shown as a function of fre-
quency. (The numerical calculation and the one using
the analytical expression of Floquet Hamiltonians agree
precisely.) They correctly show topological phase transi-
tions when bulk gap closes. They also correctly predict
the presence of Floquet corner states in both quasienergy
gaps around ¢ = 0 and ¢~ = Q/2 for the system with
open boundary conditions.

In order to visualize how mirror-graded Floquet topo-
logical invariants arise in the periodic dynamics, we show
in Fig. 3(c,d) for two representative cases, the evolution

of the winding number v(t) of Hp(t) as the initial time
is varied through a cycle. This winding number is calcu-
lated as v(t) = $[vy () — v—(t)], with

1
9 log det[hy (k, t)]dk,

velt) =55 ¢ a5

where hy (t) are the off-diagonal elements of Hp(t) along

o = (k,k) projected on the eigenspaces of M} with
eigenvalues +1. Note that these projections are chirally
symmetric at reflection symmetric times t,, only. Thus,
v(t) is a stable topological invariant only at t = t,,.
This is why it changes as t is varied through the cy-
cle. However, by plotting v(¢) for all times in the cy-
cle, we can track its changes more easily and obtain the
mirror-graded Floquet topological invariants with confi-
dence. In particular, in certain ranges of frequency, we
find V?,E = #1. This corresponds to two Floquet cor-
ner states at each corner for the open system as shown in
Fig. 2(b). We call this, in accord with previous literature,
a higher-order anomalous Floquet topological phase.

As the frequency is lowered further, we find a whole zoo
of integer winding numbers, see the insets of Fig. 3(a,b).
These mirror-graded Floquet topological invariants show
fluctuations similar to those found previously for one-
dimensional chirally symmetric driven models [21].

E. Z Invariants with Diagonal Symmetry Breaking

Remarkably, we also find winding numbers |v| > 1.
For instance, for drive parameters in Fig. 3 in range of
frequencies around Q/A = 1.52 (X is the inter-unit-cell
hopping amplitude), we have v}, = 2. In this range,
the bulk quasienergy spectrum is gapped around et =
Correspondingly, for a system with 120 x 120 sites with
fully open boundary conditions, we find two degenerate
Floquet bound states localized at each corner.

Since mirror-graded invariants are well-defined only
when the system has four-fold rotational symmetry in
addition to the principal mirror symmetries, it is natural
to ask whether these multiple corner states survive in the
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FIG. 4. (a) Quasienergy spectrum defined on a strip geometry
as a function of momentum k; parallel to the strip edge for
diagonally symmetric model. The drive parameters are the
same as in Fig. 2 for Q/\ = 1.52. The edge and bulk gaps are
indicated by the arrows. (b) Edge and bulk gap vs. diagonal
symmetry breaking strength for f, = |f.,|(1 + &,1)/v/2.



absence of diagonal mirror symmetry. In order to answer
this question, we first note that for the system with diag-
onal mirror symmetries, the bound states on diagonally
opposed corners in the direction of k;nj are eigenstates
of M j’ . Furthermore, at each such corner, ';, the corner
states have the the same eigenvalue 72+, of MJ’ . These

corner states are mapped by MJi to those at L;, the diag-
onally opposite corner along ki, ; since { M7, Mjf,} =0,
the corresponding eigenvalues 7z, , = —72,. (The de-
tails of the arguments proving these statements are pre-
sented in Appendix B.) Now, diagonal mirror symmetry
breaking introduces tunneling between corner states with
opposite eigenvalues of MJ’ Therefore, it can only split
corner states at different corners. We conclude that the
corner states can hybridize and delocalize only if a bulk
or edge gap is closed by diagonal symmetry breaking.

Consider adding diagonal symmetry breaking terms to
the Hamiltonian while preserving the principal-axes mir-
ror symmetries, parametrized by the dimensionless sym-
metry breaking strength x > 0. Both the time-dependent
Hamiltonian and the Floquet Hamiltonian are analytic in
k as long as the gaps at e remain finite. Since corner
states at k = 0 reside in a finite gap, we expect there to
be a finite range of x > 0 where the gap remains open
and, therefore, the number of corner states remains the
same as that at Kk = 0, where it is given by bulk mirror-
graded invariant.

We can also test our expectation by exact numerical
diagonalization of the Floquet Hamiltonian in a strip ge-
ometry, which gives access to both bulk and edge gaps. In
Fig. 4 we show our results for the set of parameters giving
a bulk invariant 1/1}Ir = 2. As shown, the edge gap remains
open (an indeed increases), while the bulk gap closes at
a critical value of k. Thus, the topological phase below
this critical value is adiabatically connected to x = 0 and
is described by the bulk mirror-graded invariants for the
model with diagonal mirror symmetry.

In Appendix C, we also provide an example of a static
doubled model without diagonal mirror symmetries that
supports more than one zero-energy bound state at each
corner. This proves conclusively the inadequacy of a
Z5 invariant to characterize the higher-order topological
phases in our model irrespective of the diagonal mirror
symmetries.

IV. FLOQUET TOPOLOGICAL BULK
DEFECTS

A. Vortices in the Static Model

In previous studies [34, 42], the equilibrium =-flux
dimerized square lattice model was shown to host topo-
logically protected bulk bound states with support at
the core of vortex defects in the hopping modulation f;.
Given a pattern of hopping modulations, we may define
a defect order parameter [34],

1
m(r)=—Y_ e e, (35)
I
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FIG. 5. Defect order parameter, m(r) defined in Eq. (35), in
the four phases of the static model with open boundary con-
ditions. The trivial phase (a) shows a smooth pattern, while
the edge-polarized phases (b, d) show domain walls along the
polarized edge. The higher-order topological phase (c), on the
other hand, shows domain walls along the edges and vortex
defects at all four corners. The domain walls and vortices are
colored blue and red for clarity.

where wyrye, and 7y, are the same as in Eq. (2). The
low-energy theory of excitations at half-filling is given by
a Dirac Hamiltonian on the background of this defect
order parameter [43, 44],

T =3 (0 A;+myBy), (36)

j=1,2

where B; = iA;C;, we have identified m = m; + imo
again, and p; = —i0; is the momentum operator of the
excitations.

Due to this Dirac form, vortex configurations of m(r)
bind localized excitations. A vortex configuration is real-
ized for fr = |f(r)|e" 8T where n € Z is the quantized
vorticity. It supports n mid-gap bound states at zero en-
ergy, which are protected by the chiral symmetry C' and
whose number is a topological invariant related to the
index of the Dirac Hamiltonian [45, 46]. The presence of
bound states endows a vortex with fractional quantum
numbers.

There is indeed a close relationship between these bulk
vortices and corner states of the static model. In the
bulk, m(r) = f.. However, for an open system, hopping
amplitudes in the outward directions are set to zero. So,
even when f, is uniform in the bulk, the defect order
parameter may be nontrivial at the edges and corners.
Fig. 5 shows plots of m(r) for the case of uniform f, = f
with open boundary conditions. Indeed, all phases of
the system and, in particular the corner states of the
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FIG. 6. Stirring protocols and Floquet topological defects. A two-step drive (a) switches between two domain wall configurations
with the defect order parameter as shown. The quasienergy spectrum vs. drive frequency for an open system (b) shows a bound
state at et = 0 at arbitrarily high frequencies and, following a bulk gap closing at a lower frequency, a set of 6 degenerate
bound states at e~ = /2. The system size here is 63 x 63 sites and the hopping parameters are wi = w2 = w and |f|/w = 0.8.

The probability density of the bound states are shown in (c,d). The high-frequency bound state at e =

(c) and two of the

lower-frequency ones at e~ = /2 (d, first two panels) are localized at the intersection of the two domain wall. The other 4
lower-frequency bound states at e~ = £2/2 (d, last panel, shown together with different colors) are localized at the intersection

of domain walls and the edges of the system.

higher-order topological phase, correspond directly to the
domain-wall and vortex defects of m(r).

A vortex defect in m(r) need not have full rotational
symmetry to support bound states at its core [34]. For
example, a Z, vortex defect formed at the intersection
of four domains with f = |f|e™X, x = ¢7/2 + X0, where
0 < xo < 7/2 and the domain index ¢ € Z4, say, in the
clockwise direction, also hosts a bound states at the core.

We now show that a whole family of bulk vortex de-
fects supporting Floquet topological bound states can be
realized dynamically in the driven model.

B. Stirring Drive Protocols and Bulk Floquet
Topological Defects

The Z4 vortex can be generated dynamically by a two-
step “stirring” drive protocol that switches between two
domain-wall configurations, one with a vertical domain
wall with f = £|f| on each side, and the other with
a horizontal domain wall with f = =£|f|e?*X° on each
side. This is shown in Fig. 6(a) for xo = n/4. (For
this example, we chose a system with an odd number
of sites in each direction to isolate a single domain wall
at the center of the system at each step of the driving
protocol.) At high frequency, the Floquet Hamiltonian
Hr = H to the lowest order, where H is the average
Hamiltonian. Keeping w; = we = w fixed in time, we
can see easily that the average Hamiltonian will have
four domains intersecting at a vortex defect. Thus, at
sufficiently high frequency, we expect to see a Floquet
topological bound states localized at the intersection of

the two domain walls.

As frequency is lowered, this picture is modified as the
topology of quasienergy bands is modified by quasienergy
gap closings. In Fig. 6(b), we plot the quasienergy of
the driven model with the two-step stirring protocol as
a function of drive frequency. As expected, at high fre-
quency there is a Floquet bound state at e* = 0, whose
wavefunction is localized at the intersection of the two
domain walls, see Fig. 6(c). At a lower frequency, a quasi
energy gap closing is observed at Floquet zone edge, be-
low which a set of six degenerate Floquet bound states
appear at e~ = /2. In Fig. 6(d) we plot the wavefunc-
tions of these Floquet bound states. Two are localized at
the intersection of the domain walls. The other four are
localized at the intersection of domain walls and edges.

The above structure can be understood as the dynam-
ical generation of two higher-order anomalous Floquet
domains and two trivial ones joined along the oscillating
domain walls. With our choice of odd number of sites in
each direction, bound states associated to nontrivial do-
mains appear at the center instead of the corners of the
system. Indeed, this configuration is similar to that of a
static model with a defect order parameter obtained by
the superposition of two Z4 vortices. This would make a
vortex with double vorticity that binds two states at its
core [34]. However, in the driven case, the low-frequency
driving evidently produces a single vortex structure for
€T = 0 with a single Floquet bound states, and a double-
vortex structure for e~ = Q/2 with two Floquet bound
states. These bulk Floquet bound states coexist as steady
states of the same model at different quasienergies. This



is a novel feature of the stirred Floquet bulk vortices that
has no counterpart in the equilibrium model.

V. DISCUSSION AND OUTLOOK

We note that the scheme of dynamically generating
bulk vortex defects is not limited to Z4 vortices. For
example, a rotationally symmetric vortex defect can be
realized in the high-frequency regime by a continuously
stirred domain wall at an angle § = Q¢ with the hopping
modulation f(t) = +|fle’ on each side. Similarly, a
multi-step drive stirring a domain wall through N steps,
each rotating the domain wall by an angle 7/N, would
create a vortex structure with 2N domain walls. More-
over, the connection between corner and hinge states and
bulk defects can also be generalized to any model with
a vectorial mass generating the bulk gap. This covers,
for example, systems with reflection and/or discrete ro-
tational symmetries [33, 44]. As the frequency is lowered
in these protocols, we would expect a series of transitions
with multiple bulk Floquet bound states appearing at the
Floquet zone edge and center.

The method of creating vortex defects can be easily
generalized to higher dimensions. In a three-dimensional
model with higher-order topological phases, it would of-
fer a practical way of creating monopoles with fractional
quantum numbers using a series of pulses at high fre-
quency. Again, at lower frequencies we expect to find an
interesting set of intrinsically non-equilibrium bulk Flo-
quet bound states. By combining these pulses, we en-
vision designing additional dynamics for bulk defects in
general and, in particular, adiabatic manipulations that
can be useful for quantum information processing.

A problem that is opened by our work for future
study is to find a unified classification higher-order topo-
logical phases in and out of equilibrium. The original
work focused on nested Wilson loops of Wannier bands,
whose structures have been found to be adiabatically
connected to the surface Hamiltonians and their higher-
order boundaries [47]. However, since the interpretation
of Wilson loops and their Berry phases in terms of bulk
and edge polarization leaves us with only a Z, invariant,
this approach may not yield the general classification. A
more recent study found parallels between the topological
structure of Wilson loops and those of Floquet operators,
including the presence of anomalous bound states in the
Wannier bands [48]. However, this relationship is not in
general well understood. A significant step towards the
general classification scheme was taken in Refs. 49 and 50
by utilizing the classification of topological crystalline
phases with second-order spatial symmetries [51]. Nev-
ertheless, this classification has been achieved for models
with only a single spatial symmetry. Thus, the model
we study in this paper, with two anticommuting mirror
symmetries, is not covered by this classification.

Another interesting problem is to find an index for the
bulk Floquet topological defects that generalizes that of
the static defect order parameter (35) [45, 46, 52]. At
sufficiently high drive frequency, the Floquet Hamilto-

nian is given by the average Hamiltonian and, therefore,
has a low-energy structure similar to that in Eq. (36).
However, as the frequency is lowered, the Floquet Hamil-
tonian develops longer-range hopping terms, which can
affect both the low-energy structure and the defect order
parameter.

In this work, we have presented a periodically driven
m-flux dimerized square-lattice model that realizes the
dynamical generation of robust corner states as Floquet
bound states. In the presence of four-fold symmetry,
these corner states can be classified with two bulk Flo-
quet topological invariants obtained from the winding
number of Floquet Hamiltonians graded with a mirror
symmetry, along the diagonal lines of the Brillouin zone.
Since winding numbers are integers, we conjecture this
classification to be given by Z x Z, even when the four-
fold symmetry is broken, as long as the original mirror
symmetries about the unit-cell axes are preserved. We
find evidence for this classification at lower frequencies as
well as when we consider stirring protocols that dynami-
cally generate vortex defects in the hopping modulations
with multiple Floquet bound states in the bulk. Thus,
our work paves the way to using simple drive protocols
that leverage spatiotemporal inhomogeneities to generate
higher-order Floquet topologies.

Note added. In the final stage of preparing this paper,
we became aware of two concurrent papers [53, 54] dis-
cussing high-order Floquet topological phases. We note
that our stirring drive protocols to generate higher-order
bulk Floquet topological bound states is not discussed
in these papers. The stacking construction [54] is dif-
ferent from our model. In particular, it does not ad-
mit a low-energy Dirac Hamiltonian at high drive fre-
quency, and only supports weak higher-order topologi-
cal phases [22, 23]. Also, after our work was completed,
Ref. [55] presented a classification of higher-order Flo-
quet topological phases with time-glide symmetry.
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Appendix A: Floquet Hamiltonians

In this appendix, we provide some of the details for
deriving the Floquet Hamiltonian at reflection symmetric
times.

First, for a Hamiltonian of the form (5), with the 4-
vector & = (|dy| cos ¢1, |dy]sin ¢y, |da| cos da, |da| sin ¢a),



FIG. 7. (a) Buckling a diagonally symmetric edge normal to
the invariant direction k’mj of the diagonal mirror symmetry
M;j to create two diagonally opposite corners mapped to each
other by Mjf (b) The diagonally symmetric edge has gapless
edge modes; the buckled edge has a gapped spectrum away
from the corners parametrized by the parameter 5;, which
changes sign at a corner.

we have H? = |&|*. Thus,

e M — cos(tE) —

sin(tE)
H Al
el A SY
where E = ||. In fact, for any two such Hamiltonians,
H and H’, we have {H,H'} = 2« - «'. Using these
commutation relations it is easy to calculate the Floquet
evolution operator
UF(O) =co+

Ht1 th, (A2)

Etl Ef2
with

co = cos(11Ey,) cos(maEr,)

— (dAtl . dAtz) sin(ﬁ Etl) Sin(TgEt2)7 (AS)
¢1 = sin(m Ey, ) cos(2Et,)

- ({2751 : dAtQ) [1 - COS(TlEtl)] Sin(TQEtg)v (A4)
cg = sin(meEy, ). (A5)

The unit 4-vector & = &/|d| = &/E. Then, we
readily obtain Eqgs. (28) and (29) by writing Ur(0) =
e~ THFO) — cos(r€) — isin(re)Hp(0)/e. The Floquet
Hamiltonian Hp(7/2) is obtained by swapping 1 <> 2.
Using the commutation relations of matrices A4;, and
C; and their products to calculate the high-frequency
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Floquet Hamiltonian in Eq. (32), we find

— . T1 T —
dpo =do+ M =2 [(ddi) dy o~ {1 & 12}],
(A6)

where o € {0,1,2,3} index the components, < denotes
the cycle average, and «“ indicates a projection on the
three-dimensional space normal to the direction «.

Now, we observe that for a given k the Hamiltonian
can be cast in a new basis by the gauge transformation
H(k) — GT(k)H(k)G(k) with

G(k) = et 2512k /1G5 (AT)
so that in the new basis |d;j|e’®’ = 2w;[cos(k;/2) +
if;sin(k;/2)]. Then, for wy = wy = w, we have,

a4 =w (cos i , fisin — ! ,COS @, fasin kj?) . (A8)

27 2 2

Replacing «;,, 4,, and < in Eq. (A6) in this form, we
obtain Egs. (33) and (34) in the main text.

Appendix B: Diagonal Mirror Symmetry at Corners

In this Appendix, we will provide rigorous arguments
for our statements in Sec. III E, regarding the nature of
corner states in a system with diagonal symmetry. First,
we consider an edge normal to kmj, the invariant direc-
tion of the diagonal mirror symmetry M]‘7 as shown in
Fig. 7. The momentum k% along the edge is conserved,

so the Hamiltonian can be written as H(z/, k%) where 7
is the spatial coordinate normal to the edge. Under di-
agonal mirror symmetries M’H(;U K2)Mj = H(x}, —k%)
and MZH (a}, K5)M; = H(—a] k’)' The edge modes
are Clabblﬁed by the mirror- graded topological invariant

: there are |v;| pairs of gapless edge modes wEdge(k;),

= 1,2,---,|vj|. Each pair is an eigenstate of M; :
wedge(kz') > iwedg’e(k’) and is mapped onto itself under
M; wedge(k") wedge( k5). These edge modes are de-
generate at k;; = 0, the invariant momentum under M J’-,
and the degeneracy is protected by the symmetry of the

Hamiltonian under M ]’ Projected onto the pair of edge
modes in the symmetric direction, we may write Mjf =T,

M} = 7, and the edge Hamiltonian as H;dge = k‘%Tz with
Pauli matrices 7.

Now, consider a small buckling of this edge to form a
pair of wide-angle corners as illustrated in Fig. 7(a). In
this process segments of the edge tilt away from the sym-
metric direction in opposite ways, resulting in hybridiza-
tion of the gapless edge modes. This hybridization can
be modeled by a small mass term §’7, in the edge Hamil-
tonian, whose sign depends on the direction of the tilt.
Along the symmetric direction, §5 = 0. The choice of
7y for the mass term is dictated by the fact that under
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FIG. 8. The spectrum of the doubled pi-flux dimerized square
lattice, Eq. (C1), for a system with 50 x 50 sites and open
boundary conditions. Sixty-four eigenvalues around zero are
shown. The parameters chosen here are fi = —0.4, fo = —0.6
in each layer, As = 0, and the phase of A; is chosen at
random. Diagonal mirror symmetries are broken everywhere.
(a) The bulk and edge gaps remain open over a wide range of
|A1| > 0 with no mixing between the zero-energy states (red
circles). (b) In this range, there are two zero-energy bound
states per corner (a total of 8), as shown for |A;|/w = 0.08.

both M} and M;’,, the direction of the tilt is reversed and
85Ty = —05Ty.

Therefore, the buckling with two corners is modeled
in the edge Hamiltonian as H;dge = —i0y 72 + 65 (y)7y
with y;- the spatial coordinate along the edge, such that
8’ (y') switches sign twice at the corners. This results in
a pair of topological kink and anti-kink in the mass (5;- at
the corners. Thus, while the edge spectrum is gapped out
away from the corners, a pair of zero-energy bound states
are localized at the corners with opposite eigenvalues of
M ]’ = 7. This proves our statements in Sec. IITE that
(i) at a given corner 7, all corner states have the same
eigenvalue 72, of M}, and that (ii) for the diagonally
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opposite corner L;= Mi'ﬂj, we have 72, = —men,.

Appendix C: Inadequacy of the Z; Invariant In the
Static Model

In this Appendix we show that the invariant charac-
terizing the higher-order topological phase of the static
m-flux dimerized square lattice is not restricted to Zs.
In order to show this, we show that a doubled model
respecting the same algebra of mirror and chiral sym-
metries can host more than one corner states. When
the doubled model also has diagonal mirror symmetries,
the number of these corner states is given by the mirror-
graded invariant defined in Eq. (18).

The doubled model is defined as

Hyk)=Hk)®1
+ Al & (Alaoz + Albo'y)

+ A2 & (AZaaz + A2b0y)a (Cl)
where H (k) is the Hamiltonian in each layer, Eq. (5).
This can be thought of as two layers of the original
model, coupled by two complex tunneling amplitudes
A1 = A14+iA1 and Ay = Ag,+iAg, connecting the lay-
ers in each direction. These tunneling terms are the most
general forms that preserve mirror symmetries M; ® 1,
M5 ®1, and chiral symmetry under C' ® 1. Diagonal mir-
ror symmetry is obtained when each layer is diagonally
symmetric and A; = As.

In Fig. 8, we show the spectrum of this model on a
lattice with open boundary conditions. The lattice has
50 x 50 sites and we have taken the hopping amplitudes
in each layer such that they break the diagonal mirror
symmetries. Moreover, the diagonal mirror symmetry
is also broken in the interlayer tunneling amplitudes as
As = 0 throughout. A total of 64 low-lying levels are
shown: over a wide range of |A;]|, before the bulk gap
closes, there are two zero-energy bound states per corner
(a total of 8 corner states), proving conclusively that the
classification in this model is not Zs even when diagonal
mirror symmetries are broken. This is consistent with a
Z classification instead.
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