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Some of the exciting phenomena uncovered in strongly correlated systems in recent years – for instance
quantum topological order, deconfined quantum criticality and emergent gauge symmetries – appear in systems
where the Hilbert space is effectively projected at low energies in a way that imposes local constraints on the
original degrees of freedom. Cases in point include spin liquids, valence bond systems, dimer and vertex mod-
els. In this work, we use a slave boson description coupled to a large-S path integral formulation to devise a
generalised route to obtain effective field theories for such systems. We demonstrate the validity and capability
of our approach by studying quantum dimer models and by comparing our results with the existing literature.
Field theoretic approaches to date are limited to bipartite lattices, they depend on a gauge-symmetric under-
standing of the constraint, and lack generic quantitative predictive power for the coefficients of the terms that
appear in the Lagrangians of these systems. Our method overcomes all these shortcomings and we show how
the results up to quadratic order compare with the known height description of the square lattice quantum dimer
model, as well as with the numerical estimate of the speed of light of the photon excitations on the diamond
lattice. Finally, instanton considerations allow us to infer properties of the finite temperature behaviour in two
dimensions.

I. INTRODUCTION

Low energy descriptions of strongly correlated many-
body systems sometimes require the introduction of projected
Hilbert spaces where the degrees of freedom are subject to lo-
cal constraints. Notable examples include valence bond sys-
tems, quantum dimer and vertex models. The action of the
system Hamiltonian within the restricted Hilbert space often
gives rise to exotic and unexpected behavior, from emergent
gauge symmetries and deconfined quantum criticality to quan-
tum topological order, which have been the subject of much
attention in recent years.

Field theoretic descriptions of these systems have proven to
be a powerful tool to study their properties, in particular to
understand the nature of their correlations and critical points.
However, conventional routes to construct such field theories
often do not apply, and instead ad hoc methods have been de-
vised throughout the years. Such methods largely hinge on a
physical understanding of the constraint and how to best rep-
resent it in a (free) field theory language. While on the one
hand such approaches have provided great insight into the rel-
evant systems, they cannot be easily generalized. A system-
atic way to arrive at a field theoretic description of quantum
systems with local constraints is currently lacking.

In this paper, we propose a generalized route to obtain field
theoretic actions from microscopic Hamiltonians based on a
slave boson representation of the relevant degrees of freedom
and their constraints, combined with a large-S path integral
formulation. We demonstrate the validity and capability of
our approach by deploying it to study quantum dimer mod-
els (QDMs), recovering known and obtaining new results on
bipartite lattices, and showing that it can be used straight-
forwardly on hitherto inaccessible non-bipartite lattices. Our
approach also paves the way to semiclassical simulations of
these systems, as discussed in Ref. 1 by some of the authors.

QDMs were introduced to describe a magnetically disor-
dered (resonating valence bond) phase in high-temperature su-
perconducting materials2. They can also arise in Bose–Mott
insulators, electronic Mott insulators at fractional fillings3 and
in mixed valence systems on frustrated lattices4. For a review
of these models, we refer the reader to Ref. 5.

When QDMs are defined on bipartite lattices, they are
amenable to a height mapping description in 2D, which gen-
eralizes to quantum electrodynamics (QED) in 3D5–8. The
height mapping is built upon a gauge-symmetric understand-
ing of the constraint9 and has great predictive power for bipar-
tite quantum dimer models, enabling one to answer detailed
questions pertaining to their long wavelength properties. All
its good features notwithstanding, the height mapping has one
essential drawback: a quantitative derivation of its action from
the microscopic lattice Hamiltonian is currently not available.
The state-of-the-art derivation of the height mapping has been
so far phenomenological5,10, and the coefficients (including
their signs) are a posteriori determined by theoretical consid-
erations (e.g., using the knowledge of the exact ground state at
fine-tuned critical points) combined with comparisons to nu-
merical results5–8,10,11. Furthermore, the approach cannot be
applied to non-bipartite lattices, which remain comparatively
unexplored from a field theoretic perspective.

Using our generalized route, we show that one can sys-
tematically derive the height Lagrangian for bipartite QDMs
in 2D and 3D, from the corresponding microscopic Hamil-
tonians. We compare our results against the existing litera-
ture, where we find good agreement considering the large-
S and quadratic approximations that we employ. For exam-
ple, we derive the stiffness of the 2D square lattice QDM at a
well-known critical point called the Rokhsar–Kivelson point2,
where the ground state wave function of the system is known
exactly: Our result, 1/4, is comparable to the exact value,
π/185,12. We use instanton considerations to discuss the fate
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FIG. 1. Square lattice showing the choice of basis vectors e1,2.

of 2D phases at finite temperature. We also obtain the speed
of light to quadratic order in the 3D QED long-wavelength
theory of dimers on the cubic lattice, c =

√
2J (J − V) S/3,

and on the diamond lattice, c =
√

J(J − V)/6 S 2. The latter
is known numerically from quantum Monte Carlo simulations
to be c(S = 1) '

√
0.6J(J − V)13,14. We further show that our

approach applies straightforwardly to the non-bipartite case of
the QDM on the triangular lattice, where we observe a curious
analytical similarity with the formalism for the QDM on the
3D cubic lattice – a similarity that we plan to explore further
in future work.

The paper is organized as follows. In Section II, we in-
troduce our approach by studying in detail the introductory
and well-known case of the QDM on the square lattice. In
Section III, we study the cubic lattice and obtain the disper-
sion of its photon excitations in the gapless phase. We then
briefly consider the case of the non-bipartite triangular lat-
tice in Sec. IV, which is shown to be curiously similar in
its analytical form to the cubic lattice. Finally, in Sec. V
and Sec. VI, we consider for completeness the QDMs on the
honeycomb and diamond lattices, respectively. A compari-
son with the conventional height mapping and gauge theoretic
formulations is presented in Sec. VII, and we conclude in Sec-
tion VIII.

II. SQUARE LATTICE

A. Bosonic representation and large S

We consider in the first instance the well-known case of the
RK Hamiltonian for the square lattice QDM, which allows us
to introduce our approach in the simplest setting. Generaliza-

tions to the honeycomb, triangular, cubic and diamond lattices
will be discussed in later Sections.

The quantum dimer model can be mapped exactly onto a
slave boson model by considering a secondary Hilbert space
where we assign a bosonic mode br,η to each link (r, r + eη) of
the square lattice (eη = x̂, ŷ)15 (see Fig. 1). We associate the
number of dimers on a link with the occupation number of the
bosons on that link, thus embedding the dimer Hilbert space
in the larger Hilbert space of the bosons.

The constraint that each site of the lattice has one and ex-
actly one dimer attached to it can be expressed in the boson
language as

Πr ≡
∑
l∈vr

b†l bl − 1 = 0. (2.1)

Here, for convenience of notation, ` ∈ vr labels the four
links r′, η that are attached to the vertex r. We note that the
constraint in Eq. (2.1) implies that the bosons are hardcore:
nr,η ≡ b†r,ηbr,η = 0, 1.

Any dimer Hamiltonian has a bosonic representation; in
particular, the RK Hamiltonian can be written as:

HD =
∑

r

{
−J b†r,1b†r+e2,1

br,2br+e1,2 + (1↔ 2)

+V b†r,1br,1b†r+e2,1
br+e2,1 + (1↔ 2)

}
. (2.2)

To generalize this construction to a large-S formulation, we
keep the same Hilbert space as before and replace Eq. (2.1)
with the constraint

Πr ≡
∑
l∈vr

b†l bl − S = 0 (2.3)

without changing the Hamiltonian (2.2).

B. Path integral formulation and Gaussian approximation

In what follows, it is convenient to use the radial gauge
for the bosonic fields in the path integral formulation of the
model:

br,η =

√
ρη(r + eη/2) exp

[
iΦη(r + eη/2)

]
(2.4)

≡

√
S
z

+ δρη(r + eη/2) exp
[
iΦη(r + eη/2)

]
,

where z is the lattice coordination number; for the square lat-
tice, z = 4. For later convenience, we think of ρη(r +eη/2) and
Φη(r + eη/2) as functions defined on bond midpoints. The RK
Hamiltonian is then given by



3

HD =
∑

r

{
− 2J

√
ρ1(r + e1/2)ρ2(r + e1 + e2/2)ρ1(r + e2 + e1/2)ρ2(r + e2/2)

× cos [Φ1(r + e1/2) − Φ2(r + e1 + e2/2) + Φ1(r + e2 + e1/2) − Φ2(r + e2/2)]

+ V ρ1(r + e1/2)ρ1(r + e2 + e1/2) + V ρ2(r + e2/2)ρ2(r + e1 + e2/2)
}
, (2.5)

and the constraint in Eq. (2.3) can be written as∑
η

[
δρη(r + eη/2) + δρη(r − eη/2)

]
= 0 . (2.6)

We now introduce the Fourier decomposition

δρη(r + eη/2) =
1
√

N

∑
k

δρη(k) exp
[
−ik(r + eη/2)

]
, (2.7)

Φη(r + eη/2) =
1
√

N

∑
k

Φη(k) exp
[
−ik(r + eη/2)

]
, (2.8)

where k(r + eη/2) ≡ ~k · (~r + ~eη/2) for brevity and N is the
number of lattice sites. In these terms, the constraint can be
written as ∑

η

cos(keη/2) δρη(k) = 0. (2.9)

It will be useful in the following to introduce the shorthand no-
tation cη = cos(keη/2) and correspondingly sη = sin(keη/2).

The constraint clearly imposes a relation between the two
field variables δρ1(k) and δρ2(k). The same conclusion can
be readily drawn about the fields Φµ once we notice that
the Hamiltonian depends only on the specific combination
of them that appears in the argument of the cosine term in
Eq. (2.5):

φ̃(r) ≡ Φ1(r + e1/2) − Φ2(r + e1 + e2/2)
+ Φ1(r + e2 + e1/2) − Φ2(r + e2/2). (2.10)

After a few lines of algebra, its Fourier transform gives

φ̃(k) ≡ e−ik(e1+e2)/2 2 [c2Φ1(k) − c1Φ2(k)] . (2.11)

Note that the cosine function depends only on powers of φ(r)2

and therefore phase factors in φ̃(k) are immaterial, and we de-
fine for convenience

φ(k) ≡ eik(e1+e2)/2 φ̃(k)
= 2 [c2Φ1(k) − c1Φ2(k)] ≡ ZηΦη, (2.12)

where Zη = (2c2,−2c1). In real space, this amounts to in-
troducing a φ(r) living on the centres of the plaquettes rather
than a corner.

Notice that the constraints on δρη and on Φη are in fact two
sides of the same coin – indeed, conjugate variables come in
pairs, so their numbers have to be the same. In our case, one
can easily verify that imposing one of them implies the other.
This is a consequence of how the RK Hamiltonian is designed:
the plaquette-flipping term inherently preserves the number
of dimers at each vertex; and vice versa, if one imposes the
hard core dimer constraint, then any kinetic contribution in the
Hamiltonian is projected onto a combination of loop updates,
of which the plaquette-flipping term is an example.

In order to make further progress in the path integral for-
mulation, we shall expand the action to quadratic order in
φ(r, τ) ' 2nπ, n ∈ Z, and δρr,µ � 1. Firstly, it is convenient
to re-write cos(φ) = 1 − [1 − cos(φ)] and notice that the term
in square brackets contains only quadratic and higher order
contributions. Therefore, the square root in the second term
of
√
ρρρρ cos(φ) =

√
ρρρρ −

√
ρρρρ

[
1 − cos(φ)

]
, (2.13)

needs to be expanded only to leading order in S :
√
ρρρρ '

S 2/16. Upon expanding the first term, one obtains both linear
and quadratic terms in δρη(r+eη/2). However, one can readily
convince oneself that the linear terms vanish upon summing
over r because of the dimer constraint in Eq. (2.6). The same
is true for the linear contributions due to the terms multiply-
ing V in Eq. (2.5), leading to the following contributions to
quadratic order:

√
ρρρρ '

S 2

16
+

1
4

[
δρ1(r + e1/2)δρ2(r + e1 + e2/2) + δρ1(r + e1/2)δρ1(r + e2 + e1/2) (2.14)

+δρ1(r + e1/2)δρ2(r + e2/2) + δρ2(r + e1 + e2/2)δρ1(r + e2 + e1/2)

+δρ2(r + e1 + e2/2)δρ2(r + e2/2) + δρ1(r + e2 + e1/2)δρ2(r + e2/2)
]

−
1
8

[
δρ1(r + e1/2)2 + δρ1(r + e2 + e1/2)2 + δρ2(r + e1 + e2/2)2 + δρ2(r + e2/2)2

]
ρρ + ρρ =

S 2

8
+ δρ1(r + e1/2)δρ1(r + e2 + e1/2) + δρ2(r + e2/2)δρ2(r + e1 + e2/2) . (2.15)
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Writing the sum of these terms in Fourier space, we get (for
the quadratic contributions only):

− Jc1c2
[
δρ1(k)δρ2(−k) + δρ2(k)δρ1(−k)

]
+

[
(2V − J)c2

2 + (J − V)
]
δρ1(k)δρ1(−k)

+
[
(2V − J)c2

1 + (J − V)
]
δρ2(k)δρ2(−k) . (2.16)

The dynamics of the model is generated by the standard
bosonic Berry phase

∑
n bn∂τbn. In the radial representation

(2.4), this gives rise to the term
∑

n i δρn ∂τΦn, as well as total
derivative terms which do not contribute to the action. Alto-
gether, we obtain

S =

∫
dτ

∑
k,µ

i δρµ(k, τ) ∂τΦµ(−k, τ)

+

∫
dτ

∑
r

JS 2

8
[
1 − cos(φ(r, τ))

]
+

∫
dτ

∑
k,µ,ν

Dµν(k)
2

δρµ (k, τ) δρν (−k, τ) , (2.17)

where

Dµν = 2
(

J − V + (2V − J)c2
2 −Jc1c2

−Jc1c2 J − V + (2V − J)c2
1

)
.

To proceed further, we can either resolve the constraint ex-
plicitly, or keep it implicit. The former allows to relate di-
rectly with the customary height field representation for the
QDM on the square lattice; the latter is more concise and will
be useful to reduce the algebra and obtain analytic results for
three dimensional models in Secs. III and VI. For this reason,
we present them both in the following sections.

C. Implicit constraint

Let us consider a given cosine minimum at first, and assume
φ(r, τ) � 1. (We shall discuss the effect of instantons later in
Sec. II D 2.) The middle term in Eq. (2.17) then reduces to∫

d2r
JS 2

16
φ2(r, τ) =

∑
k

JS 2

16
ZµZνΦµ(k, τ)Φν(−k, τ) .

(2.18)
After integrating the first term in Eq. (2.17) by parts in τ, one
can integrate the fields Φµ out and obtain an action only in
terms of the fields δρµ:

S =
1
2

∫
dτ

∑
k

[ (
M−1

)
µν
∂τδρµ(k, τ)∂τδρν(−k, τ)

+Dµν(k) δρµ (k, τ) δρν (−k, τ)
]
, (2.19)

where we defineM ≡ JS 2ZZT /8 for convenience. One can
now readily obtain the dispersion by computing the eigenval-
ues of the matrixMD.

This approach gives us two modes while we know that the
physical system is constrained to only one real scalar field.

0.0
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1.0

1.5

2.0
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(k
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FIG. 2. Photon dispersion relation of the large-S QDM on the square
lattice. The spectrum is gapless at the M = (π, π) point for all values
of V/J; near this point, the dispersion is quadratic at the RK point,
and linear away from it. Another minimum forms at the X = (π, 0)
points for lower V: this drives an ordering transition at V = 0.

Fortunately, Eq. (2.9) states that
∑
µZµδρµ(k) = 0. Therefore,

one of the two eigenvalues ofMD corresponds to an unphys-
ical mode and vanishes, whereas the other (finite) eigenvalue
corresponds to the physical dispersion of the system,

ω2 = JS 2
{
(2V−J)(c4

1 +c4
2)+(J−V)(c2

1 +c2
2)+2Jc2

1c2
2

}
. (2.20)

This dispersion is plotted for three values of V/J in Fig. 2. It
is interesting to note that the dispersion vanishes at (π, π) and
symmetry related points for all values of J and V . An instabil-
ity develops for V > J when the dispersion becomes negative
near the (π, π) point (not shown). As we lower the value of
V , secondary minima appear at (π, 0) and related points in the
Brillouin zone, and they drive the system through an insta-
bility for V < 0 which leads to (plaquette) dimer ordering at
these wave vectors.

D. Explicit constraint

The implicit approach in Sec. II C allows us to arrive at the
dispersion of the system with minimal algebra, but does not
produce an action in terms of the physical degree of freedom
only. In order to achieve this, we need to resolve the constraint
explicitly. A convenient way to do so is to look for a conjugate
field h(k) such that the Berry phase in the path integral can be
written as ih(k)∂τφ(−k):

h(k)∂τφ(−k) =
∑
η

δρη(k)∂τΦη(−k). (2.21)

Substituting the expression for φ(k), Eq. (2.12), into the equa-
tion above, we obtain

δρ1(k) = 2c2 h(k)
δρ2(k) = −2c1 h(k). (2.22)
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One can then straightforwardly verify that introducing the
field h(k) automatically resolves the constraint:∑

η

cηδρη = 2(c1c2 − c2c1)h(k) = 0. (2.23)

Once again, this result should not come as a surprise. It is a
reflection, at field theoretic level, of the fact that the plaquette
terms in the Hamiltonian respect the dimer constraint. There-
fore, if the field theory is built from plaquette kinetic terms
only, then the constraint is implied.

We are thus in the position to write the full large-S action
for the system, including both the Berry phase and Hamil-
tonian contributions, in terms of the fields h(k) and φ(k) only.
Adding more complicated ring exchange type terms to the RK
Hamiltonian does not invalidate this conclusion, as the phase
in each ring exchange term may be written as a sum of phases
over single plaquettes. Substituting the expressions of δρη(k)
in terms of h(k), and ignoring trivial constants, we obtain the
action:

S =

∫
dτ

∑
r

{
ih(r, τ)∂τφ(r, τ) +

JS 2

8
[
1 − cos(φ(r, τ))

]}
+

∫
dτ

∑
k

D0(k)
2

h(k, τ) h(−k, τ) (2.24)

where

D0(k) = 8
{
(2V−J)(c4

1+c4
2)+(J−V)(c2

1+c2
2)+2Jc2

1c2
2

}
. (2.25)

1. Action without instantons

Ignoring for the time being the contribution to the action
due to instantons between different minima of the cosine term,
we can expand about one given minimum and integrate over
φ to arrive at

S =
1
2

∫
dτ

∑
k

[ 8
JS 2 ∂τh(k, τ)∂τh(−k, τ)

+D0(k)h(k, τ)h(−k, τ)
]
. (2.26)

One can easily see that the dispersion is indeed the same as in
Eq. (2.20).

ExpandingD0 about its minimum at (π, π),

D0[(π, π) + (kx, ky)] ' 2(J − V)(k2
x + k2

y )

+

[
7V
6
−

2J
3

]
(k4

x + k4
y ) + Jk2

xk2
y ,

we obtain the action

S =
1
2

∫
dτd2r

{ 8
JS 2 (∂τh)2 + 2(J − V)(∇h)2 (2.27)

+
7V − 4J

6
h
(
∂4

x + ∂4
y

)
h + Jh

(
∂2

x∂
2
y

)
h
}

+ . . .

At the RK point, the (∇h)2 term vanishes and the terms with
quartic derivatives add up to

J
2

(∇2h)2 , (2.28)

yielding the spectrum ω = k2/2m with m = 2/JS . We
note that the known value at the RK point for S = 1 (and
J = V = 1) in this normalization is m = 9/π (corresponding to
K = π

18 in Refs. 5 and 12), which can be obtained exactly from
the ground state wavefunction of the QDM, available only at
the RK point). This shows that, expanding to quadratic or-
der, our estimate is within 40% accuracy. We note that such
discrepancy at quadratic order in a large-S expansion is con-
sistent for instance with similar results obtained in Ref. 16 for
quantum spin ice. Our results can be improved by going to
higher orders, and – more importantly with respect to earlier
work on field theories for quantum dimer models – their va-
lidity is not limited to the fine tuned RK point.

2. Instantons

We will now incorporate the instanton effects which, as we
shall demonstrate, always generate a mass for the photons for
V < J, as it generally happens in compact electrodynamics.
To this end, we are going to integrate out the field φ (r, τ) tak-
ing into account the fact that the action is periodic in it.

Firstly, we proceed by the standard Villain approach and
replace

1 − cos φ →
1
2

[
φ − 2π

∑
j

q jθ(τ − τ j)
]2
, (2.29)

where the q j = q(r j, τ j) are integers representing instanton
events, and θ(τ) is the Heaviside step function. By integrating
over φ and h, we obtain the following action:

S =
(2π)2

2

∑
j,k

q(r j, τ j)Gqq(r j − rk; τ j − τk)q(rk, τk)

Gqq(k, ω) =
[
ω2/M + (ρ2k2 + ρ4k4)

]−1
, (2.30)

where M = JS 2/8 and we introduced the symbolic terms
ρ2k2 and ρ4k4 to represent the quadratic and quartic deriva-
tive terms in the action: D0(k) ' ρ2k2 + ρ4k4 + . . . The re-
sulting partition function is that of a Coulomb gas of charges
q = ±1,±2, ..., where the fugacity of charge q is given by
I = exp(−q2S0) and S0 is the contribution to the action from
a single instanton with q = 1:

S0 =
1

4π

∫
dω d2k

ω2/M + (ρ2k2 + ρ4k4)

≈
πS
8

√
J

2ρ4
ln(ρ4/ρ2), (2.31)

and hence

I = (ρ2/ρ4)q2πS/8, (2.32)

where we performed the calculations with the RK form of the
quartic term and substituted ρ4 = J/2 for simplicity.

Since I is a fast decaying function of the instanton charge,
we can restrict our consideration to the gas of charges q = ±1.
Following Polyakov17, we approximate the partition function
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of the Coulomb gas (2.30) as the one of the sine-Gordon
model with action (2.27) augmented by the term

δS = −2µI
∫

dτ
∑

r

cos(2πh), (2.33)

where µdτ is the preexponential part of the instanton measure
(see Appendix A); at the RK point, 2µ = JS 3/2 √π/2. The
presence of this term makes the excitations massive:

ω2 = c2k2 + m2, m2 = 8π2MµI. (2.34)

As we see from (2.32), this mass vanishes at the RK point.
At finite temperatures, instantons interact logarithmically:

E = −
2πT 2

ρ2

∑
j<k

q jqk ln
(
|r j − rk |

r0

)
, (2.35)

where r2
0 = ρ4/ρ2. The corresponding contribution to the free

energy density

δF ∝ q2Iq

∫
d2r
rdq

, dq = 2πq2T/ρ2, (2.36)

diverges at small T . The contribution of the static fluctuations
of h is encoded in the free energy functional

F =

∫
d2x

[
ρ2

2
(∇h)2 +

ρ4

2
(∇2h)2 − 2µI cos(2πh)

]
.

(2.37)

The scaling dimension d1 of the cosine term is given by (2.36).
The critical temperature above which the cosine term is irrel-
evant is determined by the condition d1 = 2:

Tc = ρ2/π. (2.38)

Above Tc, we have a critical phase; below it, the correlation
length of the h field is finite:

ξ ∼ r0(µI/Tc)−1/(2−d1) (2.39)

This corresponds to melting the valence bond crystal. As it is
typical for 2D crystals, it melts via a Berezinskii–Kosterlitz–
Thouless transition.

We finally take a moment to comment on the difference be-
tween our result and the one obtained in Ref. 18, which in fact
addresses a somewhat different problem. In Ref. 18 the au-
thors considered equal time correlations at the RK point. The
remarkable property of this point is that the ground state wave
function can be represented as a path integral with a Gaus-
sian action. It was argued that the periodicity of the height
field generates the irrelevant perturbation cos(2πh). Here, we
obtained a formally equivalent perturbation (2.33) also away
from the RK point; however, the prefactor of the cosine term
in our case vanishes precisely at the RK point.

S

S = 1
V/J

S →∞
V/J0−0.5

staggered
U(1) RVB

plaq.columnar

1

staggeredcolumnar

?

FIG. 3. Phase diagram of the square lattice quantum dimer model at
S = ∞ (this work) and S = 119–26.

E. Large-S phase diagram

As S → ∞, zero point fluctuations of any soft modes are
negligible, and ρ and Φ can be treated as commuting, classical
variables. The ground state energy of the system in this limit
is therefore given by classical minimisation of the Hamilto-
nian (2.5). Since

√
ρρρρ ≥ 0 always, the Φ in such an optimal

state satisfy cos(Φ1 − Φ2 + Φ3 − Φ4) = 1 which is achieved,
for instance, by setting Φ ≡ 0.

Finding the optimal values of ρ in full generality is more
difficult. However, one can always compare the ground state
energies of phases suggested in the literature, or develop a
variational ansatz that captures several such phases. In the
case of the square lattice, we considered states in which ρ is
constant within each set of bonds populated in the four colum-
nar ordered states. Such an ansatz can capture columnar and
plaquette ordered states as well as the RVB liquid phase.

Comparing the ground state energies of these phases yields
the S → ∞ phase diagram shown in Fig. 3. As expected, the
ground state is staggered for V > J and columnar at V → −∞.
At intermediate V/J, we see a plaquette ordered phase as well
as an extended U(1) RVB liquid, with phase boundaries corre-
sponding to the instabilities shown in Fig. 2. The latter is un-
stable at finite S due to instanton effects, as discussed above.
The fate of the plaquette phase is, however, less clear: since
it is ordered, instantons are unlikely to substantially affect its
stability, and so the evolution of the columnar–plaquette phase
boundary must mostly depend on lattice effects. It may well
be possible that the plaquette order survives at S > 1 and has
a proximity effect near the RK point even at S = 1. This
could explain why numerical simulations of the square lattice
dimer model struggle to establish its true ground state in this
regime19–26.

III. CUBIC LATTICE

The calculations for other lattices are straighforward gener-
alizations of the square lattice case, with minimal but informa-
tive modifications. We begin with the cubic lattice, where we
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have the three lattice vectors eη = x̂, ŷ, ẑ. The corresponding
RK Hamiltonian can be written as:

HD =
∑

r

{
−J b†r,1b†r+e2,1

br,2br+e1,2 + (1↔ 2)

+V b†r,1br,1b†r+e2,1
br+e2,1 + (1↔ 2)

}
+ (12)↔ (13)↔ (23) , (3.1)

subject to the equivalent large-S constraint

Πr ≡
∑
l∈vr

b†l bl − S = 0 . (3.2)

Using the radial gauge expression (2.4) for the bosonic field
with z = 6, this constraint can be written as in (2.6), which in

Fourier space reduces to∑
η

cηδρη(k) = 0 . (3.3)

Contrary to the case of the square lattice, we have now three
fields δρη and one constraint, leaving therefore two inde-
pendent field variables. The Hamiltonian is made of three
terms equivalent to the square lattice Eq. (2.5), upon replacing
(12)↔ (13)↔ (23).

As we did for the square lattice QDM, we derive here the
resulting field theory to quadratic order. The calculation is
similar to the one carried out in Section II C, keeping the con-
straints implicit. It is also possible to explicitly resolve the
constraints and obtain an action in terms of two independent
real scalar fields, as in Sec. II D, but for brevity, we omit the
details of the calculation and only present the final result at
the end of this section.

The terms in the cubic Hamiltonian are equivalent to com-
bining the square lattice terms for the (12), (13) and (23) com-
ponents, see Eqs. (2.13), (2.14), and (2.15), up to a factor 4/9
due to the fraction S/6 replacing S/4 in Eq. (2.4):

S =

∫
dτ

∑k,µ iδρµ(k)∂τΦµ(−k) +
JS 2

18

∑
r,µ

[
1 − cos(φµ(r, τ))

]
+

∑
k,µ,ν

Dµν

2
δρµ(k)δρν(−k)

 ,

where

D = 2

 2(J − V) + (2V − J)(c2
2 + c2

3) −Jc1c2 −Jc1c3
−Jc1c2 2(J − V) + (2V − J)(c2

1 + c2
3) −Jc2c3

−Jc1c3 −Jc2c3 2(J − V) + (2V − J)(c2
1 + c2

2)

 , (3.4)

and we labelled φµ the argument of the cosine term involving
the phase fields Φν with ν , µ.

A. Action without instantons

When we expand about one given minimum,

JS 2

18

∑
µ=1,2,3

[1 − cos
(
φµ (r, τ)

)
] '

JS 2

36

∑
µ=1,2,3

φµ (r, τ)2 , (3.5)

we see that integrating out the fields φµ requires some care,
since they are not all independent of one another.

Following the same steps as for the square lattice dimer
model, it is convenient to introduce in Fourier space the fields

φ1(k) ≡ eik(e2+e3)/2 φ̃1(k) = 2 [c3Φ2(k) − c2Φ3(k)]
φ2(k) ≡ eik(e3+e1)/2 φ̃2(k) = 2 [c1Φ3(k) − c3Φ1(k)]
φ3(k) ≡ eik(e1+e2)/2 φ̃3(k) = 2 [c2Φ1(k) − c1Φ2(k)] .

(3.6)

These are most conveniently expressed as φµ = ZµνΦν, where
Zµν = 2εµνλcλ (εµνλ is the fully antisymmetric tensor and sum-
mation over λ is implied).

Notice that Z is a nonzero traceless antisymmetric matrix.
It has one zero eigenvalue,

∑
νZµνcν = 0, and the other two

must be non-vanishing and opposite, ±ζ:

2ζ2 = trZ2 = −2(c2
1 +c2

2 +c2
3) ζ = i

√
c2

1 + c2
2 + c2

3 . (3.7)

The two non-vanishing eigenvectors define the physical space,
and the null one is the gauge degree of freedom. One can
therefore construct a projector onto the physical space as
−Z2/(c2

1 + c2
2 + c2

3).
The cosine term in the Hamiltonian reduces to

JS 2

36

∑
µ

φµ(k)φµ(−k) =
JS 2

36
φT (k)φ(−k) (3.8)

=
JS 2

36
ΦT (k)ZT (k)Z(−k)Φ(−k)

= −
JS 2

36
ΦT (k)Z2(k)Φ(−k)

=
∑
µν

Mµν

2
Φµ(k)Φν(−k) ,

where we used the fact that Z(−k) = Z(k) and ZT = −Z,
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and we defined

M = −
JS 2

18
Z2

=
2JS 2

9

 c2
2 + c2

3 −c1c2 −c1c3
−c1c2 c2

1 + c2
3 −c2c3

−c1c3 −c2c3 c2
1 + c2

2

 . (3.9)

Integrating out the fields Φµ then gives

1
2

∑
µ,ν

M−1
µν∂τδρµ(k)∂τδρν(−k), (3.10)

so we can write the full quadratic action without instantons as

S =
1
2

∫
dτ

∑
k,µ,ν

{
M−1

µν∂τδρµ(k)∂τδρν(−k)

+Dµνδρµ(k)δρν(−k)
}
. (3.11)

The dispersion can be obtained from the eigenvalues of
MD = −2JS 2Z2D/9, after projecting out the non-physical
modes that do not satisfy the constraint

∑
µ cµδρµ = 0. This

could be done formally by adding an infinite Lagrange mul-
tiplier, but in fact there is no need to do so because the only
non-physical mode is trivially the zero mode ofZ2D – as we
had previously observed in the square lattice QDM. The two
non-vanishing eigenvalues are

ω2 =
4JS 2

9

{
J
[
2(c2

1 + c2
2 + c2

3) − (c4
1 + c4

2 + c4
3)
]

(3.12)

+2V
[
c4

1 + c4
2 + c4

3 − (c2
1 + c2

2 + c2
3) + c2

1c2
2 + c2

1c2
3 + c2

2c2
3

]
±2|J − V |

√
c4

1c4
2 + c4

1c4
3 + c4

2c4
3 − c2

1c2
2c2

3(c2
1 + c2

2 + c2
3)
}
.

This dispersion is plotted for three values of V/J in Fig. 4. It
is interesting to note that ω2|J=V ∝ (c2

1 + c2
2 + c2

3)2 and the two
bands are degenerate at the RK point, with vanishing minima
at (π, π, π) and symmetry related points, and quadratic disper-
sion around them. Expanding near such minima, we find

ω2 '
2S 2

9
J(J − V)k2 , (3.13)

where k is the (small) vector distance from the minimum, giv-
ing a speed of light

c =
S
3

√
2J(J − V) . (3.14)

As mentioned earlier, one could have alternatively resolved
the constraint explicitly, writing the three fields δρµ in terms
of two independent real scalar fields ha and resolving the cor-
responding inter dependence of the three fields φµ:

c1φ1 + c2φ2 + c3φ3 = 0 . (3.15)

For instance, one can do so via the relation φ1 = −(c2/c1)φ2 −

(c3/c1)φ3 and δρµ =
∑

a Rµaha with

R = 2

 c2 −c3
c1 0
0 c1

 . (3.16)

0.0

0.5

1.0

1.5

2.0
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(k
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JS

Wave vector

V/J = 1
0.5
0

FIG. 4. Photon dispersion relation of the large-S QDM on the cubic
lattice. The spectrum is gapless at the R = (π, π, π) point; near this
point, the dispersion is quadratic at the RK point and linear away
from it. The spectrum has two non-degenerate branches away from
the RK point. The lower branch develops minima at the X = (π, 0, 0)
points for lower values of V , which drives an ordering transition at
V = 0.

After a few lines of algebra, one arrives at the action

S =
1
2

∫
dτ

∑
k,a,b

{
M̃−1

ab∂τha(k)∂τhb(−k)

+ D̃abha(k)hb(−k)
}
, (3.17)

where D̃ = RTDR and

M̃ =
JS 2

18c2
1

(
c2

1 + c2
2 c2c3

c2c3 c1
1 + c2

3

)
.

One can easily verify that the action (3.17) gives indeed the
same dispersion as Eq. (3.12).

B. Instantons

The instanton contributions are calculated as for the square
lattice case. However, we have to take into account that the
fields φµ are not independent, see Eq. (3.15). We can use this
to eliminate field φ3. The Villain transformation is then per-
formed by replacing φ1,2 in (3.10) by (2.29) and integrating
out over the smooth fields φµ, hµ. The result is the Coulomb
gas action for integer charges q1,2,

S =
(2π)2

2

∑
ω,k

∑
µ,ν

qµ(−ω,−k)

×
[
(18ω2/JS 2)M−1 +D

]−1

µν
qν(ω, k) , (3.18)

with the standard unscreened long ranged Coulomb interac-
tion. In (3+1)-dimensions instantons are irrelevant and can be
safely neglected.
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V/J10−0.25
staggeredU(1) RVBcubecolumnar

FIG. 5. S → ∞ phase diagram of the cubic lattice quantum dimer
model. (To our knowledge, there are no conclusive studies of the
S = 1 QDM on the cubic lattice, to which one could compare the
large S results of this work.)

C. Large-S phase diagram

Using the method described in Sec. II E, we can obtain the
ground state of the QDM Hamiltonian (3.1) in the limit S →
∞. The results are summarised in Fig. 5. Similarly to the
square lattice case, we observe an extended U(1) RVB liquid
phase: in three dimensions, this phase is anticipated to survive
at S = 1. For V > J, the photon modes become unstable at
the (π, π, π) point, leading to staggered order. Likewise, the
instability of the (π, 0, 0) points for V < 0 drives a transition
into an RVB solid phase with isolated, resonating cubes. For
V < −J/4, this phase gives way to columnar order.

IV. TRIANGULAR LATTICE

It is interesting to consider the case of the triangular lattice
QDM immediately after the cubic one. It has connectivity 6
and is tripartite, and one can view it as a projected cubic lattice
along one of the [111] directions. Following the notation in
Fig. 6, the solid dots belong to one cubic sublattice, the open
circles to the other, and the dotted circles are sites that belong
to both cubic sublattices but get projected onto one another.
The rhombic plaquettes of the triangular lattice correspond to
the three independent faces of a cube, and therefore one can
precisely identify flippable plaquettes and plaquette flipping
terms between the two models. This projective view allows
to draw a complete correspondence between the two QDMs.
Formally, the large-S path integral approach presented in this
paper proceeds identically, down to the numerical prefactors,
for the triangular and cubic cases and we end up with the same
two-component field theory27, with action given (to quadratic
order) by Eq. (3.11) and dispersion given by Eq. (3.12). The
correspondence holds only so long as we express the positions
and wave vectors formally as r and k, and the basis vectors as
e1, e2 and e3.

In order to study the triangular lattice QDM one then needs
to substitute k = (kx, ky) and a given choice of base vectors, for
example e1 = (

√
3, 1)/2, e2 = (−

√
3, 1)/2, and e3 = (0,−1),

illustrated in Fig. 6. This is however beyond the scope of the
present paper. For S = 1 we expect a Z2 liquid phase to be
stable around the RK point28; its fate however is unclear in the
large-S limit. If the description is able to capture it at all, it
can only be after accounting for instantons and understanding

e1
e2

e3

FIG. 6. The triangular lattice illustrating a choice of base vectors
e1,2,3. Its three sublattices are shown as solid dots, open circles, and
dotted circles. Some bonds of the lattice appear as dashed rather
than solid lines, in accordance with the correspondence to a projected
cubic lattice discussed in the main text.

how their role differs in bipartite and non-bipartite lattices – a
task which promises to pose non-trivial challenges.

V. HONEYCOMB LATTICE

In this section, we consider the QDM on the honeycomb
lattice, illustrated in Fig. 7, and we present only the approach
where the constraint is resolved explicitly. Contrary to the
cases considered so far, the primitive cell of the lattice con-
tains two distinct sites (labelled A and B in the figure). With
the choice of lattice vectors e1 = (

√
3, 1)/2, e2 = (−

√
3, 1)/2,

and e3 = (0,−1) in Fig. 7, we can write the bosonic represen-
tation of the Hamiltonian as

HD =
∑
r∈A

{
− J b†r,1 b†r+e1−e3,2

b†r+e2−e3,3
(5.1)

× br+e1−e3,3 br+e2−e3,1 br,2 + h.c.

+V b†r,1 br,1 b†r+e1−e3,2
br+e1−e3,2 b†r+e2−e3,3

br+e2−e3,3

+V b†r+e1−e3,3
br+e1−e3,3 b†r+e2−e3,1

br+e2−e3,1 b†r,2 br,2

}
.

One has to write two separate (large-S ) constraints, one for
each sublattice: ∑

l∈vr∈A

b†l bl − S = 0∑
l∈vr∈B

b†l bl − S = 0 . (5.2)

The rest of the calculation follows rather straightforwardly
from the square lattice case, barring some added algebraic dif-
ficulties, and is presented for completeness in App. B. The
argument of the cosine leads us to introduce the field

φ(k) = 2i
[
Φ1(k)(s2c3 − s3c2) + Φ2(k)(s3c1 − s1c3)

+Φ3(k)(s1c2 − s2c1)
]
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e1
e2

e3

FIG. 7. Honeycomb lattice showing the lattice vectors e1,2,3 defined
in the text.

and the following convenient resolution of the constraint in
terms of a scalar field h(k):

δρ1(k) = −2i(s2c3 − s3c2) h(k)
δρ2(k) = −2i(s3c1 − s1c3) h(k)
δρ3(k) = −2i(s1c2 − s2c1) h(k) . (5.3)

To quadratic order, one arrives then at the action

S =

∫
dτ

∑
r

{
ih(r, τ)∂τφ(r, τ) +

2JS 3

27
[
1 − cos(φ(r, τ))

]}
+

∫
dτ

∑
k

D(k)
2

h (k, τ) h (−k, τ) , (5.4)

where

D(k) =
8JS

3
(
s4

12 + s4
23 + s4

31
)

−
16JS

3
(
s12s23c12c23 + s23s31c23c31 + s31s12c31c12

)
+

16VS
3

{
s12s23(c12c23 − s12s23)

+s23s31(c23c31 − s23s31)

+s31s12(c31c12 − s31s12)
}
, (5.5)

where we introduce for convenience

sµν = sin[k(eµ − eν)/2] = sµcν − sνcµ
cµν = cos[k(eµ − eν)/2] = cµcν + sµsν . (5.6)

Expanding about one given minimum,

2JS 3

27
[1 − cos (φ (r, τ))] '

JS 3

27
φ (r, τ)2 , (5.7)

and integrating over φ, we arrive at the action

S =
1
2

∫
dτ

∑
k

[ 27
2JS 3 ∂τh(k, τ)∂τh(−k, τ)

+ D(k)h(k, τ)h(−k, τ)
]
, (5.8)

and the corresponding dispersion ω2(k) = 2JS 3D(k)/27. This
dispersion is plotted for three values of V/J in Fig. 8. It is

0.0
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−1/8

FIG. 8. Photon dispersion relation of the large-S QDM on the hon-
eycomb lattice. The spectrum is gapless at the Γ point. Another
minimum develops for small V at the K points; however, a plaquette
ordering transition occurs before this minimum would become un-
stable.

gapless at the Γ point for all values of J and V . An instability
develops for V > J whereby ω2 becomes negative for small k.
For V . J, the long-wavelength dispersion is linear:

ω '

√
2J(J − V) S 2

3
k. (5.9)

As the value of V is lowered, secondary minima appear at the
K points in the Brillouin zone which drive the system through
an instability for V < −J/8.

Expanding D(k) about its minimum at Γ = (0, 0),

D[(kx, ky)] ' 3S (J − V)(k2
x + k2

y )

+
9S
16

(7V − J)(k4
x + k4

y + 2k2
xk2

y ) ,

we obtain the action:

S =
1
2

∫
dτd2r

{ 27
2JS 3 (∂τh)2 + 3S (J − V)(∇h)2

+
9S
16

(7V − J)(∇2h)2
}

+ . . . (5.10)

Contrary to the square lattice QDM, see Eq. (2.27), we find
that rotational symmetry is preserved near the band minimum
of the honeycomb lattice QDM for J , V , at least up to quar-
tic order. This is expected, since the discrete symmetry of
the lattice upon 2π/3 rotations implies that the first symmetry
breaking term allowed in the action must be of 6-th order in k.

The ground state of the S → ∞ model was also obtained as
a function of V/J by comparing the energy of several ordered
and resonating phases suggested in the literature29,30 under the
Hamiltonian (5.1). The resulting phase diagram is shown in
Fig. 9, together with the S = 1 phase diagram obtained in
Ref.30. As in the previous cases, the large-S phase diagram
predicts a columnar ordered, a plaquette ordered, an RVB liq-
uid, and a staggered ordered phase, which are also sketched
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S

S = 1
V/J1−0.228(2)

staggeredcolumnar plaquette

S →∞
V/J0.1−1/6

columnar plaq.
U(1) RVB

staggered

FIG. 9. Phase diagram of the honeycomb lattice quantum dimer
model at S = ∞ (this work) and S = 130.

in Fig. 9. It is interesting to note that the RVB liquid phase
instability for V < J occurs below the RVB–plaquette transi-
tion point (cf. Figs. 8 and 9); this suggests that the latter may
in fact be a first order transition. At finite S , instantons are
expected to gap out the U(1) liquid phase in two dimensions,
leading to its immediate collapse, see Sec. II D 2. The other
three phases are all observed at S = 1 with critical V/J similar
to the large-S result.

VI. DIAMOND LATTICE

The diamond lattice is composed of two interpenetrating
face centered cubic (fcc) lattices, as shown in Fig. 10. Sublat-
tice A is connected to sublattice B by the vectors

e1 = 1
√

3
(1, 1, 1) e2 = 1

√
3

(1,−1,−1)
e3 = 1

√
3

(−1, 1,−1) e4 = 1
√

3
(−1,−1, 1) ,

(6.1)

which we chose to define the unit length in the system. No-
tice that

∑
µ eµ = 0. The lattice is 4-fold coordinated and the

smallest lattice loop over which a dimer move can take place
is a hexagon. Each hexagonal plaquette involves lattice bonds
of three out of the four types, and therefore there are four in-
equivalent plaquette terms, involving respectively µ = 1, 2, 3,
µ = 1, 2, 4, µ = 1, 3, 4, and µ = 2, 3, 4.

The QDM Hamiltonian is the sum of four copies of the hon-
eycomb lattice Hamiltonian, Eq. (5.1), and we refrain from
writing it here explicitly for convenience (see Sec. V and
App. B). Expressing the bosonic operators in the radial gauge
(2.4) and expanding to quadratic order in δρ leads to the action

S =

∫
dτ

∑
k,µ

iδρµ(k, τ)∂τΦµ(−k, τ)

+

∫
dτ

∑
r,α

JS 2

8
[
1 − cos(φα(r, τ))

]
+

∫
dτ

∑
k,µ,ν

Dµν(k)
2

δρµ (k, τ) δρν (−k, τ) , (6.2)

where α runs over the inequivalent plaquette sublattices,
Dµν(k) is the interaction matrix that follows from expanding
the Hamiltonian terms −2J

√
ρρρρρρ and Vρρρ to quadratic

e1

e2

e3

e4

FIG. 10. Unit cell of the diamond lattice showing the lattice vectors
e1,...,4 introduced in the text. The two interpenetrating fcc lattices are
shown as solid and open dots, respectively. A hexagonal plaquette is
shown shaded by way of example.

order, and φ is the lattice curl of Φ around each plaquette. In
Fourier space, we have

φα(k) = 2i
∑
βγδ

εαβγδΦβ(k)sγcδ , (6.3)

where εαβγδ is the totally antisymmetric tensor, cµ =

cos(keµ/2), and sµ = sin(keµ/2).
Since the two sublattices of the diamond lattice are inequiv-

alent, there are two separate (large-S ) constraints on ρ, one for
each sublattice: ∑

l∈vr∈A

b†l bl − S = 0∑
l∈vr∈B

b†l bl − S = 0 . (6.4)

In Fourier space, these can be written as∑
µ

cµ δρµ(k) =
∑
µ

sµ δρµ(k) = 0; (6.5)

since we have two constraints for the four fields δρµ, there are
two independent fields left. Resolving the constraints explic-
itly, however, leads to rather intractable algebra; therefore, we
only present the implicit approach of Sec. II C.

Ignoring instantons (for the same reasons discussed in
Sec. III B), the middle term of Eq. (6.2) can be expanded about
a given minimum of the cosine. After Fourier transforming
and substituting (6.3), we obtain

S =

∫
dτ

∑
k,µ

iδρµ(k, τ)∂τΦµ(−k, τ)

+

∫
dτ

∑
k,µ,ν

Mµν

2
Φµ(k, τ)Φν(−k, τ)

+

∫
dτ

∑
k,µ,ν

Dµν(k)
2

δρµ (k, τ) δρν (−k, τ) ; (6.6)
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FIG. 11. Photon dispersion relation of the large-S QDM on the di-
amond lattice. The spectrum is gapless at the Γ point and has two
non-degenerate branches away from the RK point. Another mini-
mum develops for small V near the K points; however, a plaquette
ordering transition occurs before this minimum would become un-
stable at V/J = v∗ ≈ −0.694.

obtaining the matricesM and D from the QDM Hamiltonian
is straightforward but algebraically tedious and is presented in
App. C.

As in Sec. II C, the fields Φµ can now be integrated out to
obtain the action

S =
1
2

∫
dτ

∑
k,µ,ν

[ (
M−1

)
µν
∂τδρµ(k, τ)∂τδρν(k, τ)

+Dµν(k) δρµ (k, τ) δρν (−k, τ)
]
. (6.7)

The dispersion ω2(k) is given by the eigenvalues of the matrix
MD. Two of these eigenvalues are identically zero: these cor-
respond to the unphysical modes ruled out by the constraints
(6.5). The remaining two eigenvalues can be worked out by
straightforward but rather lengthy algebra; the resulting dis-
persion is plotted along high-symmetry directions for three
values of V/J in Fig. 11.

Away from the RK point, the resulting two photon modes
are normally nondegenerate; near k = 0, however, they agree
to leading order:

ω2 '
J(J − V)ΩS 4

8
'

S 4

6
J(J − V)k2 , (6.8)

giving a speed of light

c = S 2
√

J(J − V)/6 . (6.9)

This can be contrasted to the quantum Monte Carlo result
for S = 1 in Refs. 13 and 14, namely c '

√
0.6J(J − V).

Once again, we find a discrepancy of approximately 47% at
quadratic order.

The ground state of the S → ∞ model was obtained as
a function of V/J by comparing the large-S minimum en-
ergy of ordered and resonating phases suggested in the litera-
ture13,14,31. The resulting phase diagram is shown in Fig. 12,

S

S = 1
V/J10.75(2)

staggered
U(1)
RVBordered R

S →∞
V/J−1/7

ordered R U(1) RVB staggered

FIG. 12. Phase diagram of the diamond lattice quantum dimer model
at S = ∞ (this work) and S = 114.

together with the S = 1 phase diagram obtained in Ref.14. Un-
like the previous cases, no resonating solid phase is identified
in either limit: both phase diagrams consist of staggered or-
dered, U(1) liquid and ordered R13 phases. The liquid phase
is far larger for S → ∞ than at S = 1: this is consistent
with the intuition that soft dimers (and spins) favour fluctuat-
ing phases.

VII. RELATION TO OTHER FIELD THEORETIC
APPROACHES

For quantum dimers models on bipartite lattices, field the-
oretic approaches were already known in the literature. These
include height mappings in two dimensions8 and U(1) gauge
theory mappings in three dimensions9. In this Section, we
briefly review them and discuss how they relate to our large-
S representation. For simplicity, we focus on the square and
cubic lattices.

A. Height mapping on the square lattice

In S = 1 dimer models, a height mapping can be con-
structed by assigning a height h̃ to all plaquettes of the lat-
tice, starting from a reference plaquette with h̃ = 0. Going
clockwise around a vertex in the A sublattice (see Fig. 1), the
height field changes by −1/4 on crossing a bond without a
dimer and by +3/4 on crossing one with a dimer. Likewise,
going clockwise around a vertex in the B sublattice, h̃ changes
by −3/4 and +1/4 on bonds with and without dimers, respec-
tively. These numbers are the difference between the occupa-
tion of a given bond and the average occupation of all bonds,
1/4. Therefore, this mapping can be generalised to the large-S
case by requiring that

∆h̃ = ±δρ, (7.1)

where the sign depends on the direction in which the bond is
traversed, as described above.

In order to coarse-grain this height description, it is useful
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to define the so-called magnetic field representation,

~B(r) =
(
Bx, By, 0

)
, Bµ(r) = (−1)x+y δρµ(r), (7.2)

in which the height mapping (7.1) can be expressed as

Bµ(e+rµ/2) = h̃[r+(eµ+εµνeν)/2]−h̃[r+(eµ−εµνeν)/2]. (7.3)

In reciprocal space, the signs appearing in (7.2) have the ef-
fect of shifting the gapless point of the dispersion (2.20) from
(π, π) to (0, 0), that is, coarse-graining will capture the long-
wavelength, low-frequency features of the gapless modes. In
particular, (7.3) can be Fourier transformed to give

Bµ(q) = 2iεµν sin(kν/2)h̃(k); (7.4)

comparing with (2.22) immediately gives

h̃(k) = h[k + (π, π)] =⇒ h̃(r) = (−1)x+yh(r), (7.5)

where h is the single-component height field introduced in
Sec. II D. This concludes the reconstruction of the height map-
ping for classical (nondynamical) dimer models.

To recover quantum dynamics, the conjugate variables Φµ

and φ can be reexpressed as

~Φ(r) =
(
Φ̃x, Φ̃y, 0

)
, Φ̃µ(r) = (−1)x+y Φµ(r) (7.6)

φ̃(r) = (−1)x+y φ(r), (7.7)

which leads to Berry phase terms of the form

i
∑
k,µ

δρµ(k)∂τΦµ(−k) = i
∑

k

~B(k) · ∂τ~Φ(−k) (7.8)

i
∑

k

h(k)∂τφ(−k) = i
∑

k

h̃(k)∂τφ̃(−k). (7.9)

Integrating φ̃ out and coarse-graining (that is, focusing on
small k) then yields the quadratic action (2.27).

B. Coulomb gauge theory on the cubic lattice

The key idea of the mapping discussed above is turning the
lattice gauge field and its divergence-free condition (2.3) into
a coarse-grained, true vector field with ∇ · ~B = 0. Indeed, for
small k, (7.4) reduces to

~B(k) = ik × ~h(k) ⇐⇒ ~B = ∇ × ~h, (7.10)

where ~h = (0, 0, h̃). Similarly, we now want to construct
a divergence-free magnetic field ~B on the cubic lattice by
coarse-graining δρµ. To achieve this, we express our field in
terms of a magnetic vector potential: ~B = ∇ × ~A.

The construction again starts by defining

Bµ(r) = (−1)x+y+z δρµ(r); (7.11)

similarly to the square lattice case, this amounts to shifting
the gapless point of the photon dispersion from (π, π, π) to the
origin. The reciprocal space constraint (3.3) now becomes∑

µ

2i sin(kµ/2)Bµ(k) = 0. (7.12)

This constraint can be resolved similarly to (7.4) by introduc-
ing another vector field ~A:

Bµ(k) = 2iεµνλ sin(kν/2)Aλ(k); (7.13)

at small q, this reduces to B = ∇ × A, as desired.
We now turn the conjugate variables Φ and φ into vector

fields by writing

~Φµ(r) = (−1)x+y+zΦµ(r) (7.14)
~φµ(r) = (−1)x+y+zφµ(r). (7.15)

Eq. (3.6) can be written as

~φµ(k) = 2iεµνλ sin(kν/2)~Φλ(k) (7.16)

and the Berry phase can be integrated by parts to obtain

i
∑
k,µ

δρµ(k)Φµ(−k) = i
∑

k

~A(k) · ~φ(−k). (7.17)

Expanding to quadratic order in φ around a given minimum of
the cosine, we finally obtain the action

S =

∫
dτ

∑
k

[
i~A(k) · ~φ(−k) +

JS 2

36
~φ(k) · ~φ(−k)

+
D̃µν

2
Aµ(k)Aν(−k)

]
, (7.18)

where D̃ is given in terms of the matrixD defined in (3.4)

D̃µν(k) = 4εµκρενλσ sin(kκ/2) sin(kλ/2)Dρσ[k + (π, π, π)].
(7.19)

Finally, we integrate out φ and expand D̃ around q = 0 to
obtain a coarse-grained action in terms of A only. Away from
the RK point, the leading order terms give

S '

∫
dτ

∑
k

[ 9
JS 2 ∂τ

~A(k) · ∂τ ~A(−k) + 2(J − V)~B(k) · ~B(−k)
]
.

(7.20)
Similarly to ordinary quantum electrodynamics, we can iden-
tify ∂τ ~A as the electric field; that is, (7.20) is the action of a
linearly dispersing U(1) gauge theory. The speed of light is
given by

c =
S
3

√
2 (J − V) J, (7.21)

in agreement with (3.14). At the RK point, the B2 term van-
ishes; to leading order, the action becomes

S '

∫
dτ

∑
k

{ 9
JS 2 ∂τ

~A(k) · ∂τ ~A(−k) (7.22)

−
J
2
[
k × ~B(k)

]
·
[
k × ~B(−k)

]}
.
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VIII. CONCLUSION

We proposed a general route to obtain the field theoretic
action for microscopic Hamiltonians with hard constraints,
based on a slave boson representation of the relevant degrees
of freedom and their constraints, combined with a large-S
path integral formulation.

We used it to derive systematically the Lagrangians for bi-
partite QDMs in 2D and 3D from the corresponding micro-
scopic Hamiltonians. We find good agreement with known
results in the literature; namely, calculations up to quadratic
order yield a stiffness for the square lattice QDM at the RK
point equal to 1/4 compared to the exact result π/185,12; and
give a speed of light in the gapless phase of the diamond lat-
tice QDM c =

√
J(J − V)/6 S 2 compared to the numerical

result c(S = 1) '
√

0.6J(J − V)13,14.
Our approach applies straightforwardly to the non-bipartite

case of the QDM on the triangular lattice, where we observe
an intriguing analytical relation to the formalism of the cubic
lattice, which will be interesting to explore in future work.
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Appendix A: Instanton measure on the square lattice

Instantons appear naturally in the compact gauge theory as
stationary trajectories of the action with φ changing by 2π on
a given site between τ = ±∞. Unlike the point-like instantons
described in Sec. II D 2, these objects are smooth as a func-
tion of time, and thus have a nontrivial instanton core. The
action can then be expanded to quadratic order around such
solutions, similarly to the case h = φ ≡ 0 shown in Sec. II D 1.
The resulting fluctuation determinant will appear in the prob-
ability of instantons as a preexponential factor.

We thus have to construct such a stationary instanton so-
lution. Using (2.24, 2.29) with a single instanton event at
r = τ = 0, we get the following quadratic action in terms

of Fourier components:

S =

∫
(dω)(d2k)

{
ωh(k, ω)φ(−k,−ω)

+
D0(k)

2
h(k, ω)h(−k,−ω)

+
M
2

[
φ(k, ω) −

2πi
ω

]
× c.c

}
, (A1)

where we introduce M = JS 2/8 for brevity and i/ω is the
Fourier transform of the Heaviside function in τ. Since the
different Fourier components are decoupled in this action, we
can minimise with respect to them separately, resulting in the
stationary action

h0(k, ω) =
2πiqM

ω2 + MD0(k)

φ0(k, ω) =
2πiq
ω

MD0(k)
ω2 + MD0(k)

. (A2)

In real space, this corresponds to a point-like instanton de-
scribed in Sec. II D 2 together with a power-law decaying “in-
stanton core”. We should also note that (A2) is not a station-
ary trajectory under the original action, but it becomes one if
the M(1 − cos φ) potential term is replaced with a continued
parabolic potential, V(φ) = M

2 minn(φ − 2πn)2: Indeed, the
only point where φ0 reaches π is r = τ = 0, where the cusp in
the potential is recovered by the external instanton charge. In
the following, we will thus use V(φ).

The action can now be expanded to quadratic order in δh
and δφ around both the trivial trajectory h = φ ≡ 0 and the
instanton trajectory (A2). δh can easily be integrated out in
both cases, giving the following actions in δφ:

δS0 =
1
2

∫
(dω)(d2k)

(
ω2

D0(k)
+ M

)
δφ(k, ω)δφ(−k,−ω)

(A3)

δSi = δS0 −
πM

∂τφ0(r = τ = 0)
[δφ(r = τ = 0)]2, (A4)

where the additional term in (A4) corresponds to the cusp of
the continued parabolic potential at φ = π, only reached at
r = τ = 0. The most important difference between the two
actions is that δSi has the zero mode ψ = ∂τφ0, corresponding
to the continuous time translation symmetry of the setup. For
such modes, the usual contribution to the partition function,
e−Scl (det K)−1/2 is replaced by

dτ

√
〈ψ|ψ〉

2π
e−Scl (det K̃)−1/2, (A5)

whereScl is the action due to the stationary instanton, given by
(2.31), and K̃ is the fluctuation kernel of (A4) restricted to the
non-zero modes. Assume |ψ〉 is proportional to a basis vector
(this can always be achieved using a unitary transformation
on the kernel K). Then, K̃ is the principal minor of K that
excludes the row and column of ψ. det K̃ is thus a cofactor of
the full kernel, and we have

det K̃ = 〈ψ̃|K−1|ψ̃〉 det K (A6)
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by the cofactor formula for matrix inversion, where |ψ̃〉 is the
normalised zero mode |ψ〉/

√
〈ψ|ψ〉.

In a matrix language, K is the sum of the kernel K0 appear-
ing in (A3) and a dyad −λ|v〉〈v|, where |v〉 corresponds to the
δ-function at r = τ = 0 implied in (A4) in an arbitrary basis.
For such a matrix, we have the following:

1. det K = det K0(1 − λ〈v|K−1
0 |v〉).

2. If 1−λ〈v|K−1
0 |v〉 = 0, K−1

0 |v〉 is an eigenvector of K with
eigenvalue 0.

3. K−1 = K−1
0 + λK−1

0 |v〉〈v|K
−1
0 /(1 − λ〈v|K−1

0 |v〉).

The first statement can be shown by inserting factors of
K1/2

0 K−1/2
0 into the definition of K; the other two are straight-

forward to verify. Now, det K̃ follows as

det K̃ =

〈
ψ̃0

∣∣∣∣∣∣
K−1

0 +
λK−1

0 |v〉〈v|K
−1
0

1 − λ〈v|K−1
0 |v〉

∣∣∣∣∣∣ψ̃0

〉
×

(1 − λ〈v|K−1
0 |v〉) det K0 (A7)

= 〈ψ̃0|λK−1
0 |v〉〈v|K

−1
0 |ψ̃0〉 det K0

= λ〈v|K−2
0 |v〉 det K0. (A8)

In the first line, we substitute statements 1 and 3 into (A6); in
the second, we note that 1−λ〈v|K−1

0 |v〉 = 0 in our case, so only
the second term of K−1 gives any contribution32. Finally, we
use that |ψ̃0〉 is the normalised zero mode, so by statement 2,

it must be K−1
0 |v〉/

√
〈v|K−2

0 |v〉. Altogether, the measure of the
instanton solutions relative to that of the instanton-free solu-
tion, (det K0)−1/2, is

dτ

√
〈ψ|ψ〉

2πλ〈v|K−2
0 |v〉

e−Scl . (A9)

In the (k, ω) basis, K0 is positive definite and diagonal,
K0(k, ω) = ω2/D0(k) + M, λ = 2πM/[∂τφ0(0, 0)], and
v(k, ω) = 1 (the Fourier transform of a δ-function at the ori-
gin). It is easy to verify that 1 − λ〈v|K−1

0 |v〉 = 0, that is, K
indeed has a zero mode; furthermore, K−1

0 |v〉 ∝ ∂τφ0, as ex-
pected. Substituting into (A9) then gives that the measure of
instanton solutions of a given sign is µI, where I = e−S0 and

µ =

√
Mπ

∫
(d2k)ω(k); (A10)

at the RK point on the square lattice, µ = JS 3/2 √π/8.

Appendix B: Details of the calculation for the honeycomb lattice

Following from Sec. V, we express the bosonic operators in
the radial gauge in the path integral formulation of the model.
For r ∈ A:

br,η =

√
ρη(r + eη/2) exp

[
iΦη(r + eη/2)

]
(B1)

≡

√
S
3

+ δρη(r + eη/2) exp
[
iΦη(r + eη/2)

]
.

For r ∈ B, the expressions are equivalent except for a change
in sign, +eη/2 → −eη/2. Notice that, by thinking of ρη(r +

eη/2) and Φη(r + eη/2) as functions defined on the midpoints
of the bonds, there is no ambiguity nor redundancy in the no-
tation.

The constraints in Eq. (5.2) can then be written (choosing
for concreteness r ∈ A) as∑

η

δρη(r + eη/2) = 0 (B2)

δρ1(r + e1/2) + δρ2(r + e1 − e2/2)
+δρ3(r + e1 − e3/2) = 0 . (B3)

Taking the Fourier transform with respect to sublattice A, the
constraints take on a more symmetric form∑

η

e−ikeη/2δρη(k) = 0 (B4)∑
η

eikeη/2δρη(k) = 0 , (B5)

where in the second line we divided out an overall factor e−ike1 .
More conveniently, we can add and subtract them to obtain∑

η

cη δρη(k) = 0 (B6)∑
η

sη δρη(k) = 0 , (B7)

where again we used the shorthand notation cη = cos(keη/2)
and sη = sin(keη/2). With three field variables δρη(k) and two
constraints, we expect only one degree of freedom.

As we did for the square lattice, it is convenient not to at-
tempt to resolve the constraint directly but rather consider first
the argument of the cosine term in the Hamiltonian

φ̃(r) = Φ1(r + e1/2) − Φ3(r + e1 − e3/2) + Φ2(r + e1 − e3 + e2/2)
− Φ1(r + e2 − e3 + e1/2) + Φ3(r + e2 − e3/2) − Φ2(r + e2/2) (B8)

and its Fourier transform

φ̃(k) = Φ1(k)e−ike1/2 − Φ3(k)e−ik(e1−e3/2) + Φ2(k)e−ik(e1−e3+e2/2)

− Φ1(k)e−ik(e2−e3+e1/2) + Φ3(k)e−ik(e2−e3/2) − Φ2(k)e−ike2/2 (B9)
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= eike3 2i [Φ1(k)(s2c3 − s3c2) + Φ2(k)(s3c1 − s1c3) + Φ3(k)(s1c2 − s2c1)] . (B10)

The nicely symmetric expression in Eq. (B10) required a few
lines of algebra and the property of the lattice vectors e1 +

e2 + e3 = 0. As we inferred above from the constraints on
the δρη fields, there is only one real scalar degree of freedom,
and as before it is convenient to do away with the phase factor
[effectively, use plaquette centres as reference points for φ(r)]
and define

φ(k) = e−ike3 φ̃(k) (B11)

= 2i
[
Φ1(k)(s2c3 − s3c2) + Φ2(k)(s3c1 − s1c3)

+Φ3(k)(s1c2 − s2c1)
]
.

(Notice the importance of the factor of i in preserving the con-
dition of Fourier transform of a real field, φ∗(k) = φ(−k) due
to the antisymmetric behaviour of the sine function.)

Finally, we look for a conjugate field h(k) such that the
Berry phase in the path integral can be written as ih(k)∂τφ(−k).
Namely, we look for h(k) that satisfies

h(k)∂τφ(−k) =
∑
η

δρη(k)∂τΦη(−k) . (B12)

Substituting the expression for φ(k), Eq. (B11), into the equa-
tion above, we obtain

δρ1(k) = −2i(s2c3 − s3c2) h(k)
δρ2(k) = −2i(s3c1 − s1c3) h(k)
δρ3(k) = −2i(s1c2 − s2c1) h(k) . (B13)

One can then straightforwardly verify that the introduction of
the field h(k) automatically resolves the constraints,∑

η

cη δρη ∝
[
c1(s2c3 − s3c2) + c2(s3c1 − s1c3)

+ c3(s1c2 − s2c1)
]
h(k) = 0 (B14)∑

η

sη δρη ∝
[
s1(s2c3 − s3c2) + s2(s3c1 − s1c3)

+ s3(s1c2 − s2c1)
]
h(k) = 0 . (B15)

We are thus in the position to write the full large-S action of
the system, including both the Berry phase and Hamiltonian
contributions, in terms of the fields h(k) and φ(k) only.

In order to obtain the Gaussian field theory for the hon-
eycomb lattice QDM, it is convenient to re-write cos(φ) =

1 − [1 − cos(φ)] and notice that the term in square brackets
contains only quadratic and higher order contributions. Cor-
respondingly, when can write (symbolically)

√
ρρρρρρ cos(φ) =

√
ρρρρρρ −

S 3

27
[
1 − cos(φ)

]
,

(B16)

and focus on expanding to second order the first term on the
right hand side, as well as the ρρρ (V) terms in the Hamilto-
nian in Eq. (5.1). Linear terms in δρη(r + eη/2) vanish upon
summing over r because of the dimer constraint. After quite
some algebraic manipulations, one arrives at the following
contributions to quadratic order:

JS
3

{
δρ1(k)δρ1(−k)s2

23 + δρ2(k)δρ2(−k)s2
31

+δρ3(k)δρ3(−k)s2
12

}
(B17)

−
JS
3

{[
δρ1(k)δρ2(−k) + c.c.

]
c23c31

+
[
δρ2(k)δρ3(−k) + c.c.

]
c31c12

+
[
δρ3(k)δρ1(−k) + c.c.

]
c12c23

}
+

VS
3

{[
δρ1(k)δρ2(−k) + c.c.

](
c23c31 + s23s31

)
+
[
δρ2(k)δρ3(−k) + c.c.

](
c31c12 + s31s12

)
+
[
δρ3(k)δρ1(−k) + c.c.

](
c12c23 + s12s23

)}
,

where we introduced

sµν = sin[k(eµ − eν)/2] = sµcν − sνcµ
cµν = cos[k(eµ − eν)/2] = cµcν + sµsν (B18)

for convenience. Substituting the expressions (B13) of δρη(k)
in terms of h(k), and ignoring trivial constants, we obtain the
action given in Eq. (5.4) in Sec. V.

Appendix C: Details of the calculation for the diamond lattice

The interaction matrix Dµν can be obtained in much the
same way as for the honeycomb lattice, see App. B. For pla-
quettes in the µ = 1, 2, 3 sublattice, we obtain the contribution

JS
4

{
δρ1(k)δρ1(−k)s2

23 + δρ2(k)δρ2(−k)s2
31 + δρ3(k)δρ3(−k)s2

12

−
[
δρ1(k)δρ2(−k) + δρ2(k)δρ1(−k)

]
c23c31 −

[
δρ2(k)δρ3(−k) + δρ3(k)δρ2(−k)

]
c31c12

−
[
δρ3(k)δρ1(−k) + δρ1(k)δρ3(−k)

]
c12c23

}
+

VS
4

{[
δρ1(k)δρ2(−k) + δρ2(k)δρ1(−k)

](
c23c31 + s23s31

)
+

[
δρ2(k)δρ3(−k) + δρ3(k)δρ2(−k)

](
c31c12 + s31s12

)
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+
[
δρ3(k)δρ1(−k) + δρ1(k)δρ3(−k)

](
c12c23 + s12s23

)}
, (C1)

where we again introduced cµν = cos[k(eµ − eν)/2] = cµcν + sµsν and sµν = sin[k(eµ − eν)/2] = sµcν − cµsν. The other three
sublattices of plaquettes give rise to equivalent contributions with 123↔ 234↔ 341↔ 412. Now, the matrixD can be written
explicitly as

D =
JS
2
J +

VS
2
V (C2)

J =


s2

23 + s2
34 + s2

43 −(c13c23 + c14c24) −(c12c32 + c14c34) −(c12c42 + c13c43)
−(c23c13 + c24c14) s2

34 + s2
41 + s2

13 −(c21c31 + c24c34) −(c21c41 + c23c43)
−(c32c12 + c34c14) −(c31c21 + c34c24) s2

41 + s2
12 + s2

24 −(c31c41 + c32c42)
−(c42c12 + c43c13) −(c41c21 + c43c23) −(c41c31 + c42c32) s2

12 + s2
23 + s2

31

 (C3)

V =



0 c13c23 − s13s23 +

c14c24 − s14s24

c12c32 − s12s32 +

c14c34 − s14s34

c12c42 − s12s42 +

c13c43 − s13s43
c23c13 − s23s13 +

c24c14 − s24s14
0 c21c31 − s21s31 +

c24c34 − s24s34

c21c41 − s21s41 +

c23c43 − s23s43
c32c12 − s32s12 +

c34c14 − s34s14

c31c21 − s31s21 +

c34c24 − s34s24
0 c31c41 − s31s41 +

c32c42 − s32s42
c42c12 − s42s12 +

c43c13 − s43s13

c41c21 − s41s21 +

c43c23 − s43s23

c41c31 − s41s31 +

c42c32 − s42s32
0


. (C4)

We can express the matrices J and V more concisely by in-
troducing the matrix C with entries cµν, the diagonal matrix
R with entries Rµµ =

∑
ν cos[k(eµ − eν)] − 2, and defining

Ω =
∑
µ<ν s2

µν:

J = ΩI + R − C2 + 2C (C5)
V = 2C2 − 6C − R, (C6)

where I is the identity matrix.
Ignoring instantons, the middle term of Eq. (6.2) can be

expanded about a given minimum of the cosine, giving

JS 3

64

∑
α,r

φ2
α(r, τ) =

JS 3

64

∑
α,k

|φα(k, τ)|2 = (C7)

JS 3

64

∑
k,µνα

Zαµ(k)Zαν(−k)Φµ(k, τ)Φν(−k, τ) ,

whereZµν = 2iεµνλκsλcκ, see Eq. (6.3). Defining the matrix

M =
JS 3

32
ZT (−k)Z(k) =

JS 3

32
Z2, (C8)

the quadratic action can now be written in the form (6.6).
The dispersion ω2(k) is given by the eigenvalues of the ma-

trixMD. It is important to note that Zµνcν = Zµνsν = 0 by
the definition of Z. Consequently, MC = 0, which greatly
simplifies the form ofMD. All in all, one has to diagonalise
the matrix

JS 4

64
[
ΩJZ2 + (J − V)ZRZ

]
. (C9)

It follows from the definition of Z that cµ and sµ (understood
as 4-dimensional vectors) are eigenvectors of this matrix with
zero eigenvalue. These correspond to the unphysical modes
ruled out by the constraint (6.5).
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