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We show that the large orbital degeneracy inherent in Moiré heterostructures naturally gives rise
to a ‘high-Tc’ like phase diagram with a chiral twist - wherein an exotic quantum anomalous Hall in-
sulator phase is flanked by chiral d+ id superconducting domes. Specifically, we analyze repulsively
interacting fermions on hexagonal (triangular or honeycomb) lattices near Van Hove filling, with an
SU(Nf ) flavor degeneracy. This model is inspired by recent experiments on graphene Moiré het-
erostructures. At this point, a nested Fermi surface and divergent density of states give rise to strong
(ln2) instabilities to correlated phases, the competition between which can be controllably addressed
through a combination of weak coupling parquet renormalization group and Landau-Ginzburg anal-
ysis. For Nf = 2 (i.e. spin degeneracy only) it is known that chiral d+ id superconductivity is the
unambiguously leading weak coupling instability. Here we show that Nf ≥ 4 leads to a richer (but
still unambiguous and fully controllable) behavior, wherein at weak coupling the leading instability
is to a fully gapped and chiral Chern insulator, characterized by a spontaneous breaking of time
reversal symmetry and a quantized Hall response. Upon doping this phase gives way to a chiral
d+ id superconductor. We further consider deforming this minimal model by introducing an orbital
splitting of the Van Hove singularities, and discuss the resulting RG flow and phase diagram. Our
analysis thus bridges the minimal model and the practical Moiré band structures, thereby providing
a transparent picture of how the correlated phases arise under various circumstances. Meanwhile, a
similar analysis on the square lattice predicts a phase diagram where (for Nf > 2) a nodal staggered
flux phase with ‘loop current’ order gives way upon doping to a nodal d-wave superconductor.

I. INTRODUCTION

Chiral phases of quantum matter spontaneously break
time reversal symmetry and exhibit a wealth of fascinat-
ing properties, including quantized Hall effects and opti-
cal activity, that make them uniquely interesting for both
fundamental and technological reasons [1–3]. While in-
sulating chiral phases are believed to have been found in
magnetic topological insulators [4], and superconducting
chiral phases may have been observed in various stron-
tium based materials [5, 6], the search is still on for a
system which can be controllably tuned between insulat-
ing and superconducting chiral phases. Meanwhile on the
theory level, the search is still on for general principles
regarding how to stabilize chiral phases of matter, partic-
ularly in systems of correlated electrons. In this work, we
show that Moiré heterostructures, a system of choice for
modern nanoscience, should provide a material platform
that can be controllably tuned between chiral insulating
and superconducting phases. Our work also provides in-
sights into how to stabilize chiral phases in systems of
correlated electrons.

The study of correlated electrons has been a central
theme of condensed matter research for decades. A cen-
tral open problem in this field is understanding the phase
diagram of the cuprate high-Tc superconductors [7], in
which a (non-chiral) insulating phase is flanked by domes
of (nodal) d-wave superconductor. The whole phase di-
agram is widely believed to originate from a microscopic
model of repulsively interacting fermions [7]. Recently
a new direction has been opened in this field by ex-
periments on graphene Moiré heterostructures, such as
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FIG. 1. Phase diagram for repulsively interacting fermions
on hexagonal lattices near Van Hove filling with SU(Nf ) flavor
symmetry, Nf ≥ 4. A quantum anomalous Hall insulator
dominates near Van Hove filling µ = 0. The state arises from
a chiral 3Q loop current order with ordering at all nesting
momenta. Upon doping this gives way to a chiral d + id
superconductor. The phase of the order parameter winds by
±4π around the Fermi surface, where θ = ±2π/3 is defined.

twisted bilayer graphene [8–11], or ABC-stacked trilayer
graphene on hexagonal boron nitride [12]. In these sys-
tems there arises a superlattice potential, such that the
low energy physics in the reduced Brillouin zone is de-
scribed by a system of relatively flat bands with Berry
curvature [13–18], and with numerous fermion flavors
from the multiorbital nature [19–25]. The Fermi level ap-
pears to be close to a Van Hove singularity [22]. Interac-
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tions then generate various correlated phases, in a system
with unprecedented experimental control. Furthermore,
the experimentally observed phase diagram [9] is remi-
niscent of ‘high-Tc’, with an insulating phase flanked by
superconducting domes, and with a relatively high ratio
of critical temperature to Fermi energy. Of course, there
are also important differences to the cuprates, such as the
lattice having hexagonal rather than square symmetry,
the presence of a large flavor number, and the weak in-
sulating gaps near 0.3 meV compared to the bandwidths
and interactions at the order of 10 meV [8].

Motivated by the experimental observations, we con-
sider a system of repulsively interacting fermions on a
hexagonal lattice, with the Fermi level close to the Van
Hove singularity, and with an SU(Nf ) flavor degeneracy.
Experimental systems are typically in the moderate cou-
pling regime, which poses challenges for theoretical study.
Here we adopt the weak coupling approach, in the hope
that this may yield insight into moderate coupling phe-
nomena. Fermiology is important in the weak coupling
framework. In particular, the patches in the immediate
vicinity of Van Hove singularities dominate the weak cou-
pling instabilities. We assume the Van Hove singularities
to occur at the zone boundary, as appropriate for hexag-
onal lattices doped to the M point. The Fermi surface
is highly nested, giving rise to weak coupling instabili-
ties in multiple channels, the energy scales for which are
enhanced by the Van Hove singularities.

The competition between various ordering tendencies
is treated in an unbiased manner through a parquet
renormalization group (RG) procedure. Whereas for
Nf = 2 (spin degeneracy only) the leading instability
at Van Hove filling is known to be in a doubly degener-
ate d-wave superconducting channel [26] (with Landau-
Ginzburg analysis resolving the degeneracy in favor of
chiral d + id order), for Nf ≥ 4 we show that the lead-
ing weak coupling instability shifts, to a triply degen-
erate channel with imaginary charge density wave (loop
current) order. Landau-Ginzburg analysis reveals that
the ground state has ‘triple-Q’ order, and corresponds to
a fully gapped ‘quantum anomalous Hall’ (QAH) phase
[2, 27] (also known as a Chern insulator), which is a chiral
insulator that spontaneously breaks time reversal sym-
metry. Upon doping, the leading instability shifts to a
chiral d+id superconductor. We therefore obtain a ‘high-
Tc’ like phase diagram as presented in Fig. 1, but with a
chiral twist - viz. both the superconducting and the in-
sulating phases are chiral, and spontaneously break time
reversal symmetry. These phases are triggered by the
flavor fluctuations, which are inherent at low energy [28].
We further introduce the orbital splitting to the minimal
model, which usually happens in the practical graphene
Moiré heterostructures. We discuss the resulting RG flow
and phase diagram, hence bridging the gap between the
minimal model and the practical Moiré band structures.
We also discuss the behavior of square lattice systems
near Van Hove filling with SU(Nf ) flavor degeneracy. At
Nf > 2, a non-chiral nodal staggered flux phase with

loop current order [29–32] is flanked by a non-chiral d-
wave nodal superconductor [28, 33, 34].

Our work develops naturally from the parquet stud-
ies of correlated electrons. Such studies were first de-
veloped for nearest neighbor hopping models on square
lattices [28, 33, 34] wherein at half filling there are nu-
merous weak coupling instabilities, with at leading order
a degeneracy between (nodal) superconducting and anti-
ferromagnetic orders. A consideration of subleading cor-
rections resolves the degeneracy in favor of antiferromag-
netic order, with the antiferromagnet giving way upon
doping to superconductivity. The analyses were gener-
alized to honeycomb and triangular lattices in Ref. 26
where it was shown that at the M point, the leading
instability was unambiguously in a doubly degenerate d-
wave superconducting channel, giving rise to d+ id order
(a prediction potentially confirmed by experiments on
SrPtAs [6]). In all these works, only spin degeneracy was
considered. Our work extends these analyses in a new
direction by introducing an enlarged flavor degeneracy,
and finds rich results accordingly. Significantly, the lead-
ing instability arises in an imaginary charge density wave
channel. While the imaginary density waves are usually
subleading and missed in most parquet RG studies (ex-
cept in e.g. Ref. 35 and 36), our work captures these
channels and finds remarkable results accordingly.

Our minimal model analysis adopts the ‘minimal’
setup of Van Hove fermiology, with a particular focus
on the patches in the immediate vicinity of Van Hove
singularities. This setup is exact in the SU(Nf ) symmet-
ric minimal models. While the Nf = 4 models have been
adopted in previous phenomenological works on twisted
bilayer graphene [37–40], an exact fitness has also been
proposed for the topmost valence band of twisted bilayer
hexagonal boron nitride [41]. Note that the breakdown
of orbital degeneracy has been pointed out for current
graphene Moiré heterostructures, including twisted bi-
layer graphene and ABC-stacked trilayer graphene on
hexagonal boron nitride [19–25]. Nevertheless, our anal-
ysis further adopts the splitting between Van Hove singu-
larities and indicates clearly how the pop-up of correlated
phases can occur. The general setup of patch fermiology
suggests the broadness of potential applicability to the
Moiré heterostructures. Meanwhile, high flavor degener-
acy has also been achieved with ultracold atoms, espe-
cially the alkaline-earth family [42]. The SU(Nf ) flavor
degeneracy with Nf > 2 suggests these systems as po-
tential platforms where our minimal model results apply
directly. Future studies of, for example, currently un-
known Moiré heterostructures or other multiorbital ma-
terials, may also find useful hints from our work.

Various approaches have been utilized to resolve the
moderate coupling problem in Moiré heterostructures.
Our work differs from most other investigations (e.g.
Refs. 20, 37, and 38), in that most authors have started
from strong coupling. We in contrast have started from
weak coupling, which allows us to treat the interaction
driven instabilities in an unbiased and controlled man-
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ner, and have used the Van Hove singularity to enhance
the temperature scales of the instabilities. This approach
is justified by the weak insulating gaps observed in ex-
periments, and is also suggested by the increasing band-
width away from the magic angles. Of course, there is
no guarantee that a weak coupling analysis is necessarily
appropriate to describe any particular experimental sys-
tem, but the cleanness and tractability of the analysis,
and the remarkable results, make the model interesting
in its own right, and may provide a good guide to the
behavior of some Moiré heterostructures.

Of previous works that have taken a weak coupling
approach, our analysis differs from Refs. 40, 43, and 44
in that it works close to Van Hove filling, and takes full
account of the competition between various orders. It
also differs from the random phase approximation (RPA)
analyses [45, 46], in that RG treats the intertwinement
between various orders unbiasedly while RPA does not.
Of the previous RG works, our work differs from the
numerically implemented functional RG investigation of
Ref. 39, in that our analytic treatment isolates the most
divergent diagrams in a manner that (unlike Ref. 39) is
asymptotically exact at weak coupling. Meanwhile, our
minimal model analysis differs from the previous parquet
RG analyses Refs. 47 and 48 in several important ways.
Firstly, unlike Refs. 47 and 48 we consider the case where
the Van Hove singularities occur at the M points on the
zone boundary (as is natural for tight binding models
on hexagonal lattices, when far neighbor hoppings are
neglected). When Van Hove singularities occur at the
M points, then Umklapp scattering neglected in Refs. 47
and 48 have to be taken into account, leading to a very
different structure of the RG equations. Secondly, we
assume a full SU(Nf ) symmetry in flavor space, which
dramatically simplifies the analysis, and leads to clear,
unambiguous results that expose the key features of the
problem. Thirdly, our analysis adopts the Fermi sur-
face nesting between each pair of Van Hove singularities.
This setup differs from Ref. 47, where only interorbital
nesting is admitted under orbital splitting. Ref. 48, on
the other hand, exploits a model where nesting is ab-
sent. Lastly, our instability analysis captures the density
waves beyond s-wave [30], and finds the dominance of
loop current order accordingly. When the orbital split-
ting is introduced, our analysis assumes the X-like sad-
dle points and preserves the nesting between each pair of
Van Hove singularities. Unlike the K-like saddle points
in Ref. 47, our setup captures the fermiology more appro-
priately in the immediate vecinity of Van Hove singular-
ities [49], thereby serves as a more appropriate starting
point for an asymptotically exact weak coupling analysis.
Note that the phases and phase diagram we obtain are
qualitatively different from any of these previous works.

We emphasize also that the Chern insulator predicted
from loop current order in our work is qualitatively differ-
ent from the various QAH phases discussed in graphene
Moiré heterostructures [24, 25, 44, 45, 50]. In all of these
works, the QAH effect is intimately related to magnetic

order (ordering in the spin-valley space). In contrast, our
Chern insulator has no magnetic order, and the QAH ef-
fect is of purely orbital origin, much closer in spirit to
Haldane’s original proposal [2].

II. THE MODEL AND THE
RENORMALIZATION GROUP

We consider a system of Nf fermions hopping in a fla-
vor conserving manner on a two dimensional lattice near
Van Hove filling. An SU(Nf ) flavor degeneracy is as-
sumed for the system. The Van Hove singularity (log-
arithmic divergence in the density of states) arises from
Np saddle points, which are assumed to occur at the Bril-
louin zone boundary (i.e. at momenta Mα = −Mα). In
triangular and honeycomb lattices Np = 3, whereas in
square lattices Np = 2. However, we develop the anal-
ysis for general Np. The low energy theory can be well
approximated by a patch model consisting of Np patches
at the saddle points [26, 28, 33, 34]

H0 =

Np∑
α=1

ξαψ
†
αψα, (1)

with the dispersion energies ξα’s in the approximate hy-
perbolic forms (See Appendix A). All Np inequivalent
saddle points are assumed to be mutually nested with
nesting momenta Qα’s [see Fig. 2(a)]. This situation
arises in honeycomb lattices doped to the M point when
third neighbor and higher hoppings can be neglected, and
also in triangular and square lattices at the appropriate
filling when second neighbor and higher hoppings can
be neglected. Note that the asymptotically exact weak
coupling analysis relies only on the fermiology in the im-
mediate vicinity of Van Hove singularities. Despite the
adoption of a minimal model with SU(Nf ) flavor degen-
eracy everywhere, the essence lies in the supported fermi-
ology at the Van Hove singularities. Therefore, our anal-
ysis applies to any system with the ‘minimal’ setup of
Van Hove fermiology, where the Van Hove singularities
at Mα’s carry SU(Nf ) flavor degeneracy and Fermi sur-
face nesting. The result is independent of the rest details
of the system. With the knowledge acquired thereof, we
will further show that the systems with orbital splitting
can also be interpreted transparently.

The interactions in the low energy theory are assumed
to be weakly repulsive, short-ranged, and SU(Nf ) sym-
metric. Summarized by Fig. 2(c), four inequivalent in-
teractions of similar order exist in the patch model

Hint =
1

2

∑
α 6=β

[
g1ψ

†
αψ
†
βψαψβ + g2ψ

†
αψ
†
βψβψα

+ g3ψ
†
αψ
†
αψβψβ

]
+

1

2
g4

∑
α

ψ†αψ
†
αψαψα,

(2)

where the order of fermion flavors is σ, σ′, σ′, σ. Note that
the Umklapp scattering g3 is allowed since the nesting
momenta satisfy 2Q = 0 up to reciprocal lattice vectors.
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FIG. 2. Setup of patch model. (a) Brillouin zone of hexago-
nal lattices (black solid) with inscribed Fermi surface (green
dashed) at Van Hove filling. The patches are set on the Fermi
surface corners Mα’s. Blanked and shaded regions represent
opposite sides of Fermi level. (b) Reduced Brillouin zone in
the loop current phase. (c) Four independent interactions
in the low energy theory. Solid and dashed lines indicate
fermions at different patches. (d) Test vertices in (left) su-
perconducting and (right) density wave channels, with (e) the
corresponding susceptibilities.

Our setup parallels the classic works on parquet renor-
malization group (RG) [26, 28, 33, 34], except that
we have kept the number of patches Np arbitrary,
and have allowed for an Nf flavor degeneracy. As in
Refs. 26, 28, 33, and 34, the divergent density of states
and the nested Fermi surface will give rise to diver-
gent susceptibilities in particle-particle and particle-hole

channels Π
pp/ph
qν = ±T

∑
ω

∫
k
GkωG(∓k+q)(∓ω+ν). Here

Gkω = (iω−ξk)−1 represents the free fermionic propaga-
tor with Matsubara frequency ω. We focus on the static
part of the susceptibilities and set the bosonic Matsubara
frequency ν = 0.

Different divergences are manifested in different chan-
nels [26]. Due to the Van Hove singularity, two of the

channels exhibit Πpp
Q ,Πph

0 ∼ ln(Λ/max{T, µ}), where the

ultraviolet (UV) cutoff Λ is determined by the size of
patches, T is the temperature, and µ is the doping rel-
ative to the Van Hove point. The other two suscepti-
bilities receive additional logarithmic divergences. While
Πpp

0 exhibits the conventional singularity in Cooper chan-

nel, Πph
Q acquires a logarithmic divergence from the Fermi

surface nesting

Πpp
0 ≈ hpp ln

Λ

max{T, µ}
ln

Λ

T
,

Πph
Q ≈ h

ph ln
Λ

max{T, µ}
ln

Λ

max{T, µ, t′}
,

(3)

where t′ represents higher neighbor hoppings (third
neighbor or higher for honeycomb lattice, second neigh-
bor or higher for square or triangular lattices). The
prefactors manifest the characteristic density of states
hpp, hph ∼ ν0 and are calculated for square and hexago-
nal lattices in Appendix B.

Owing to the logarithmic divergences in susceptibili-
ties, a parquet RG is necessary for the analysis of the low
energy theory. The calculations are carried out following
Ref. 26, making the standard ‘fast parquet’ approxima-
tion which focuses on the channels with the most diver-
gent (ln2) susceptibilities. Starting from the bare UV
cutoff Λ, the shell of fast electron modes is progressively
integrated out with decreasing energy or, equivalently,
decreasing temperature. Following the spirit of ‘poor
man’s scaling’, the UV cutoff is not rescaled after each
step. The integrated fast modes contribute to the flow
of interactions through the ln2 divergent susceptibilities.
This procedure is described by a set of RG equations.
We define the dimensionless RG time y = Πpp

0 /hpp, and
hence obtain the RG equations for dimensionless cou-
plings gi → hppgi

dg1

dy
= d1[g1(2g2 −Nfg1) + (2−Nf )g2

3 ],

dg2

dy
= d1(g2

2 + g2
3),

dg3

dy
= 2d1g3[2g2 − (Nf − 1)g1]− g3[(Np − 2)g3 + 2g4],

dg4

dy
= −(Np − 1)g2

3 − g2
4 .

(4)

The nesting parameter d1(y) = dΠph
Q /d(hppy) ≈

Πph
Q /Πpp

0 determines the nesting degree 0 ≤ d1(y) ≤
dmax

1 , where the maximum dmax
1 = hph/hpp character-

izes the maximal nesting at Van Hove filling. A detailed
analysis of maximal nesting on different lattices is demon-
strated in Appendix B. For square lattice dmax

1 = 1, in-
dicating that the patches enjoy the perfect nesting of
Fermi surface. However, the perfect nesting is not ac-
cessible to the patches on hexagonal lattices, and a lower
maximum dmax

1 = 1/2 is manifested accordingly. No-
tice that the equations for g1 and g3 depend on Nf due
to the involvement of interpatch internal fermion loops.
The patch number Np is present in equations for g3

and g4 since the internal Umklapp scattering contributes.
These equations reduce to the square lattice equations of
Refs. 28, 33, and 34 when we set Np = 2, Nf = 2, and
to the hexagonal lattice equations of Ref. 26 when we set
Np = 3, Nf = 2.
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We analyze the RG equations with the setup of bare
weak repulsions g1, g2, g3, g4 ≥ 0 and finite nesting
d1(y) > 0. Motivated by the Moiré heterostructures
based on graphene and hexagonal boron nitride, the num-
bers Nf = 4 and Np = 3 are chosen [19–25, 37–39, 41].
Note that under the RG flow, g2 increases monotonically
and diverges at a critical scale yc. Meanwhile, g3 remains
positive semidefinite, while g4 decreases monotonically
and may change sign under the RG flow. The behav-
ior of g1 depends on Nf . For Nf = 2, g1 is positive
semidefinite, but for Nf > 2 it can change sign. A de-
tailed analysis of the RG equations following Ref. 26 is
presented in Appendix C, and reveals that for any choice
of bare repulsive interactions, there is a unique fixed tra-
jectory i.e. as the system flows to strong coupling, the
ratios of the couplings tend to specific values.

The fixed trajectory may be determined by making an
ansatz of the interactions

gi(y) =
Gi

yc − y
. (5)

Substitution into the RG equations yields a set of alge-
braic equations, which may be straightforwardly solved.
Discarding the solutions that cannot be accessed start-
ing from repulsive interactions, and the solutions that
are unstable to perturbations, we are left with a unique
set of critical interactions Gi’s. For single layer graphene
Nf = 2, the fixed trajectories manifest −G4 > G3 >
G2 > G1 = 0 at all nesting 0 ≤ d1 ≤ 1 [26]. However,
different features are observed for Nf = 4 [see Fig. 3(a)].
While −G4 decreases toward zero with increasing nest-
ing, −G1 increases and becomes the largest among all in-
teractions at (inaccessible) perfect nesting d1 = 1. These
features indicate a switch between different fixed trajec-
tories at certain nesting. A transition between different
instabilities may also occur accordingly.

III. INSTABILITY ANALYSIS

To determine the leading instability as the system flows
to strong coupling, we introduce the test vertices coupling
to the particle-particle and particle-hole bilinears [35, 36]

δH =
∑

(∆ψ†ψ(†) + H.c.). (6)

Under the RG flow, these test vertices receive corrections
from the particle-particle and particle-hole susceptibil-
ities. Different irreducible channels manifest different
flows of test vertices. Based on the test vertex analy-
sis, the instabilities can be inspected through the probe
of susceptibilities. The susceptibility that diverges most
rapidly under RG represents the leading instability.

A. Test vertex

We focus on the channels receiving ln2 divergent sus-
ceptibilities - test vertices in channels receiving only ln

divergent susceptibilities do not grow strong before the
problem flows to strong coupling [26]. This corresponds
to a focus on superconducting and density wave chan-
nels [Fig. 2(d)]. In the superconducting channels, the
test vertices are coupled to intrapatch particle-particle

pairings ∆αψ
†
ασψ

†
ασ′ with σ > σ′. These flavor pair-

ings exhibit the antisymmetric SU(Nf ) irreducible rep-
resentations. For the density wave channels, interpatch

particle-hole pairings ∆αβψ
†
βσψασ′ with α > β are in-

troduced. Several kinds of irreducible channels can be
identified. For the real and imaginary charge density
wave (r/iCDW) channels, a summation over all uniform
flavor pairings

∑
σ ψ
†
ασψβσ manifests the trivial SU(Nf )

irreducible representation. For the flavor density wave
(r/iFDW) channels, the remaining SU(Nf ) irreducible
representations are relevant.

The corrections to test vertices under RG are described
by a set of differential equations. From the analysis in
Appendix D, the superconducting (SC) and density wave

(a)

0 0.5 1
-1

0

1

G

d1(yc)

G1

G2

G3

G4

(b)

0 0.5 1

-1

0

1

2

α
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FIG. 3. Parquet RG results for two orbital hexagonal lattices
with Nf = 4 and Np = 3. Notice that only the regime below
dmax
1 = 1/2 is accessible. (a) Critical interactions Gi’s. (b)

Susceptibility exponents αI ’s. The most negative exponent
indicates the leading instability. While the d-wave supercon-
ductivity is leading in the low nesting regime, loop current
state takes over at high nesting.
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(DW) channels manifest the equations

d∆SC

dy
= −gSC∆SC,

d∆DW

dy
= −d1gDW∆DW. (7)

The interactions are linear combinations of the four in-
equivalent interactions

gsSC = (Np − 1)g3 + g4, gdSC = −g3 + g4,

gr/iFDW = −(g2 ± g3),

gr/iCDW = Nfg1 − g2 ± (Nf − 1)g3.

(8)

Since the density waves are commensurate with the lat-
tice, the real and imaginary components are decoupled
under the RG flow. Along the fixed trajectories, the
ansatz of interactions Eq. (5) indicates the critical scaling
of test vertices

∆I(y) ∼ (yc − y)βI . (9)

The exponent βI in each channel I is a linear combination
of critical interactions

βsSC = (Np − 1)G3 +G4, βdSC = −G3 +G4,

βr/iFDW = −d1(G2 ±G3),

βr/iCDW = d1[NfG1 −G2 ± (Nf − 1)G3].

(10)

B. Susceptibility and phase diagram

A more concrete instability analysis is offered by the
probe of susceptibilities in these channels [51, 52]. Under
the RG flow, the perturbing Hamiltonian Eq. (6) in each
channel becomes scale dependent. Up to second order
of test vertices ∆ and ∆∗, the perturbing Hamiltonian
reads

δHI(y) =
∑

∆†I(y)χI(y)∆I(y) + δHψ
I (y), (11)

where the ψ dependent terms are collected by δHψ
I (y).

Consider the static part of correlation function

χI(y) = −T δ2 lnZ(y)

δ∆I(0)δ∆∗I(0)

∣∣∣∣
∆∗I (0),∆I(0),ψ†,ψ=0

, (12)

where Z(y) denotes the partition function at scale y.
An initial value χI(0) = 0 is determined by the ini-
tial perturbing Hamiltonian Eq. (6). As a second order
derivative of free energy F = −T lnZ with respect to ex-
ternal fields, the correlation function χI(y) exhibits the
proper form of a physical susceptibility. The constraint
ψ†, ψ = 0 indicates that only the response of the outer
shells with lower scales y′ < y are included. Equivalently,
at certain temperature or energy, only the response of
electron modes at higher temperatures or energies are
measured. Due to this condition, the correlation func-
tion χI(y) can be regarded as the physical susceptibility
at certain temperature or energy.

Under the RG flow, the susceptibilities receive correc-
tions illustrated by the diagram in Fig. 2(e)

dχSC

dy
= |∆SC|2,

dχDW

dy
= d1|∆DW|2. (13)

With the solution of test vertices Eq. (9), the critical scal-
ing of susceptibilities along fixed trajectories is derived

χSC ∼ (yc − y)αSC , χDW ∼ d1(yc − y)αDW . (14)

The susceptibility exponents are related to the exponents
of test vertices [33, 36, 52, 53]

αI = 2βI + 1. (15)

An instability can emerge only when the corresponding
susceptibility diverges αI < 0. The leading instability is
determined by the most negative susceptibility exponent,
since the corresponding susceptibility diverges the most.

The susceptibility exponents in the two orbital hexag-
onal lattice model are presented in Fig. 3(b). The phase
diagram exhibits two different phases at different nesting
regimes. In the low nesting regime, the d-wave super-
conductivity is dominant as in the single layer graphene.
However, as the nesting degree increases, the imaginary
CDW state, also known as the loop current state, is en-
hanced. Above a critical nesting dc1, the loop current
state overcomes the d-wave superconductivity and be-
comes the leading instability. Notice that the phase tran-
sition is absent in the single layer graphene, where the d-
wave superconductivity dominates at all nesting. In the
two orbital model, the internal fermion loop is enhanced
by extra fermion flavors. With sufficient enhancement at
high nesting, the loop current state is triggered, which
defeats the d-wave superconductivity and causes a phase
transition.

The fixed trajectory analysis is verified by probing the
evolution of susceptibilities under RG. Setting the bare
interactions gi = g0, the RG flow runs until the critical
scale yc ∼ g−1

0 is reached. The susceptibilities evolve ac-
cordingly as presented in Fig. 4. Among various channels,
the real FDW grows first at intermediate scales. This in-
dicates the importance of flavor fluctuations in the low
energy theory. Things become different as the RG flow
runs further. Through the Umklapp scattering g3, some
other channels receive the mediation of flavor fluctua-
tions. The rapid growth of real FDW then leaks out and
enhances these channels [28]. Approaching the critical
scale, the fixed trajectory instabilities surpass the real
FDW and diverge. These instabilities manifest enhanced
critical temperature and ordering energy

Tc, E0 ∼ Λ exp(−1/
√
λ), (16)

where the dimensionless coupling λ ∼ g0ν0 depends on
how the bare interactions gi’s and the nesting parame-
ter d1(y) are modelled. The most divergent susceptibil-
ity determines the leading instability. While the d-wave
superconductivity diverges the most in the low nesting
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FIG. 4. Evolution of susceptibilities under RG. The bare
interactions gi = g0 with g0 = 0.1 are chosen, and d1 is set as
constant throughout the RG flow. The leading susceptibility
diverges at a scale yc ∼ g−1

0 , indicating the development of
an instability. (a) At d1 = 0.3, the leading instability occurs
in the d-wave superconducting channel since only χdSC di-
verges. (b) At d1 = 0.5, both χiCDW and χdSC are divergent.
The loop current state is dominant since χiCDW grows more
rapidly. Notice that at intermediate scales, the real FDW
state has the largest susceptibility, but it does not represent
the leading weak coupling instability as the problem flows to
strong coupling.

regime, loop current state dominates above the transi-
tion nesting dc1. These results confirm the phase diagram
Fig. 3(b) obtained from the fixed trajectory analysis.

Later analysis identifies the loop current phase as a
gapped quantum anomalous Hall insulator (QAHI) [2,
27], and the superconductor as a d + id superconductor
[26]. The breakdown of time reversal symmetry in both
phases indicates a phase diagram composed of two chiral
phases, with a phase transition inbetween. Note that
the nesting parameter d1 can be controlled by doping
away from the saddle point. We therefore expect that
close to the Van Hove point, the system will be a (chiral)
QAHI, which will give way upon doping to a (chiral)
d + id superconductor. This leads to the phase diagram
presented in Fig. 1.

We briefly discuss the results for larger flavor number
Nf > 4 [54]. In the large flavor regime, the critical in-

teractions Gi reduce as N−1
f . This reduction implies the

vanishing of most channels at finite nesting, including the
d + id superconductivity. However, the QAHI remains
robust due to a balancing factor Nf in the susceptibil-
ity exponent. Therefore, the transition nesting decreases
with increasing flavor number, indicating an expansion
of QAHI in the doping phase diagram. This clearly re-
veals the essential role of flavor degeneracy in stabilizing
a (chiral) insulating phase on the hexagonal lattices.

C. How robust are these results?

We have solved the minimal model problem in the
asymptotic weak coupling limit, and obtained answers
that are independent of the details of the bare couplings,
as long as these are repulsive and sufficiently weak. A
question to ask is whether these results are robust against
various deviations from our setup and analysis.

1. Away from weak coupling

What if the bare interactions are not so weak? Our RG
analysis is asymptotically exact in the limit of weak cou-
pling, such that the problem has time to flow to the fixed
trajectory before the strong coupling limit is reached.
However, if the couplings are not so weak, then the strong
coupling regime may already be entered before the fixed
trajectory is reached. In this case the instability realized
may differ from the predictions of the asymptotic weak
coupling treatment. The results in such a ‘moderate cou-
pling’ regime will depend on the choice of initial ‘bare’
couplings. We note however that starting from ‘Hubbard’
interactions gi = g0, the real FDW manifests the largest
susceptibility at intermediate scales (Fig. 4). Therefore,
the real FDW may be a contender if interactions are not
so weak. In other words, the flavor fluctuations may dom-
inate the system without triggering the fixed trajectory
instabilities through the mediation. Note that the real
FDW is reminiscent of the spin density wave (SDW) in
single layer graphene [55–59], which manifests the spin
fluctuations with Nf = 2.

The correlated phases at moderate coupling have also
been examined by functional RG analyses. With Hub-
bard repulsions, the trigger of a d + id superconductiv-
ity near Van Hove filling is revealed [39]. Some weak
signals hint the appearance of a density wave beyond s-
wave, yet the identification of this state is missed. Sub-
sequent to the first posting of our work, another study
observes a clear evidence of QAHI by introducing the
nearest neighbor SU(4) exchange [60]. Amazingly, the
state is robust against and even enhanced by the nearest
neighbor exchange. The real FDW, on the other hand,
can occur when the spin or orbital Hund’s coupling is rel-
evant. However, the state is weak against nearest neigh-
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bor exchange as expected, since it is not a fixed trajectory
instability. With these functional RG observations, the
eligibility of our asymptotically exact RG at moderate
coupling is reinforced.

2. Away from zone boundary

What if the Van Hove singularities are shifted away
from the zone boundary, e.g. because further neigh-
bor hoppings are not that weak? Any displacement of
the Van Hove singularities from the zone boundary in-
troduces an additional energy scale into the RG. If the
strong coupling regime is reached before we hit this scale,
then our analysis should carry through unchanged. In
contrast, if this scale exceeds the original cutoff scale for
the RG, then a qualitatively different analysis analogous
to Ref. 47 is called for. What if the Van Hove points
are displaced by less than the original cutoff scale for the
RG (such that our analysis is the correct one at short
RG times), but nevertheless by enough that we hit the
displacement scale before the problem reaches strong cou-
pling? In this case, the results could change in a manner
not captured by either our analysis or Ref. 47. In partic-
ular, while Umklapps will be present above this scale,
the g3 channel will be significantly suppressed below
this scale due to the prohibition of the Umklapp process
(Mα,Mα) → (Mβ ,Mβ), although there is still the mo-
mentum conserving process (Mα,−Mα)→ (Mβ ,−Mβ).
A detailed treatment of the case of Van Hove points dis-
placed from the zone boundary is discussed in Sec. V.

3. Away from fermion bilinears

We caution that while our RG is asymptotically ex-
act, our instability analysis has considered only the set
of phases characterized by order parameters related to
condensates of fermion bilinears. These phases mani-
fest local site, bond, or loop current orders in real space.
More exotic correlated phases, such as topologically or-
dered phases with no local order parameter, are beyond
the scope of any such approach.

IV. THE ORDERED STATES ARE CHIRAL

We have identified the leading instabilities using par-
quet RG as an imaginary CDW (loop current) state at
Van Hove filling, which gives way upon doping to a d-
wave superconducting state. However, the imaginary
CDW channel is triply degenerate (order can develop
along any of the three nesting momenta Qα’s), whereas
the superconducting channel is doubly degenerate [26].
We now determine the lifting of these degeneracies.

A. Quantum anomalous Hall insulator

For the loop current channel, there are three avail-

able order parameters ∆α = 〈ψ†βψγ〉 at nesting momenta

Qα = Mβ −Mγ [Fig. 2(a)]. These order parameters are

purely imaginary ∆α = iIm〈ψ†βψγ〉 and indicates loop
current orders in real space. The phase of the order pa-
rameters is fixed because the density wave is commen-
surate with the lattice. An R3 manifold of imaginary
order parameters is thus present. A natural question
then arises as what configuration is favored when the
ordered phase develops at low temperature. This can be
addressed by analyzing the dependence of ordering en-
ergy on various order parameters.

In the loop current phase, a breakdown of translational
symmetry occurs as in all the other density wave phases.
The commensurate momenta 2Q = 0 implies an enlarged
quadrupled unit cell and a reduced Brillouin zone with
halved lengths [Fig. 2(b)]. Before the loop current orders
develop, the noninteracting band structure is obtained
by a folding of the original bands. Three nodal lines con-
necting between opposite edge centers ±M′

α = ±Mα/2’s
constitute the Fermi surface. A crossing occurs at the
zone center 0, leading to a triply degenerate quadratic
band crossing point (QBCP). Inheriting the d-wave struc-
tures of original saddle points Mα’s, the QBCP carries a
nontrivial 2π Berry flux, and is protected by the combi-
nation of C6 and time reversal symmetries [61].

When the loop current orders develop, the noninter-
acting nodal structure is diminished. To analyze the re-
sulting gap structure, the imaginary order parameters are
relaxed from the patch model to the whole Brillouin zone

∆αk = 〈ψ†k+Qα
ψk〉. The condition ∆αMγ

= ∆∗α(Mγ+Qα)

then requires a d-wave structure of the order parameter
[27]. A simultaneous ordering at all nesting momenta,
known as a 3Q state, allows to gap the entire Fermi sur-
face, and is expected to maximize the ordering energy.
This result establishes the 3Q state as the leading order
in the loop current phase. A rigorous justification is con-
ducted by a Landau-Ginzburg analysis following Ref. 56
in Appendix E. Notice that the 3Q states manifest a Z4

manifold composed of four inequivalent states (∆,∆,∆),
(∆,∆,−∆), (∆,−∆,∆), and (−∆,∆,∆). As illustrated
in Fig. 5, each inequivalent state exhibits a real space flux
pattern through the quadrupled unit cell with zero net
flux [27]. A Z4 translational symmetry breaking occurs
in the 3Q manifold when the order develops [56, 57].

Note that the 3Q loop current state breaks time re-
versal symmetry and manifests itself as a chiral Chern
insulator [27, 58]. We briefly describe how the system is
gapped out by the loop current orders, where the Chern
insulator emerges as a legacy of QBCP. When an or-
der arises at certain nesting momentum, time reversal
symmetry is present up to a translation along the other
two nesting momenta. An effective time reversal sym-
metry thus survives up to the 2Q state and keeps the
system gapless. As the third order develops, there is
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(a)

(b)

FIG. 5. Real space configurations of quantum anomalous
Hall insulator on the (a) triangular and (b) honeycomb lat-
tices, showing pattern of fluxes through the real space quadru-
pled unit cell. The ratio of −3φ and φ fluxes is 1 : 3 in each
quadrupled unit cell, leading to a zero net flux.

no eligible translation, and time reversal symmetry is
broken inevitably. The topological charge of original
QBCP is transferred onto the resulting gapped bands,
thereby triggers a Chern insulator in the 3Q state. An
expected Chern number C = ±1 is confirmed by a Berry
flux computation following Ref. 62. The Chern insulator
manifests a quantum Hall effect in the absence of exter-
nal magnetic field, with a quantized Hall conductivity
σxy = ±Nfe2/h triggered by the intrinsic fluxes (Fig. 5).
This phenomenon identifies the chiral 3Q loop current
state as a quantum anomalous Hall insulator.

B. d+ id Superconductivity

In the d-wave superconducting channel, two degener-
ate patch orders ∆1 = (∆/

√
6)(2,−1,−1) and ∆2 =

(∆/
√

2)(0, 1,−1) are present. Each component de-
scribes an intrapatch particle-particle condensate ∆1,2

α =
〈ψασψασ′〉1,2 with certain flavor pairing σ > σ′. The
d-wave nature is recognized by relaxing the patch or-
der to the whole Brillouin zone, where the gap functions
∆1,2

k = 〈ψ−kσψkσ′〉1,2 change signs four times around the
Fermi surface. Previous work on single layer graphene
[26] has revealed the minimization of free energy at
∆± = ∆1 ± i∆2. The state manifests a full gap in
the Bogoliubov-de Gennes quasiparticle bands and max-
imizes the ordering energy. Therefore, the d + id state
∆± = ∆(1, exp[±i2π/3], exp[∓i2π/3]) dominates the d-
wave superconducting channel. The order parameter ∆±k
exhibits a winding around the Fermi surface, where a
phase ±4π is acquired after a full winding. Time rever-
sal symmetry is broken accordingly. This corresponds to
a chiral superconducting phase exhibiting thermal and
spin quantum Hall effects.

Provided the large flavor number Nf , the d+ id super-

conductivity has a large degeneracy among the Nfp =
Nf (Nf − 1)/2 antisymmetric flavor pairings. The ac-
cording competition leads to strong fluctuations and sup-
presses the superconducting order. Mermin-Wagner the-
orem indicates that the breakdown of continuous O(Nfp)
symmetry only occurs at zero temperature [63, 64]. The
absence of superconductivity at finite temperature is thus
suggested. Nevertheless, the O(Nfp) pairing degener-
acy is usually lifted by symmetry breaking perturbations
in practical systems. An usually observed example is
the spin Hund’s coupling in multiorbital systems. Given
a spin Hund’s coupling in the two orbital model with
Nf = 4 [19, 22], previous analysis has uncovered an effec-
tive anti-Hund’s coupling in the superconducting chan-
nels [40]. The sixfold degeneracy of d+ id superconduc-
tivity is lifted, leaving only one dominant spin singlet
channel. Similar effects can also occur in systems with
more orbitals. With the symmetry breaking perturba-
tions, a cutoff scale ∆c is introduced to the RG flow in
the nonlinear sigma model description [65]. A nonzero
critical temperature appears and takes a suppressed form

Tc ∼
2πρs

(Nfp − 2) ln(∆/∆c)
, (17)

where ρs is the stiffness of flavor pairing fluctuations and
∆ is the ordering energy scale. Therefore, a d + id su-
perconducting phase can still arise at finite temperature.
Note that the critical temperature decreases with increas-
ing flavor number, since the superconducting order is
suppressed more severely when more degenerate flavor
pairings are present.

V. TOWARDS GRAPHENE MOIRÉ
HETEROSTRUCTURES

We have analyzed the hexagonal lattice minimal model
with SU(Nf ) flavor degeneracy. An asymptotically exact
weak coupling analysis uncovers a chiral ‘high-Tc’ phase
diagram near Van Hove filling. The minimal model setup
and the asymptotically exact analysis suggest the poten-
tially broad applicability and extention of our results.
Motivated by recent experiments on graphene Moiré het-
erostructures [8–12], a crucial issue concerns whether the
phase diagram appears in these practical systems. The
essential point is how the RG flows and the according in-
stabilities evolve when the Van Hove fermiology deforms
from the minimal model.

A. Van Hove fermiology

For current graphene Moiré heterostructures, the low
energy flat bands manifest a breakdown of orbital de-
generacy [19–25]. This corresponds to the breakdown of
SU(4) flavor symmetry to U(1)o × SO(4), where U(1)o
represents the reduced orbital symmetry, and SO(4) ∼
SU(2)+×SU(2)− is a combined spin symmetry from the
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two orbitals [46]. Two separate bands arise from the two
orbitals under an intraorbital C3z and an interorbital C2y

symmetries. Our interest lies in the deformation of Van
Hove fermiology from the minimal model, particularly in
the immediate vicinity of Van Hove singularities. A gen-
eral feature is the splitting of Van Hove singularities in
different orbitals at each Mα, which shift into the bulk
in opposite directions as illustrated in Fig. 6. The inter-
actions now manifest sixteen inequivalent channels gij ’s
[47], where i, j = 1, . . . , 4 denote inequivalent scatter-
ings [Fig. 2(c)] among the patches and orbitals, respec-
tively. Momentum conservation prohibits several interac-
tions, in particular the orbital Umklapp scattering gi3’s.
Meanwhile, the interorbital exchange gi1’s are sublead-
ing due to the large momentum transfer at atomic scale.
We therefore admit only the six eligible orbital density-
density interactions g14, g22, g24, g32, g42, and g44 in the
RG analysis, analogous to the flavor conserving setup in
the minimal model. Note that the interactions g12 and
g34 are ruled out by momentum conservation.

The shift of Van Hove singularities generally affects the
Fermi surface nesting. Define the nesting momenta be-
tween intraorbital interpatch Q+, interorbital interpatch
Q−, and interorbital intrapatch Q′ pairs [Fig. 6(c)], fol-
lowed by the corresponding susceptibilities [47]. Cooper
channel Πpp

0 remains ln2 divergent due to an interor-
bital symmetry between ±k. The rest channels exhibit
ln or ln2 divergences depending on how the nesting is
affected. Note that Ref. 47 assumes the K-like saddle
points [Fig. 6(b)] with only interorbital nesting. Such
nesting may occur near but finitely away from the Van
Hove singularities. The according analysis may apply at
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(c)
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Q−

Q′

FIG. 6. Van Hove fermiology under orbital splitting. The
originally degenerate saddle points at each Mα separate in
opposite directions, with the two colors indicating different
orbitals. Blank and shaded regions represent opposite sides
of Fermi level. (a) In the immediate vicinity of Van Hove
singularities, the X-like saddle points serve as more appro-
priate descriptions. (b) The K-like saddle points may apply
if the regime of interest is finitely away from the Van Hove
singularities. (c) Inter- and intrapatch nesting momenta.

either finite doping, finite temperature, or finite inter-
actions. Our study focuses on the asymptotically exact
weak coupling solutions, which arise primarily from the
Van Hove singularities. This draws our attention to the
immediate vicinity of these points. Despite the Fermi
surface deformation, the X-like saddle points [Fig. 6(a)]
still serve as more appropriate descriptions in these re-
gions [49]. We therefore adopt the patch model with
X-like saddle points and conduct the weak coupling RG
analysis. The potential nesting is similar to the inter-
patch nesting in the minimal model. When the nesting
is present, the ln2 divergences occur in the susceptibilities

Πpp
Q′ and Πph

Q± .

B. Renormalization group and phase diagram

Define the dimensionless RG time y = Πpp
0 /hpp and

the nesting parameters d+
0 = dΠpp

Q′/d(hppy) and d±1 =

dΠph
Q±/d(hppy) [47]. The RG equations read

dg14

dy
= 2d+

1 [g14(g24 − g14)− g2
32],

dg22

dy
= d−1 (g2

22 + g2
32),

dg24

dy
= d+

1 g
2
24,

dg32

dy
= 2g32(d−1 g22 + d+

1 g24 − 2d+
1 g14)− g32(g32 + 2g42),

dg42

dy
= −2g2

32 − g2
42,

dg44

dy
= −d+

0 g
2
44,

(18)
which are similar to those with the same patch indices in
the minimal model [Eq. (4)]. Starting from the weak bare
repulsions gij ≥ 0, the system flows to strong coupling
fixed trajectories gij = Gij/(yc − y) at the critical scale
yc. In the i = 2 sector, both g22 and g24 are positive
definite. g32 is positive semidefinite, whereas g14 and
g42 can become negative under RG. The last equation is
irrelevant due to the fixed point g44 = 0.

The instabilities arise under the RG flow and manifest
divergent susceptibilities. Unlike Ref. 47, where the sus-
ceptibilities were determined via RPA analysis, here we
determine the susceptibilities via the insertion of appro-
priate test vertices as in Sec. III. The irreducible channels
are identified by the test vertex analysis. We focus on the
channels receiving ln2 divergences under RG

gs/fSC = 2g32 + g42, gd/pSC = −g32 + g42,

gPDW′ = g44,

gSDW−±
= gCDW−±

= −(g22 ± g32),

gCDW+
±

= 2g14 − g24 ± 2g32, gSDW+
±

= −g24,

(19)

where each finite momentum channel DWa is defined by
the nesting momentum Qa. These inter- and intraorbital
channels evolve from the original superconducting and
density wave channels under orbital splitting. The ac-
cording orbital representations τ i’s lie in the (O3)2 = 0, 1
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FIG. 7. Two fixed trajectories arise under orbital splitting, guided by (a)(b) inter- and (c)(d) intraorbital flavor fluctuations,
respectively. We set d+1 = d−1 = d1 in the fixed trajectory analysis (a)(c) for simplicity, and run the RG flows (b)(d) with
maximal nesting d±1 = 0.5. The irrelevant g44 and PDW′ are neglected. (a)(b) Starting with g14 = g22 = g24 = g32 = g42 = 0.1,
the interorbital flavor fluctuations guide the RG flow to the first fixed trajectory. C/SDW−+ grow first at intermediate scales.

Approaching the critical scale yc, the d/p-wave superconductivities diverge as the only leading instabilities. CDW+
− remains

next leading along the fixed trajectory. (c)(d) Setting g24 = 0.2 instead, the RG flow is turned to the second fixed trajectory
by intraorbital flavor fluctuations. SDW+

± grow and become the only leading instabilities.

orbital quantum number sectors under U(1)o symmetry.
Here O3 is the third component of the orbital pseudospin.
Note that the orbital and spin Pauli matrices τ i and σi

with τ0, σ0 = 1 are defined for the representations.
In the particle-particle branch, inter- and intraor-

bital pairings constitute zero and finite momentum chan-
nels, respectively. The interorbital pairings lead to the
s, p, d, f -wave superconducting channels. Given the even
momentum modes in the minimal model, here the even
and odd modes occur from the attachment of orbital
pairings τ3,0(iτ2). For the intraorbital pairings with
τ1,2(iτ2), the pair density wave PDW′ does not develop
due to the fixed point g44 = 0. Meanwhile, the particle-
hole branch also manifests various inter- and intraorbital
channels. The interorbital C/SDW−±’s manifest the test

vertices ∆Q−τ±(ψ†βτψατ ′ ± ψ†ατψβτ ′), where τ 6= τ ′ are
the orbital indices. These channels evolve from the orig-
inal interorbital FDWs with τ1,2 representations. The
spin singlet and triplet representations σ0,σ determine
whether the states are CDW−± or SDW−±. For the intraor-

bital sector, the test vertices ∆Q+τ±(ψ†βτψατ±ψ
†
ατ ′ψβτ ′)

define C/SDW+
±’s. These channels evolve from the orig-

inal CDWs and intraorbital FDWs with τ0,3 representa-
tions. SDW+

± develop from the intraorbital FDWs with

σ representations. CDW+
±, on the other hand, arise from

CDWs and intraorbital FDWs with σ0 representation.

The test vertex analysis conclude all potential instabil-
ity channels near Van Hove filling. Note the inclusion of
density wave channels beyond s-wave [30], which are ig-
nored in the previous analyses [46, 47]. These high angu-
lar momentum channels resemble the imaginary density
waves in the minimal model. With the imaginary CDW
proven dominant in the minimal model, we will show that
the relevance still holds under orbital splitting.

Analyzing the RG equations Eq. (18), we identify two
fixed trajectories and the according instabilities (Fig. 7).
Significantly, the distinction inbetween features the com-
petition between inter- and intraorbital flavor fluctua-
tions, corresponding to the (O3)2 = 1, 0 sectors, respec-
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tively. A quantitative analysis concerns whether g22 or
g24 diverges first under RG.

When g22 wins, the interorbital flavor fluctua-
tions guide the RG flow to the first fixed trajectory
[Figs. 7(a)(b)]. This RG flow is similar to that in the min-
imal model. At intermediate scales, leading C/SDW−+
manifest the interorbital flavor fluctuations, consistent
with previous RPA probe of instabilities [46, 47]. As
RG runs further, the fixed trajectory instabilities receive
enhancement and become divergent. The critical inter-
actions G32 > G22 > 0, G14, G42 < 0, and G24 = 0 result
in a similar phase diagram to Fig. 3(b), where the d/p-
wave superconductivities and CDW+

− are leading. How-
ever, the transition nesting now sits beyond the avail-
able regime dc1 > 1/2. This corresponds to a suppression
of CDW+

−, which occurs since the internal fermion loop
loses the enhancement from intraorbital flavor fluctua-
tions. Therefore, the d/p-wave superconductivities are
the only leading instabilities along this fixed trajectory.
Note that CDW+

− is still next leading, indicating its sig-
nificance near Van Hove filling.

A different fixed trajectory arises when g24 diverges
prior to g22 [Fig. 7(c)(d)]. Since the intraorbital fla-
vor fluctuations win, the growth of SDW+

± at interme-
diate scales is expected. However, unlike the RG flows
discussed previously, SDW+

± now retain the leading role
along the whole trajectory. This is confirmed by the fixed
trajectory analysis, where only two negative susceptibil-
ity exponents αSDW+

±
= −1 arise from the critical inter-

actions G24 = 2G14 > 0 and G22 = G32 = G42 = 0.
The monopoly occurs since g34 is prohibited by mo-
mentum conservation. Without Umklapp scattering in
the intraorbital sector, intraorbital flavor fluctuations do
not share its strength to any other channel. Therefore,
SDW+

± keep growing under RG and become the only lead-
ing instabilities along this fixed trajectory.

A phase diagram can be determined according to the
RG analyses. The correlated phases depend on the dop-
ing, orbital splitting, and competition between inter-
and intraorbital flavor fluctuations. When the orbital
splitting is absent, the imaginary CDW dominates near
Van hove filling. The d/p-wave superconductivities and
SDW+

± take over under doping and orbital splitting. A
caveat arises when comparing Fig. 3(b) and Fig. 7(a),
where the transition nesting dc1 experiences a discontin-
uous jump. This suggests that the imaginary CDW may
only be leading in the minimal model. We note that this
observation is actually an artifact of our model setup
and the analysis thereof. Our analysis has adopted a
patch model near Van Hove singularities and admitted
only ln2 divergences in RG. The asymptotically exact so-
lutions are extracted in the weak coupling limit gi → 0.
In the practical systems, the interactions are away from
the weak coupling limit. These finite interactions can
drag in the neglected ingredients, including the Fermi
surface sectors outside the patch model and the ln di-
vergences in RG. The discontinuous jumps between fixed
trajectories from different setups are then smeared out,

leading to continuous transitions or crossovers between
according correlated phases. A finite regime of CDW+

−
upon orbital splitting is thus expected, which gives way
to the d/p-wave superconductivities and SDW+

± at cer-
tain splitting scale. On the other hand, the transition be-
tween the later two phases manifests an ‘unstable’ fixed
trajectory, where only one positive eigenvalue is uncov-
ered in the linearized RG equations (derived following
Appendix C). The susceptibility exponents are identical
to those along the first fixed trajectory in Fig. 7(a), but
with different leading instabilities αSDW+

±
= −1. This

fixed trajectory may also describe the transition between
CDW+

− and SDW+
±.

Our analysis applies when the nesting remains simi-
lar to the minimal model under orbital splitting. This
setup captures all potential leading instabilities which
receive ln2 divergences under RG. However, the results
may become unstable when the nesting is destroyed by
the fermiology deformation under orbital splitting. At
low nesting regime, the d/p-wave superconductivities are
predominantly the leading instabilities in the weak cou-
pling limit. If the nesting is completely destroyed, the
system may return to the normal metal. On the other
hand, if the regime of interest is shifted by finite doping,
temperature, or interaction strength, the fermiology may
acquire an appropriate description by the K-like saddle
points [Fig. 6(b)]. The nesting now occurs only in the in-

terorbital sector. With ln2 divergent Πpp
Q+ and Πph

Q−,Q′ , a

different set of RG equations is determined [47]. Interor-
bital flavor fluctuations guide the RG flow to a unique
fixed trajectory. While C/SDW−+ grows at intermedi-
ate scales, the d/p-wave superconductivities dominates
universally along the fixed trajectory. CDW+

− does not

receive ln2 divergence and becomes irrelevant. These ob-
servations are consistent with the RPA probe of instabil-
ities in previous analyses [46, 47].

C. Correlated phases

The leading instabilities manifest similar features to
the corresponding channels in the minimal model. Sub-
tle differences occur due to the incommensuration away
from Mα’s. Various potential configurations in the d/p-
wave superconducting channels have been discussed [46].
To maximize the ordering energy, the chiral d + id and
p + ip superconductivities are expected to dominate,
which manifest [τ3(iτ2)][σ0(iσ2)] and [τ0(iτ2)][σ(iσ2)]
representations. The quantitative justification requires
a complete Landau-Ginzburg analysis, which is an inter-
esting problem to explore for future work. Note that a
spin triplet pairing is manifested in the p + ip channel,
leading to a suppression of critical temperature [Eq. (17)].

The density wave instabilities result from CDW
and intraorbital FDW channels in the minimal model.
For CDW+

−, an interorbital minus sign 〈ψ†ατψβτ 〉 =

−〈ψ†ατ ′ψβτ ′〉∗ occurs between channels with τ0 ± τ3 rep-
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resentations. This implies a manifold with degenerate
imaginary CDW (τ0σ0) and real intraorbital spin singlet
FDW (τ3σ0) from the minimal model. The imaginary
CDW has been identified as a QAHI with charge loop cur-
rent. The real intraorbital spin singlet FDW, on the other
hand, exhibits a half metal from the s-wave uniaxial 3Q
orbital density wave (ODW) with τ3 orbital modulation
[56, 59]. Both states manifest real space patterns with in-
commensurate periods. Note that the incommensuration
of nesting momenta leads to a mixture with other an-
gular momentum modes [30]. When the deviation from
Mα’s is small, charge modulation and orbital loop cur-
rent occur perturbatively. The resulting states generally
break time reversal symmetry as the parent QAHI and
half metal [59]. Since QAHI exhibits a full gap while the
half metal does not, we expect QAHI to be the leading
state within this manifold. A Landau-Ginzburg analy-
sis is required for the rigorous justification, which is an
interesting problem for future work. Meanwhile, the de-
generate SDW+

± channels manifest a larger manifold. We

discuss first the τ0 channels. The SDW+
+ with s-wave pat-

tern is smoothly connected to the SDW states discussed
in Refs. 55–59. At zero temperature, 3Q non-coplanar or-
der is expected, realizing a Chern insulator [55]. SDW+

− is
a state of a sort discussed in Ref. 59. If uniaxial 3Q order
develops then a quantum spin Hall insulator (QSHI) is
realized. If 3Q non-coplanar order develops then a spin-
locked Dirac semimetal is realized. We expect QSHI to
be favored since it manifests a full gap absent in the Dirac
semimetal. To quantitatively determine the nature of the
ordering requires a Landau-Ginzburg analysis, which is
beyond the scope of this work. Finally, the τ3 channels
(τ0σ) contain additional density wave possibilities which
are interesting problems to explore for future work. Note
that the SDW+

± channels exhibit the breakdown of con-
tinuous SU(2) spin symmetry. A suppressed critical tem-
perature similar to Eq. (17) is thus expected.

VI. SQUARE LATTICE

While we have focused on hexagonal lattices for our
analysis, our RG equations also works for the square lat-
tice systems if we set Np = 2. With spin degeneracy
only Nf = 2 this maps onto the problem studied by
Refs. 28, 33, and 34, and exhibits a ‘conventional high-
Tc’ phase diagram with an insulating antiferromagnetic
phase flanked by nodal superconducting domes. Things
become different when Nf > 2. With the flavor number
set as Nf = 4, the susceptibility exponents are evaluated
and presented in Fig. 8. As in the previous studies with
only spin degeneracy [28, 33, 34], the (nodal) d-wave su-
perconductivity is dominant at low nesting regime, and
becomes degenerate with the real FDW state at per-
fect nesting d1 = 1 to leading order O(ln2). However,
the imaginary CDW overcomes these degenerate chan-
nels and becomes the leading instability in the high nest-
ing regime. The density wave order develops at a single

0 0.5 1

-1

0

1

2

αI

d1(yc)

sSC

dSC

rFDW

iFDW

rCDW

iCDW

FIG. 8. Susceptibility exponents in all channels for Nf = 4
on the square lattice Np = 2.

momentum, since there is only one nesting momentum on
square lattice. This loop current state is a gapless d-wave
staggered flux state [29, 31, 32]. Despite the breakdown
of time reversal and translational symmetries, an effec-
tive time reversal symmetry assisted by a translation is
present [27]. Notice that this staggered flux state is dif-
ferent from the gapped Varma loop current state [66],
where the translational symmetry is preserved.

A transition between the d-wave superconductivity and
the staggered flux state is universal for square lattice
with extra flavors Nf > 2. In the doping phase dia-
gram, a staggered flux state is observed near the Van
Hove filling, while d-wave superconductivity takes over
upon doping away. This transition can be regarded as
the ‘nodal’ and ‘nonchiral’ version of the transition ob-
served on hexagonal lattices. When the flavor number
increases, the transition point moves toward low nesting
regime, implying an expansion of the staggered flux state
in the phase diagram.

VII. DISCUSSION

We have analyzed repulsively interacting fermions on
hexagonal lattices near Van Hove filling with an SU(Nf )
flavor degeneracy (Nf ≥ 4), using a combination of par-
quet RG and Landau-Ginzburg analysis. We have de-
termined that the leading instability at Van Hove filling
is to a fully gapped chiral insulator exhibiting quantum
anomalous Hall effect, which gives way upon doping to a
chiral d+ id superconducting phase. The phase diagram
consists of an insulating phase flanked by superconduct-
ing domes, reminiscent of high-Tc materials (which is also
manifested in experiments [8–10]), however both the in-
sulating and superconducting phases are chiral. The trig-
ger of these phases by the mediation of flavor fluctuations
has also been identified. We have further examined the
effects of orbital splitting, which usually occurs in the
graphene Moiré heterostructures. With the knowledge
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gained from the minimal model, we have established a
transparent picture of how the correlated phases arise
from the competition between inter- and intraorbital fla-
vor fluctuations. The robustness of chiral phases in the
minimal model against orbital splitting has been exam-
ined. Additional spin density waves have also been un-
covered. While our work has focused on the asymptot-
ically exact weak coupling solutions, the moderate cou-
pling results can also be recognized. The analysis bridges
the minimal model and the practical Moiré band struc-
tures. Useful hints may be provided for the interpreta-
tion of experimentally observed correlated phases under
various circumstances.

Note that the Chern insulator we uncover in the min-
imal model is significantly different from those proposed
in previous studies of graphene Moiré heterostructures
[24, 25, 44, 45, 50]. The Chern insulators in these other
works arise from magnetic ordering in the spin-valley sec-
tor. In contrast, our Chern insulator does not exhibit any
magnetic order. The quantum anomalous Hall effect is
triggered instead by the local fluxes in the ground state,
closer to the original proposal by Haldane [2]. Subse-
quent to the first posting of our work, an experiment
reported the anomalous Hall effect in the twisted bilayer
graphene at angle θ ≈ 1.17◦, which is aligned with a
hexagonal boron nitride [67]. Although the measured
Hall conductivity is not strictly quantized, the observa-
tion still provides crucial signals of nontrivial topological
bands. Theoretical works on this system again propose
a Chern insulator with magnetic order [68, 69]. Another
experiment reported the loop current states at larger an-
gles, such as θ ≈ 3.89◦, in the presence of external mag-
netic field [70]. Our work may provide some indications
on how these recent experimental observations can be
interpreted.

It should be stressed that our model is extremely sim-
plified and neglects many experimental details. It is also
not clear whether the experiments in Refs. 8–12 are re-
ally well described by weak coupling. However, the sim-
plicity of the model helps expose the essential physics,
and reveals that hexagonal lattices with enhanced fla-
vor degeneracy (which may arise naturally in Moiré het-
erostructures) should provide an ideal platform for realiz-
ing tunable chiral insulating and superconducting phases.
Whether the correlated phases observed in present or fu-
ture Moiré heterostructures are actually chiral should be
straightforwardly testable in experiment.
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Appendix A: Patch models

On a two dimensional lattice, the dispersion energy
exhibits saddle points at the Van Hove fillings. A patch
model can be defined for the low energy theory, where
the Fermi surface is approximated by the patches at the
saddle points. Each patch is defined by a momentum
cutoff with respect to an energy scale Λ. We introduce
the patch models on the square and hexagonal lattices.
Only nearest neighbor hoppings (with hopping constant
t > 0) are included, which is rationalized by the large
unit cell in the study of Moiré superlattice models.

1. Square lattice

For the square lattice, the Brillouin zone is a square
with corners (±π,±π). At Van Hove filling, the Fermi
surface is a smaller square defined by the inequivalent
corners M1 = (π, 0) and M2 = (0, π) on the Brillouin
zone boundary. These corners are the saddle points of
dispersion energy

ξM1+k ≈ t
(
−k2

x + k2
y

)
,

ξM2+k ≈ t
(
k2
x − k2

y

)
,

(A1)

where k represents the infinitesimal deviation from the
saddle points.

2. Hexagonal lattices

The class of hexagonal lattices includes triangular and
honeycomb lattices with hexagonal Brillouin zones. For
the triangular lattice, the corners of the Brillouin zone
are (0,±4π/3) and (±2π/

√
3,±2π/3). At Van Hove

filling, the Fermi surface is a hexagon inscribed in the
Brillouin zone. The inequivalent corner saddle points
M1 = (−2π/

√
3, 0) and M2,3 = (π/

√
3,±π) exhibit the

dispersion energies

ξM1+k ≈
t

2

(
−3k2

x + k2
y

)
,

ξM2,3+k ≈ tky
(
∓
√

3kx − ky
)
.

(A2)

Similar features are manifested on the honeycomb lattice.
However, Van Hove filling exists in both electron and hole
doping regimes. We only focus on the hole doping regime,
with the analyses for the electron doping regime being
similar. The Brillouin zone is defined by the six corner
Dirac points (0,±4π/3

√
3) and (±2π/3,±2π/3

√
3). At

Van Hove filling, the hexagonal Fermi surface exhibits
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inequivalent corner saddle points M1 = (−2π/3, 0) and

M2,3 = (π/3,±π/
√

3), with the dispersion energies

ξM1+k ≈
3t

4

(
−3k2

x + k2
y

)
,

ξM2,3+k ≈
3t

2
ky

(
∓
√

3kx − ky
)
.

(A3)

Appendix B: Susceptibilities and maximal nesting at
Van Hove filling

Near Van Hove filling, the intrapatch particle-particle
and interpatch particle-hole susceptibilities

Πpp
0 = T

∑
n

∫
k

GkωnG(−k)(−ωn),

Πph
Q = −T

∑
n

∫
k

GkωnG(k+Q)ωn

(B1)

can acquire ln2 divergence. The fermionic Matsubara
frequency ωn = (2n + 1)πT is summed within the en-
ergy cutoff [−Λ,Λ], while the momentum integral

∫
k

=∫
d2k/(2π)2 is conducted within the patches. Since the

Fermi surface nesting only affects particle-hole suscepti-

bility Πph
Q , a quantitative measure of nesting degree is

provided by the nesting parameter d1 = dΠph
0 /dΠpp

Q .

The range of available nesting parameters is an impor-
tant issue for the phase transition analysis. If a transition
point dc1 between instabilities existed within this range, a
phase transition could occur. Notice that the nesting pa-
rameter is positive semidefinite d1 ≥ 0. The maximum,
on the other hand, is determined by the value dmax

1 at
Van Hove filling. In the weak coupling and low temper-
ature T � t limit, this maximum dmax

1 = hph/hpp is
determined by the prefactors of the two susceptibilities
at leading order O(ln2). The geometry of Fermi surface
affects this value significantly, as will be elucidated in the
remaining part of this section.

1. Square lattice

The two susceptibilities Πpp
0 and Πph

Q are identical on

square lattice. With the dispersion energies Eq. (A1),

both Πpp
0 and Πph

Q exhibit the form

Π = T
∑
n

∫
k

1

[iωn + t(k2
x − k2

y)][−iωn + t(k2
x − k2

y)]
.

(B2)
The result dmax

1 = 1 indicates that the patches can gain
access to the perfect nesting at Van Hove filling.

An evaluation of the ln2 divergence is useful for later
analysis of hexagonal lattices. Rewrite the momentum

integral in terms of the parameters a± =
√
t(±kx + ky)

Π = hT
∑
n

∫ √Λ

−
√

Λ

da+da−
1

(iωn − a+a−)(−iωn − a+a−)

(B3)
with the prefactor h = (8π2t)−1 manifesting the char-
acteristic density of states. The integral domain defines
the setup of square patches. After a reparametrization
x = a+a−

Π = hT
∑
n

∫ √Λ

−
√

Λ

da+

a+

∫ √Λa+

−
√

Λa+

dx
1

(−iωn + x)(iωn + x)
,

(B4)

an infrared (IR) cutoff |a+| ≥ |ωn|/
√

Λ is imposed for the
a+ integral. The regime below this cutoff is neglected
since it only provides a ln divergence. Approximating
the x integral by integrating over the whole real axis, the
Cauchy integral formula provides

Π ≈ hT
∑
n

2π

|ωn|

∫ √Λ

|ωn|/
√

Λ

da+

a+
. (B5)

A factor sgn(a+) arises from the integral and cancels the
sign of a+ in the denominator. After the a+ integral

Π ≈ hT
∑
n

2π

|ωn|
ln

Λ

|ωn|
, (B6)

the Matsubara frequency summation

T
∑
n

→ 2

∫ Λ

2πT

dω

2π
(B7)

reveals the ln2 divergence of the susceptibility

Π ≈ h ln2 Λ

T
. (B8)

The prefactor hpp/ph = h is consistent with Ref. 34, giv-
ing the maximal nesting dmax

1 = 1.

2. Hexagonal lattices

We proceed to conduct the same calculations on hexag-
onal lattices. Our analysis focuses on the triangular lat-
tice with dispersion energies Eq. (A2). The results are
also applicable to the honeycomb lattice.

a. Particle-particle susceptibility

We start by determining Πpp
0 at M1. With the

reparametrization a± =
√
t/2(±

√
3kx + ky), the inte-

gral Eq. (B3) is again obtained, but the prefactor is now

hpp = h with h = (4
√

3π2t)−1. The integral domain de-
fines a diamond patch centered at M1. A ln2 divergence
Eq. (B8) is derived as on square lattice.
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The calculations at the other saddle points M2 and M3

are also conducted. With the integral domain unchanged,
the alignments of diamond patches with the saddle point
structures become different. Despite such difference, the
calculations again derive the same result. This feature
indicates the universality of IR properties at Van Hove
filling. As long as the whole saddle point structure is
covered, a deformation of patch shape only leads to a
change in the subleading terms.

b. Particle-hole susceptibility

We turn to calculate Πph
Q for Q3 = M2 −M1

Πph
Q = −hT

∑
n

∫ √Λ

−
√

Λ

da+da−×

1

(iωn − a+a−)[iωn + a+(a+ + a−)]
.

(B9)

The reparametrization x = a+a− leads to

Πph
Q = hT

∑
n

∫ √Λ

−
√

Λ

da+

a+

∫ √Λa+

−
√

Λa+

dx×

1

(−iωn + x)(iωn + a2
+ + x)

,

(B10)

and the IR cutoff |a+| ≥ |ωn|/
√

Λ is again imposed. In-
tegrate x over the whole real axis

Πph
Q ≈ hT

∑
n

4π

∫ √Λ

|ωn|/
√

Λ

da+

a+

isgn(ωn)(−2iωn + a2
+)

4ω2
n + a4

+

.

(B11)
Since the imaginary part is odd in Matsubara frequency,
only the real part survives the Matsubara frequency sum-
mation. Taking y = a4

+, the susceptibility becomes

Πph
Q ≈ hT

∑
n

2π|ωn|
∫ Λ2

ω4
n/Λ

2

dy

y

1

4ω2
n + y

. (B12)

Decompose the integrand

1

y(4ω2
n + y)

=
1

4ω2
n

(
1

y
− 1

4ω2
n + y

)
(B13)

and evaluate the integral, where an approximation 4ω2
n+

ω4
n/Λ

2 ≈ 4ω2
n is imposed in the second term. We arrive at

the result Eq. (B6) with a different prefactor hph = h/2.
The Matsubara frequency summation then uncovers the
ln2 divergence of the susceptibility Eq. (B8). This result
is also derived for Q1 and Q2.

c. Nesting parameter

Having derived the ln2 divergences for the susceptibil-
ities, we identify the maximal nesting parameter dmax

1 =

1/2. The result indicates that the patches on hexagonal
lattices do not enjoy the perfect nesting of Fermi surface.
However, the finite nesting degree still provides a chance
for the density waves to arise.

Appendix C: Fixed trajectories

In this section, we analyze the parquet renormal-
ization group (RG) equations provided in the main
text. Consider the setup of bare repulsive interactions
g1, g2, g3, g4 ≥ 0. When d1(y) > 0, g2 increases monoton-
ically under the RG flow, indicating the strong coupling
fixed trajectories. The divergence occurs at a certain
scale y = yc. This feature suggests a simplification of
RG equations by taking g2 as a new RG time [26]. De-
fine the fixed point nesting parameter d1 = d1(yc) and
rewrite the RG equations in terms of xi = gi/g2

dx1

d ln g2
= −x1 +

x1(2−Nfx1) + (2−Nf )x2
3

1 + x2
3

,

dx3

d ln g2
= −x3

+
2d1x3[2− (Nf − 1)x1]− x3[(Np − 2)x3 + 2x4]

d1(1 + x2
3)

,

dx4

d ln g2
= −x4 +

−(Np − 1)x2
3 − x2

4

d1(1 + x2
3)

.

(C1)
The fixed point solutions xi = x∗i are determined by the
static condition dxi/d ln g2 = 0.

The equations provide various sets of solutions, rep-
resenting various fixed points of the RG flow. However,
there are constraints on the eligible fixed points, includ-
ing the real condition gi ∈ R and the positive semidefinite
condition gi ≥ 0. For Nf = 2, both g1 and g3 should be
positive semidefinite. However, when Nf > 2, g1 can
become negative due to a −g2

3 term. The eligible fixed
points should also be stable. To examine the stability of
a fixed point, we derive the linearized RG equations for
the infinitesimal displacements δxi = xi − x∗i

d

d ln g2

 δx1

δx3

δx4

 =

 M11 M13 M14

M31 M33 M34

M41 M43 M44

 δx1

δx3

δx4

 .

(C2)
The matrix elements Mij = (∂fi/∂xj)xk=x∗k

are deter-
mined from the RG equations dxi/d ln g2 = fi(x1, x3, x4).
Each eigenvalue λ of the matrix M = (Mij) indicates
the flow direction along the corresponding eigenvector in
phase space. The interactions flow toward the fixed point
when λ < 0, and vice versa. A fixed point is stable only
when all of the eigenvalues are negative.

Analyzing the RG equations presented in the main text
in this manner, we find that for Np = 3 there is only one
stable fixed trajectory consistent with the constraints.
Thus, the system flows to this fixed trajectory for generic
initial repulsive interactions. The divergence of interac-
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tions can be determined as follows. Near the critical scale
y ≈ yc, the RG equation for g2 takes the form

dg2

dy
= d1(1 + x2

3)g2
2 , (C3)

where the approximations d1 ≈ d1(yc) and x3 ≈ x3(yc)
are adopted. The solution implies the critical scaling
Eq. (5), where the critical interactions Gi = xi/[d1(1 +
x2

3)] characterize the divergence of gi’s in a quantitative
way. Notice that the analysis presented here is equivalent
to the direct adoption of critical scaling ansatz Eq. (5)
described in the main text.

Appendix D: Test vertex analysis

In the instability analysis, the test vertices coupled to
various fermion bilinears are introduced [35, 36, 53]. By
analyzing the flow of test vertices, the irreducible chan-
nels can be uncovered. We identify the superconducting
and density wave channels in this section. The interac-
tion in each channel is obtained by deriving the corre-
sponding flow equation Eq. (7).

The superconducting channels exhibit intrapatch
particle-particle pairings ψασψασ′ between different fla-
vors σ > σ′. Accordingly, the test vertices are added
as

δH =

Np∑
α=1

(∆αψ
†
ασψ

†
ασ′ + ∆∗αψασψασ′). (D1)

At the ln2 order, the available corrections to the test
vertices manifest the equation

d∆α

dy
= −g4∆α − g3

∑
β 6=α

∆β , (D2)

with a matrix representation

d

dy


∆1

∆2

...
∆Np

 = −


g4 g3 . . . g3

g3 g4
. . .

...
...

. . .
. . . g3

g3 . . . g3 g4




∆1

∆2

...
∆Np

 .

(D3)
The irreducible pairing channels are identified with the
eigenstates of this equation. For the square and hexag-
onal lattices, a single s-wave and Np − 1 degenerate d-
wave channels are uncovered. The effective interactions
in Eq. (7) correspond to the eigenvalues

gs = (Np − 1)g3 + g4, gd = −g3 + g4. (D4)

The density wave channels can be evaluated with sim-
ilar procedure [35, 36]. Here the fermion bilinears mani-
fest interpatch particle-hole pairing ψ†ασψβσ′ with α > β.
Notice the choice of permutative patch convention 1 > 3

so that the corresponding nesting momentum takes the
form Q2 = M1−M3. Either the same σ = σ′ or different
σ 6= σ′ flavors are paired within each pairing.

We first analyze the density wave channels with uni-
form flavor pairings

δH =
∑
σ

(∆σψ
†
βσψασ + ∆∗σψ

†
ασψβσ). (D5)

The corrections to the test vertices are described by a
differential equation

d

dy

(
~∆
~∆∗

)
= d1

(
Md Mo

Mo Md

)(
~∆
~∆∗

)
, (D6)

where the real and imaginary test vertex vectors ~∆(∗) =

(∆
(∗)
σ1 , . . . ,∆

(∗)
σNf

)T are defined. The diagonal and offdi-

agonal blocks of the correction matrix M take the form

Md =


g2 − g1 −g1 . . . −g1

−g1 g2 − g1
. . .

...
...

. . .
. . . −g1

−g1 . . . −g1 g2 − g1

 ,

Mo =


0 −g3 . . . −g3

−g3 0
. . .

...
...

. . .
. . . −g3

−g3 . . . −g3 0

 .

(D7)

To diagonalize the correction matrix M , we work in a
simultaneous eigenbasis for both the diagonal and offdi-
agonal blocks Md and Mo. In this basis, the two matrices
become diagonal, where the diagonal elements are given
by the eigenvalues

(λd, λo) = (g2, g3), (g2 −Nfg1,−(Nf − 1)g3). (D8)

These two sets of eigenvalues are Nf − 1 fold and singly
degenerate, respectively.

The Nf − 1 fold degenerate eigenstates correspond to
the flavor density waves (FDW) with symmetric flavor
pairings. Each channel exhibits the corrections

d

dy

(
∆FDW

∆∗FDW

)
= d1

(
g2 g3

g3 g2

)(
∆FDW

∆∗FDW

)
, (D9)

where the diagonal and offdiagonal elements result from
the eigenvalues Eq. (D8) of original blocks Md and Mo.
The eigenstates represent the real and imaginary FDW
channels with symmetric flavor pairings. Each eigenvalue
is identified with the interaction

gr/iFDW = −(g2 ± g3). (D10)

Note that we have introduced an extra minus sign for
consistency with the definition of interaction in Eq. (7).
On the other hand, the singly degenerate eigenstate of
M is recognized as the charge density wave (CDW). The
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correction matrix for CDW is determined by the singly
degenerate eigenvalues in Eq. (D8)

d

dy

(
∆CDW

∆∗CDW

)
= d1

(
g2 −Nfg1 −(Nf − 1)g3

−(Nf − 1)g3 g2 −Nfg1

)
×
(

∆CDW

∆∗CDW

)
.

(D11)
Diagonalizing this equation, we arrive at the interactions
in the real and imaginary CDW channels

gr/iCDW = Nfg1 − g2 ± (Nf − 1)g3. (D12)

Again we have introduced an extra minus sign for con-
sistency with the definition of interaction in Eq. (7).

The density wave channels with pairing between dif-
ferent flavors σ 6= σ′ are the FDW channels with anti-
symmetric flavor pairings. With the test vertices

δH =
∑
σ 6=σ′

(∆FDWψ
†
βσψασ′ + ∆∗FDWψ

†
ασ′ψβσ) (D13)

where α > β, we find the same correction equation as
Eq. (D9). The same interaction Eq. (D10) as the FDW
channels with symmetric flavor pairings is obtained.

Appendix E: Landau-Ginzburg theory for loop
current order

The dominance of loop current order is observed near
Van Hove filling. Here we derive the dominant loop cur-
rent order through a Landau-Ginzburg analysis, where
the minimization of free energy determines the leading
state below the critical temperature Tc.

The analysis starts by projecting the low energy theory
onto CDW channel. In this channel, the interactions g1,
g2, g3 contribute, while g4 does not. With the Fierz
identity, the quartic interactions are projected onto the
channel of CDW bilinears ψ†αψβ with α > β

Hint =
1

4Nf

∑
α>β

{
2(Nfg1 − g2)(ψ†αψβ)(ψ†βψα)

+ (Nf − 1)g3

[
(ψ†αψβ)(ψ†αψβ) + (ψ†βψα)(ψ†βψα)

]}
.

(E1)
Decompose the interactions further into real and imag-
inary parts, with the bilinears defined as (ψ†αψβ)r/i =

(ψ†αψβ ±ψ
†
βψα)/2. The loop current channel is identified

as the imaginary channel

Hint =
giCDW

2Nf

∑
α>β

(ψ†αψβ)†i (ψ
†
αψβ)i, (E2)

where the interaction giCDW diverges in the negative di-
rection under the RG flow.

A Hubbard-Stratonovich transformation is performed
so that the quartic interaction is decomposed by the
bosonic auxiliary fields. The action takes the form

S =

∫ 1/T

0

dτ

{∑
α

ψ†α(∂τ + ξα)ψα +
2Nf
|giCDW|

∑
α>β

∆̃2
αβ

−
∑
α>β

i∆̃αβ

[
(ψ†αψβ)†i − (ψ†αψβ)i

]}
,

(E3)

where the order parameter is defined as ∆αβ = i∆̃αβ

with real ∆̃αβ . Impose the static condition ∆̃αβ(τ) =

∆̃αβ . After a temporal Fourier transform ψ(τ) =√
T
∑
n ψne

−iωnτ , the mean field free energy reads

F =
2Nf
|giCDW|

∑
α>β

∆̃2
αβ − T

∑
n

∑
α

ψ†αG
−1
α ψα

+ T
∑
n

∑
α>β

i∆̃αβ

(
ψ†αψβ − ψ

†
βψα

)
.

(E4)

Consider the hexagonal lattices Np = 3. Express the free
energy in a matrix representation of patch basis

F =
2Nf
|giCDW|

|∆̃|2 − T
∑
n

∫
k

ψ†G−1ψ, (E5)

where the inverse loop current propagator is defined

− G−1 =

 −G−1
1 −i∆̃3 i∆̃2

i∆̃3 −G−1
2 −i∆̃1

−i∆̃2 i∆̃1 −G−1
3

 . (E6)

Integrating out the fermion field, we obtain the free en-
ergy as a function of order parameter

F =
2Nf
|giCDW|

|∆̃|2 − Tr ln(−G−1), (E7)

where ln det(−G−1) = Tr ln(−G−1) is utilized.
When the temperature is just below the critical tem-

perature T . Tc, the order parameter ∆̃ is infinites-
imal. A Landau-Ginzburg analysis can be conducted
in this regime. Define G0 = G(∆̃ = 0) and ∆̂ =
(−G−1) − (−G−1

0 ). With the constant part ignored, an

expansion up to quartic order of ∆̃ is obtained

F =
2Nf
|giCDW|

|∆̃|2 +
1

2
Tr(−G0∆̂)2 +

1

4
Tr(−G0∆̂)4. (E8)

The quadratic order takes the form α(T − Tc)|∆̃|2 with
α > 0. As T < Tc, the coefficient becomes negative, and
the symmetry broken states arise. For the quartic order

Nf
2

[
Z1|∆̃|4 + 2(Z2 − Z1)

(
∆̃2

1∆̃2
2 + ∆̃2

2∆̃2
3 + ∆̃2

3∆̃2
1

)]
,

(E9)
the coefficients manifest the ‘square diagrams’ [56]

Z1 = Tr(G2
1G

2
2), Z2 = Tr(G2

1G2G3). (E10)
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The calculations indicate Z1 > 0, which guarantees the
stability of Landau-Ginzburg theory at quartic order.

Meanwhile, the second diagram is 0 < Z2 < Z1. Since
Z2 −Z1 < 0, the loop current order develops at all three
nesting momenta simultaneously, known as a 3Q state.
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