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When two monolayers of graphene are stacked with a small relative twist angle, the resulting band structure
exhibits a remarkably flat pair of bands at a sequence of ’magic angles’ where correlation effects can induce a
host of exotic phases. Here, we study a class of related models of n-layered graphene with alternating relative
twist angle±θ which exhibit magic angle flat bands coexisting with several Dirac dispersing bands at the Moiré
K point. Remarkably, we find that the Hamiltonian for the multilayer system can be mapped exactly to a set of
decoupled bilayers at different angles, revealing a remarkable hierarchy mathematically relating all these magic
angles to the TBG case. For the trilayer case (n = 3), we show that the sequence of magic angle is obtained
by multiplying the bilayer magic angles by

√
2, whereas the quadrilayer case (n = 4) has two sequences of

magic angles obtained by multiplying the bilayer magic angles by the golden ratio ϕ = (
√
5+1)/2 ≈ 1.62 and

its inverse. We also show that for larger n, we can tune the angle to obtain several narrow (almost flat) bands
simultaneously and that for n → ∞, there is a continuum of magic angles for θ . 2o. Furthermore, we show
that tuning several perfectly flat bands for a small number of layers is possible if the coupling between different
layers is different. The setup proposed here can be readily achieved by repeatedly applying the ”tear and stack”
method without the need of any extra tuning of the twist angle and has the advantage that the first magic angle
is always larger than the bilayer case.

I. INTRODUCTION

Recently, it was shown that two graphene layers twisted to
a special (”magic”) angle exhibit a very interesting range of
correlated phenomena including Mott insulating and super-
conducting phases1–3. This remarkable discovery has stim-
ulated further extensive research into magic-angle supercon-
ductivity and correlated electron states in van der Waals
heterostructures4–36 and inspired a vast theoretical and exper-
imental search to extend the family of systems which exhibit
similar behavior33–41. Finding such systems achieves several
goals. First, they expand the family of Moiré systems where
correlated physics can be studied in a setting which have sev-
eral advantages over traditional strongly-correlated systems
(easier to fabricate, richer possibilities for tuning the band
structures, etc). Second, finding systems which share simi-
larities with TBG, but differ in some details – such as symme-
tries, bands topology and interaction strength, – can help pro-
vide a deeper understanding of the correlated physics in TBG
itself. Furthermore, some of these systems may have practi-
cal advantages over TBG in terms of the ease of fabrication or
tunability of the physical properties.

A distinguishing feature of the TBG physics is the appear-
ance of remarkably flat bands at charge neutrality for magic
twists θ∗1,29,42. The existence of such flat bands was pre-
dicted in Refs. 42,43 using an effective continuum model for
two graphene layers with twist-independent interlayer cou-
pling. (see also42–45 and46–48). In this model42, intra- and
inter-sublattice hopping parameters were taken to be equal
and band flattening happens at a certain sequence of magic
angles for which the renormalized Fermi velocity vanishes at
Dirac points. It was, however, recently realized that the ef-
fect of lattice relaxation in TBG leads to the expansion of the
AB stacking regions relative to the AA regions in the Moiré
pattern49. As a result, the intra-sublattice hopping parameter
wAA is suppressed relative to the inter-sublattice hopping pa-
rameterwAB at small twists. Crucially, this results in band gap

FIG. 1. A schematic illustration of the alternating-twist multilayer
graphene: trilayer (left) and quadrilayer (right).

opening and further band flattening, down to the point when
the bands can in principle become absolutely flat29. Although
it is understood that the existence of the flat bands is impor-
tant for the correlated physics, it is still unclear which feature,
- band-flattening, band isolation or band topology - is most
decisive.

In this work, we report an infinite class of multilayer
graphene systems which all manifest the remarkably flat
bands and the corresponding magic angles patterns. Such sys-
tems, if realized experimentally, would provide a rich play-
ground for correlated physics beyond TBG. It is worth not-
ing that other multilayer systems studied in the literature such
as ABC trilayer graphene stacked on hexagonal boron nitride
or twisted double bilayer graphene do not exhibit magic an-
gles or flat bands when realistic effects, e.g. trigonal warping
terms, are included despite the recent experimental observa-
tion of correlated insulting states and superconductivity33–36.

We consider a model of alternating-twist multilayer
graphene (ATMG) for which the relative twists between two
neighboring layers have the same magnitude but alter in sign
(see Fig.1). In general, for a system with n graphene sheets,
there will be several Moiré patterns – each one originating
from a pair of adjacent layers. The overall periodicity of such
patterns is determined by the relative inter-layer twists, while
the origin of the pattern is controlled by the relative displace-
ment. In the TBG case29,42 the resulting Moiré physics is shift-
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independent, but in the case of a more complex multi-Moiré
interference in twisted multilayers it can be relevant. In this
work, we first focus on the case where the Moiré patterns are
aligned so that the flat-band physics is most pronounced. At
the end, we discuss how sensitive our results are to layer mis-
alignment and show that the obtained flat bands are relatively
stable to the inclusion of layer displacement.

Our main result is that the Hamiltonian for the ATMG with
n = 2ne (n = 2ne+1) layers can be mapped exactly to a sum
of ne twisted bilayer models (plus a single layer model) at dif-
ferent twist angles. Using this mapping, we find that there are
ne sequences of magic angles given by multiplying the TBG
magic angles by 2 cos πk

n+1 with k = 1, . . . , ne, which implies
that the first magic angle for n-layered ATMG is larger than
the first magic angle in TBG by a factor of 2 cos π

n+1 which
yields

√
2 for n = 3 and approaches 2 as n → ∞. This rep-

resents a practical advantage since samples with larger twist
angles are generally more stable and easier to fabricate. In
addition, the setup proposed here does not require indepen-
dent tuning of the different relative twist angles since it can be
achieved by repeatedly appying the ”tear and stack” method.

II. MODEL

We begin by considering a general system of n graphene
layers with the `-th layer twisted counter-clockwise around a
lattice cite by an angle θ` and then displaced by a distance
d` relative to a fixed reference. Similar to the bilayer prob-
lem, the coupling between layers i and j is characterized by
two parameters wijAA and wijAB which indicate intra- and in-
tersublattice coupling, respectively. We take these parameters
to be generally different between different layers and assume
coupling takes place only between nearest neighboring lay-
ers. The resulting low-energy effective Hamiltonian reads (see
Appendix A for details)

H =

n∑
`=1

c†`,r(−ivFσθ` ·∇)c`,r+

n−1∑
`=1

c†`,rT
`,`+1
r c`+1,r+h.c.,

(1)
where vF ≈ 106 m/s is the monolayer graphene Fermi veloc-
ity, σθ` = e

i
2 θ`σzσe−

i
2 θ`σz and the interlayer coupling matrix

T `,`+1(r) takes the form

T ij(r) =

(
wijAAU

ij
0 (r) wijABU

ij
1 (r)

wijABU
ij∗
1 (−r) wijAAU

ij
0 (r)

)
, (2)

with the Moiré potentials U ijm=0,1(r) defined as

U ijm(r) =

3∑
n=1

eim(n−1)φe−iq
ij
n ·(r−Dij) . (3)

Here, qij1 = 2kD sin(θji/2)Rφij (0,−1), qij2,3 = R±φq
ij
1 ,

φ = 2π/3, Rθ = e−iθσy denotes the counter-clockwise ro-
tation operator with angle θ, and kD = 4π/3

√
3a is the Dirac

momentum of the monolayer graphene with lattice constant

a = 1.42 Å. We also introduced the auxiliary angle variables
θji = θj − θi and φij = (θi + θj)/2. We can write the dis-
placement vectorDij of the Moiré pattern as

Dij =
di + dj

2
+ i cot(θji/2)σy

di − dj
2

. (4)

In the bilayer case (n = 2), the Hamiltonian (1) reduces
to the TBG Hamiltonian29,42,43 up to the gauge transformation
c` → c`e

iRθ`K·d` . The advantage of the form we consider
here is that it makes it clear how the layer displacements di
enter the Hamiltonian by shifting the corresponding Moiré po-
tentials. For n layers, there are n − 1 shift variables D`,`+1,
` = 1, . . . , n − 1, one of which can be removed by redefin-
ing the origin, leaving n − 2 variables which influence the
spectrum. This is the reason why the shift vectors were unim-
portant in the bilayer case in contrast to the multilayer case
considered here.

In general, the potential (2) will generate several overlap-
ping Moiré patterns generated by the different angles and shift
vectors between consecutive layers. For most of this paper,
we will focus on the case of ”unshifted” ATMG which cor-
responds to the choice θ` = (−1)`θ/2 and d` = d such
that the nearest neighboring layers are aligned and have al-
ternating relative twists of ±θ. In this case, φ`,`+1 = 0,
θ`+1,` = (−1)`+1θ, D`,`+1 = d and there is a single Moiré
pattern similar to the bilayer problem. We also assume that the
ratio between wijAA and wijAB couplings is layer-independent
and denote it as

κ = wijAA/w
ij
AB . (5)

Assuming small twist angle θ, we can neglect the phase fac-
tor in the Pauli matrices σθ` → σ and get rid of the an-
gular dependence by introducing the dimensionless variables
αij = wijAB/(vF kDθ) leading to?

H =

(
M D†
D M

)
AB

, (6)

where AB indicates the matrix is in the sublattice space. The
operators D andM are given by

D =

(
−2i∂̄ WU1(r)

WTU1(−r) −2i∂̄

)
, (7)

M = κ

(
0 WU0(r)

WTU0(−r) 0

)
. (8)

Here, we have rescaled the Hamiltonian so that all energies
are measured in units of vF kDθ. We also rescaled the co-
ordinates so that they are measured in terms of the Moiré
length scale r → kDθr and introduced the derivatives ∂ and
∂̄ relative to the dimensionless complex variable z = x + iy.
The potentials Um(r) are given by (3) with Dij = 0 and
qijn = R(n−1)φ(0,−1). The operators D andM act on vec-
tors which has the form ψ = (ψo, ψe)

T where ψo/e contain
the wave functions for the odd/even layers given explicitly as
ψo = (ψ1, ψ3, . . . , ψ2no−1)T and ψe = (ψ2, ψ4, . . . , ψ2ne)

T
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where ne = bn/2c and no = dn/2e are numbers of even and
odd layers. The matrix W is no × ne layer hopping matrix
and given by

W =

 α12 0 0 . . .
α23 α34 0 . . .
0 α45 α56 . . .
. . . . . . . . . . . .

 . (9)

III. RESULTS

A. Reduction to the bilayer problem

We now show that the Hamiltonian of the multilayer prob-
lem with n = 2ne (n = 2ne + 1) layers can be mapped ex-
actly to a direct sum of ne bilayer Hamiltonians (plus a sin-
gle layer Hamiltonian). This is done by writing the singular
value decomposition of W as W = AΛB† where A and B
are no× no and ne× ne unitary matrices, respectively, and Λ
is an no × ne matrix with λk, k = 1, . . . , ne on the diagonal
and zeros everywhere else (λk are square roots of the eigen-
values of WTW ). Applying the unitary transformation given
by V = diag(A,B) in the odd/even space to the Hamiltonian
(6) yields

V †HV =

{
H(2)
λ1
⊕H(2)

λ2
· · · ⊕ H(2)

λne
, n even,

H(2)
λ1
⊕H(2)

λ2
· · · ⊕ H(2)

λne
⊕H(1), n odd,

(10)
where H(2)

α is the bilayer Hamiltonian with coupling param-
eters α = wAB/(vF kDθ) and κ and H(1) is the Hamiltonian
for a single graphene layer.

A consequence of the preceding discussion is that the spec-
trum of the multilayer problem with coupling matrix W is
given by the union of the spectra of several bilayer problems
whose coupling parameters are given by the eigenvalues of the
matrix

√
WTW (in addition to a single layer graphene disper-

sion if the number of layers is odd). Moreover, the eigenstates
of the multilayer problem are easily obtainable from the eigen-
states of the single layer problem. This applies particularly
for the case of flat bands where the eigenstates were shown to
have a simple form29.

B. The chiral limit

The chiral model for twisted bilayer graphene where the
same-sublattice coupling set to zero wAA = 0 (or equiva-
lently κ = 0 in this work) was introduced in Ref.29. It
was shown that this model captures the essential phenomenol-
ogy of magic angles where the different notions of flatness
(vanishing Fermi velocity, minimum bandwidth, maximum
band gap) all coincide due to the appearance of perfectly flat
bands for special (magic) values of the dimensionless cou-
pling α = wAB/(vF kDθ). This model is one of the simplest
models exhibiting magic angle flat bands and its applicabil-
ity to TBG is supported by the observation that lattice relax-

n α1 α2 α3 α4 α5 α6

2 0.586 2.221 3.75 5.276 6.795 8.313
3 0.414 2.57 2.652 3.731 4.805 5.878

4 0.362 1.372 2.318 3.261 4.2 5.138
0.948 3.594 6.067 8.537 10.995 13.4507

5 0.338 1.282 2.165 3.046 3.923 4.8
0.586 2.221 3.75 5.276 6.795 8.313

6
0.325 1.233 2.081 2.928 3.771 4.613
0.47 1.781 3.007 4.231 5.45 6.667

1.317 4.99 8.426 11.855 15.268 18.679

0.586 2.221 3.75 5.276
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FIG. 2. Magic angles families for the alternating-twist multilayer
graphene in the chiral limit (κ = 0). Upper panel: Numerical values
of magic angles for alternating-twist n-layered systems (n = 2, 3..).
The magic angle parameters αi = wAB/(vF kDθi) designate the
twists under which the lowest bands become perfectly flat. For each
n, there are bn/2c sequences of magic angles (denoted by different
colors) obtained by dividing the bilayer magic angles by 2 cos πk

n+1
,

k = 1, . . . , bn/2c as illustrated schematically in the lower panel.

ation tends to reduce the size of AA regions relative to AB
regions49, thus suppressing the value of wAA (intrasublattice
coupling) relative to wAB (intersublattice coupling).

Let us first consider the standard setting where all interlayer
couplings are the same αij = α. In this case, the layer hop-
ping no × ne matrix W is given by

W = α(δij + δi,j+1) . (11)

The eigenvalues of
√
WTW can be easily computed for any

number of layers n and they are given by λk = 2 cos( πk
n+1 )α,

k = 1, . . . , ne. Thus, the ATMG with n layers has ne se-
quences of magic angles given by

α
(n)
k = α(2)/

(
2 cos

πk

n+ 1

)
. (12)

Here, α(2) is the sequence of magic angles in the bi-
layer problem which was computed in29 as α(2) =
0.586, 2.221, 3.75, 5.276, 6.795, . . . . The magic angle se-
quence for any n can then be easily computed as shown in
Fig. 2 for n up to 6.

It should be noted that the mapping to the bilayer problem
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can also be used to explicitly write the wave functions of the
multilayer system in terms of their bilayer counterparts. For
the eigenvalue λk, the corresponding eigenfunctions for all
layers ` = 1, . . . , n are given by

ψ
(k)
` (r) =

√
2n

n+ 1
(−1)`(k+1) sin(

πk

n+ 1
`)ψTBG

λk
(r) , (13)

normalized as
∑n
`=1 |ψ

(k)
` (r)|2 = n|ψTBG

λk
(r)|2 and ψTBG

λk
(r)

is the eigenfunction of the TBG HamiltonianH(2)
λk

.
For the trilayer case (n = 3), the only eigenvalue of√
WTW is λ1 =

√
2α. Eq. 10 implies that the system is

equivalent to the sum of a bilayer problem with coupling
√

2α
and a single layer problem. As a result, we can immediately
read off the magic angles, where a perfectly flat band appears,
to be α(3) = α(2)/

√
2 = 0.414, 1.57, 2.65, 3.731, 4.805, . . . .

This is verified in Fig. 3, where the band structure is computed
numerically for the first two magic angles for the trilayer prob-
lem showing the existence of a perfectly flat band.

One particularly interesting feature here is that for the tri-
layer graphene, the first magic angle is larger by a factor of√

2 compared to the TBG, which represents an experimental
advantage. Apart from the scaling of the magic angles, the
trilayer system differs from TBG in two main aspects. First,
the flat band here coexists with a dispersing Dirac cone. If re-
alized experimentally, this feature will distinguish the physics
of the trilayer system from the TBG physics, and could help
to elucidate whether band flatness or band isolation plays the
bigger role in the correlated physics. Second, while the band
structure for the flat band looks identical to the TBG band
structure at the first magic angle θ ≈ 1.08o, the actual scale for
the Moiré pattern is determined by the actual angle θ ≈ 1.53o

which determines the scale of the gaps and the interaction. We
stress that the mapping does not only apply for the spectra but
also for the wave functions. As a result, the physics of the
trilayer model (including the interaction effects) will be iden-
tical to the physics of TBG with all distances scaled down by a
factor of

√
2 and with an extra Dirac band from an individual

graphene layer.
For the quadrilayer case (n = 4), the matrix

√
WTW has

two eigenvalues λ1,2 = αϕ±1, where ϕ = (
√

5 + 1)/2 is the
golden ratio, yielding two sequences of magic angles α(4) =
α(2)/ϕ = 0.362, 1.373, 2.318, 3.261, 4.2, 5.138, 5.075, . . .
and α′(4) = α(2)ϕ = 0.948, 3.594, 6.069, 8.537, . . . . The
quadrilayer ATMG maps to a sum of two TBGs and these
two sequences correspond to points at which one of these two
twisted bilayers hits a magic angle. The largest magic angle
(the smallest α) in this case is θ ≈ 1.75◦ – which is larger
than the bilayer and trilayer cases.

We note that since the different magic angle sequences for
a given n have incommensurate periods, we can find some
values of α which is close to several magic angles from dif-
ferent sequences simultaneously. This happens for example
for n = 5 for α ≈ 2.2 which is very close to the third magic
angle in the first sequence (2.165) and the second magic an-
gle in the second sequence (2.221). Another example happens
when n = 6 and α ≈ 1.275 which is very close to the second

- 0.4

- 0.2

0.0

0.2

0.4

FIG. 3. Band structure at the first two magic angles for the trilayer
n = 3 and quadrilayer n = 4 cases. We show the spectrum for the
chiral limit κ = 0 (red, solid) as well as the realistic lattice relaxation
value for κ at the corresponding angle49 (blue, dashed). In the chiral
limit, we can observe a perfectly flat band coexisting with a single
Dirac cone at the K point for n = 3. For n = 4, the chiral flat band
coexists with another tBG spectrum at non-magic angle. We can see
that the flat bands for the first magic angle for n = 3 (upper left) and
the first two magic angles for n = 4 (lower left and right) are stable to
the addition of intrasublattice interlayer coupling κ 6= 0, whereas the
flat band at the second magic for n = 3 (upper right) gets destroyed.
All energies are measured in units of ~vF kDθ = wAB/α.

magic angle in the first sequence (1.23) and the first magic an-
gle in the third sequence (1.32). In both cases, there are two
pairs of very narrow bands coexisting at 0 as shown in Fig. 4.

It is instructive to consider the limit of large number of lay-
ers n → ∞. In this case, the eigenvalues λk = 2 cos( πk

n+1 )α

of the matrix
√
WTW form a continuum from 0 to 2, which

implies that there is a continuum of magic angles: whenever
α > α

(2)
1 /2 ≈ 0.293, we are always arbitrarily close to a

magic angle descending from the first magic angle of TBG
where at least a single band is perfectly flat band. Similarly,
there is a flat band deriving from the second magic angle for
α > α

(2)
2 /2 ≈ 1.11. In general, there will be exactly k per-

fectly flat bands deriving from the first m TBG magic angles
whenever α(2)

m−1/2 ≤ α < α
(2)
m /2, where α(2)

m is the m-th
magic angle of TBG. This suggests an intriguing connection
to possible flat-band-related phenomena in some samples of
turbostratic graphites, if its layers are naturally assembled in
small but very random alternating twists50.

When the number of layers n is relatively small, it is still
possible to achieve several flat bands at 0 simultaneously if
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FIG. 4. Band structure for the models with n = 5 layers with α =
2.2 and n = 6 layers with α = 1.275. In both cases, the vicinity
to two very close magic angles leads to the appearance of two pairs
of almost perfectly flat bands. All energies are measured in units of
~vF kDθ = wAB/α.

we allow for different hopping parameters between different
layers. So far, we have only considered the case where all
the couplings αij = α are equal which is naturally expected
since all the graphene layers are identical. We now consider
instead the possibility that the coupling between layers is non-
uniform. For instance, the coupling to the outer layers (top
and bottom) may differ slightly from that between inner lay-
ers. Another possibility is to artificially tune the couplings
by including thin layers of a dielectric material between some
of the layers or by depositing adatoms on the top or bottom
surfaces to change the interlayer potential. Our purpose in
this discussion is to show that this is an interesting theoretical
possibility leaving the question of experimental realizability
to future studies.

Let us now consider the simplest case with four layers
n = 4 such that the coupling to the outer layers α12 = α34 =
α1 is different from the coupling between the middle layer
α23 = α2. In this case, we can achieve two perfectly flat
bands simultaneously as follows: we require the two eigenval-
ues of the matrix

√
WTW to be equal to the first two magic

angles. A simple way to achieve this is to require the determi-
nant and the trace of this matrix to be equal to the product and
sum of the first two bilayer magic angles α(2)

1,2 leading to the
equations

α2
1 = α

(2)
1 α

(2)
2 , 2α2

1 + α2
2 = (α

(2)
1 )2 + (α

(2)
2 )2 , (14)

which can be easily solved for α1,2 yielding α1 =√
α
(2)
1 α

(2)
2 = 1.14 and α2 = |α(2)

1 − α
(2)
2 | = 1.64. The

band structure for this choice of parameters is shown in Fig. 5
showing two perfectly flat bands.

C. Switching on intrasublattice couplings wAA

We now consider non-zero intra-sublattice coupling wAA
which in our notation corresponds to non-zero κ (cf. Eq. 5).
The value of κ generally depends on the angle; it is expected
to be close to 1 for α . 0.25 then starts decreasing as α is

wAA/wAB = 0 wAA/wAB = 0.5 wAA/wAB = 0.6

FIG. 5. Band structure for the quadrilayer problem with unequal
layer couplings α12 = α34 = 1.14, α23 = 1.64. We notice the
appearance of a pair of perfectly flat bands which are relatively stable
to the inclusion of intrasublattice intralayer coupling κ = wAA/wAB.
All energies here are measured in units of ~vF kDθ

increased49. In the following, we will use the values of the re-
laxation parameter κ computed for TBG49 as an estimate for
the multilayer problem although a more involved ab-initio cal-
culation is needed to refine this value and account for complex
lattice relaxation effects in multilayer systems.

In TBG, it is known that the flat bands at the first magic
angle are a lot more stable than higher magic angles when
κ is non-zero29. Our mapping implies that the flat bands in
the multilayer model inherit the stability of the corresponding
bilayer flat bands. That is, multilayer magic angles which de-
scend from the first bilayer magic angle are significantly more
stable than those descendent from higher magic angles.

For the trilayer case (n = 3), this means that the first magic
angle α = 0.414 is stable for relatively large values of κ in-
cluding the realistic value κ ≈ 0.7 − 0.8 estimated in Ref.49.
The second magic angle α = 1.57 is however significantly
less stable and the flat band gets destroyed for realistic values
of κ ≈ 0.4. For quadrilayer (n = 4), the situation is different
since the first two magic angles α = 0.362, 0.948 are descen-
dent from the first magic angle of TBG. In fact, the flat band
α = 0.948 inherits the stability of the bilayer flat band while
also having a significantly larger value of relaxation κ ≈ 0.5
compared to the second magic angle in TBG which leads to
extra stability. The flat bands for the first two magic angles
for n = 3, 4 are shown in Fig. 3 for realistic values of the re-
laxation parameter κ and we can see that they are stable in all
cases except the second magic angle for n = 3 as expected.
The effect of κ on the n = 4 setup with different couplings
leading to two perfectly flat bands can also be investigated
and we find that it is relatively stable for realistic values of κ
around 0.5− 0.6 (cf. Fig. 5).

IV. EXPERIMENTAL REALIZATION

So far we have focused on the setting where the layers are
perfectly aligned, i.e. the displacement vectorsDl,l+1 defined
in (4) were assumed to be equal. For experimental realiza-
tions, it however very difficult to achieve perfect alignment on
the atomic scale. Hence, it is crucial to investigate how our
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FIG. 6. Band width in units of ~vF kDθ as a function of the dis-
placement vector D within the Moiré unit cell formed by the vectors
a1,2 = 4π

3
(
√
3

2
,± 1

2
) for n = 3 and n = 4 at the first magic angle

for κ = 0.8 (left panel) together with the band structures for one
selected point D′ = (1, 0) at the border of the blue (narrow band)
region (middle panel). The density of states exhibits a very large split
peak close to charge neutrality due to the flat band (left panel).

results are affected when we lift this assumption and consider
unequal displacement vectors. In this case, the exact mapping
to TBG no longer exists. However, the Hamiltonian (1) is still
translationally invariant on the Moiré lattice (since the differ-
ent Moiré potentials are only shifted relative to one another)
and we can find the band structure within the Moiré Brillouin
zone numerically.

For the trilayer case (n = 3), we can set the displacement
D12 to zero by shifting the origin leaving one relevant dis-
placement D23 = D. The bandwidth of the narrow band
for κ = 0.8 and for different values of the shift vector D is
shown in Fig. 6. We can see that there is a range ofD around
0 for which the bandwidth remains relatively small. For a
reference, we can compare the bandwidth with the Coulomb
energy scale given by ECoulomb = e2θ

4πεε0a
. In our dimension-

less unit, εCoulomb = ECoulomb
~vF kDθ ≈

1
ε0

. For ε0 ≈ 4, this scale
exceeds the bandwidth for the whole range of D as shown
in Fig. 6 implying strong interaction effects regardless of the
layer displacement. We notice that, even when the band is
not perfectly flat, it is associated with a very large peak in the
density of states as shown in right panel of Fig. 6.

For the quadrilayer case (n = 4), we can set D23 to zero
leaving two different shift vectors D12 and D34 which affect
the spectrum. However, if the quadrilayer system is made us-
ing the tear and stack method from the same TBG, then the
displacements satisfy d4 − d3 = d2 − d1. For small enough
angles, the displacement vectors are D12 = iσy(d1 − d2)/θ
andD34 = iσy(d3−d4)/θ = D12

? , hence there is only one
shift vector D = D12 = D34 and we can again investigate
how it influences the bandwidth as shown in Fig. 6. Similar
to the trilayer case, we see that the bandwidth of the lowest
band is small compared to the interaction scale for the whole

range of displacements. We also see in this case that the nar-
row band is associated with a very large peak in the density of
states.

It follows from the previous discussion that perfect align-
ment of the layers is not a requirement for the appearance of
flat bands in ATMG since the bandwidth remains reasonably
small for the whole range of displacements. It is worth not-
ing that by using the ”tear and stack” trick repeatedly, we can
ensure that the twist angles between consecutive layers are
exactly equal and opposite without the need of any extra tun-
ing for the angles. For trilayers, the procedure would start by
tearing a part of a monolayer sample, twisting and stacking it,
then tearing another piece of the base monolayer sample and
stacking it on the top of the twisted bilayer without any ex-
tra twisting. This ensures that the top and bottom layers are
aligned which implies that the two twist angles are opposite to
a very good accuracy. The same can be done for quadrilayer
by using the tear and stack method starting with a TBG sam-
ple, again without any additional twisting. Thus, we expect it
to be possible to realize alternating twist angles of equal mag-
nitude to a reasonable accuracy. Adding the fact that the magic
angles in the multilayer setting are larger and thus more stable
makes our current setting a very promising setup to observe
magic angle physics beyond TBG.

V. CONCLUSION

In conclusion, we have introduced a model of twisted mul-
tilayer graphene with alternating twist angle focusing on the
limit of aligned layers. We have shown that this model for
n = 2ne (n = 2ne + 1) layers maps exactly to a sum of ne
twisted bilayer models (plus a single layer model) with differ-
ent twist angles. Such mapping enabled us to determine the
pattern of magic angles for arbitrary n which is given by mul-
tiplying the bilayer magic angles by 2 cos πk

n+1 , k = 1, . . . , ne.
Focusing on the trilayer and quadrilayer cases, we found that
these models exhibit flat bands coexisting with other dispers-
ing bands at zero energy and showed that such flat bands are
relatively stable even when layer misalignment is taken into
account. In addition, we found that for relatively large num-
ber of layers or when interlayer couplings are different, we
can achieve several flat bands at zero energy simultaneously.
Moreover, we show that there is a continuum of magic an-
gles for θ . 2◦ in the limit of very large number of layers
n → ∞. This might suggest an intriguing link to possible
flat-band-related phenomena in some samples of turbostratic
graphites, if its layers are naturally assembled in small but
very random alternating twists. At the end, we discuss possi-
ble experimental realizations of the model and show that it can
be achieved within current technology by applying the tear
and stack method repeatedly. Compared to TBG, the multi-
layer setting has the advantage that the first magic angle is
larger making it easier to realize experimentally.

Note: During the preparation of this manuscript, two re-
lated preprints appeared:51 which discussed twisted trilayer
graphene with commensurate twist angles and52 which dis-
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cusses several multilayer settings including a related one with
equal rather than alternating twist angles.

ACKNOWLEDGMENTS

We thank Bertrand Halperin, Philip Kim and Pablo Jarillo-
Herrero for fruitful discussions. A.J.K. was supported by the
Swiss National Science Foundations grant P2ELP2 175278.
G.T. was supported by the MURI grant W911NF-14-1-0003
from ARO and by DOE grant de-sc0007870 and DOE Grant
No. DE-SC0019030. A.V. and E.K. were supported by a Si-
mons Investigator award and by nsf-dmr 1411343.

Appendix A: Derivation of the Hamiltonian

Our setting is a generalization of the twisted bilayer problem considered in Refs.42,43. We consider n graphene layers where
the `-th layer is rotated counter-clockwise by an angle θ` then displaced by distance d` relative to a fixed reference and restrict
ourselves to coupling only between next neighboring layers which can, in general, depend on the layer index `. Following
Bistritzer and Macdonald42, the coupling between layers is given by the term

T ij =

∫
drdr′c†i (r)tij(r, r′)cj(r

′) , (A1)

where c`(r) represents the annihilation operator for an electron in the `-th layer at position r. The electron operator in the `-th
layer can be expanded in terms of the graphene orbitals living on a honeycomb lattice which is twisted by angle θ` and displaced
by d`

c`(r) =
∑
R,α

φR,α(R−θ`(r − d`))f`,R,α =
∑
R,α

φ(R−θ`(r − d`)−R− τα)f`,R,α . (A2)

Here, φR,α is the orbital centered at unit cell R = m1a1 + m2a2 in sublattice α, Rθ is the rotation matrix e−iθσy , and τα is
the real space position of the sublattice α given by τA/B = (

√
3
2 ,±

1
2 )a. We now substitute in (A1) and assume that the orbital

φR,α(r) is strongly localized in space such that φR,α(r) ≈ δ(r −R− τα) yielding

T ij =
∑

R,R′,α,α′

tij(Rθi(R+ τα) + di, Rθj (R
′ + τα′) + dj)f

†
i,R,αfj,R′,α′ . (A3)

Next, we assume tij(r, r′) only depends on |r − r′| and introduce the Fourier transform

tij(r, r′) =
∑
q

eiq·(r−r
′)tijq . (A4)

In addition, we expand the operator fi,R,α in terms of the annihilation operator for the Bloch states

fi,R,α =
∑

p∈BZi

eip·(R+τα)ψi,p,α . (A5)

Substituting in (A3) and using tq = t|q| yields

T ij =
∑

α,α′,G,G′,p,p′

δRθi (G+p),Rθj (G
′+p′)t

ij(G+ p)ei[G·τα−G
′·τα′+Rθi (G+p)·(di−dj)]ψ†i,p,αψj,p′,α′ . (A6)

Here, the momentum p(p′) is measured relative to the Brillouin zone center in the i-th (j-th layer).

Next, we consider the limit when both p and p′ are close to the K point and the rotation angles θi and θj are small. In this
case, we can restrict the sum in (A6) to the largest terms which correspond to p ≈ K and G = 0,G2,G3 where G2,3 =(
− 2π√

3a
,± 2π

3a

)
. The Bloch state annihilation operator ψi,p,α in the vicinity of K can be expressed in terms of the annihilation
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operator for real space slowly varying orbitals at the K valley as

ψi,p,α =

∫
dre−i(p−K)·rχ̃i,K,α(r) . (A7)

Here χ̃i,K,α(r) denotes the annihilation operator for an electron in valley K, sublattice α at point r measured relative to
the coordinate system of the i-th layer. The same operator in the reference coordinate system is given by χi,K,α(r) =
χ̃i,K,α(R−θi(r − di)). Substituting in (A7) gives

ψi,p,α =

∫
dre−i(p−K)·R−θi (r−di)χi,K,α(r) . (A8)

We now express the momenta close to the K point in terms of the reference (unrotated Brillouin zone) p = R−θik + K,
p′ = R−θjk

′ +K to get

T ij =

∫
drc†i,α(r)[T ij(r)]α,α′cj,α′(r) ,

[T ij(r)]α,α′ = wij
∑

G=0,G2,G3

e−i(Rθi−Rθj )(G+K)·rei(G·(τα−τα′ )+Rθi (G+K)·di−Rθj (G+K)·dj) . (A9)

To show that this reduces to the Bistritzer Macdonald case, we perform the gauge transformation ci → cie
iRθiK·di which leads

to

T ij → T ije−i(RθiK·di−RθjK·dj) = wij
∑

G=0,G2,G3

e−i(Rθi−Rθj )(G+K)·rei(G·(τα−τα′ )+RθiG·di−RθjG·dj) (A10)

which reduces to the expression of Bistritzer and Macdonald for Rθi = 1, di = 0. In the following, we will prefer to use the
form (A9) because the way displacement enters in the Hamiltonian is more transparent as we see below. We now assume that the
value of wij is different between the diagonal and off-diagonal terms to take into account the lattice relaxation effects49 leading
to

T ij(r) =

(
wijAAU

ij
0 (r) wijABU

ij
1 (r)

wijABU
ij∗
1 (−r) wijAAU

ij
0 (r)

)
, (A11)

U ijm(r) =

3∑
n=1

eim(n−1)φe−iq
ij
n ·(r−Dij), m = 0, 1, qij1 = 2kD sin(θji/2)Rφij (0,−1), qij2,3 = R±φq

ij (A12)

φ = 2π/3, θji = θj − θi, φij = (θi + θj)/2, Dij =
di + dj

2
+ i cot(θji/2)σy

di − dj
2

(A13)

and kD = 4π
3
√
3a

. The full Hamiltonian can then be written as

H =

n∑
`=1

c†`,r · (−ivFσθ`∇)c`,r +

n−1∑
`=1

c†`,rT
`,`+1(r)c`+1,r + h.c. , (A14)

where σθ` = e
i
2 θ`σzσe−

i
2 θ`σz . The (first quantized) Hamiltonian can be written explicitly as

H =


−ivFσθ1∇ T 12(r) 0 . . . 0
T 12†(r) −ivFσθ2∇ T 23(r) . . . 0

0 T 23†(r) −ivFσθ3∇ . . . 0

. . . . . . . . .
. . . Tn−1,n(r)

0 0 0 Tn−1,n†(r) −ivFσθn∇

 . (A15)
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