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Revealing the spin excitations of complex quantum magnets is key to developing a minimal model
that explains the underlying magnetic correlations in the ground state. We investigate the low-
energy magnons in α-RuCl3 by combining time-domain terahertz spectroscopy under an external
magnetic field and model Hamiltonian calculations. We observe two absorption peaks around 2.0
and 2.4 meV, which we attribute to zone-center spin waves. Using linear spin-wave theory with only
nearest-neighbor terms of the exchange couplings, we calculate the antiferromagnetic resonance
frequencies and reveal their dependence on an external field applied parallel to the nearest-neighbor
Ru-Ru bonds. We find that the magnon behavior in an applied magnetic field can be understood
only by including an off-diagonal Γ exchange term to the minimal Heisenberg-Kitaev model. Such
an anisotropic exchange interaction that manifests itself as a result of strong spin-orbit coupling can
naturally account for the observed mixing of the modes at higher fields strengths.

I. INTRODUCTION

In recent years, considerable interest has been di-
rected towards the realization of unconventional mag-
netic phases such as the quantum spin liquid (QSL) state
[1–7]. Particular focus has been placed on the possible
experimental observation of fractionalized quasiparticle
excitations in a number of transition metal compounds
with substantial spin-orbit coupling [8–14] following Ki-
taev’s exactly solvable model of anisotropic bond interac-
tions on a two-dimensional (2D) honeycomb lattice [15].
In these systems, the transition metal cations are coor-
dinated by six anions at the vertices of an almost ideal
octahedron [16, 17], as illustrated in Fig. 1(a), and give
rise to spatially-dependent exchange interactions [13, 18–
22].

In the quest for the ideal Kitaev material, α-RuCl3 has
been proposed as a promising candidate. However, unlike
ideal QSLs that do not exhibit long-range magnetic order
due to strong quantum fluctuations, α-RuCl3 enters into
a zig-zag antiferromagnetic (AF) state below a Néel tem-
perature of TN ∼ 7 K (Fig. 1(b)) [23, 24]. Nevertheless,
spectroscopic probes including inelastic neutron scatter-
ing (INS) [25–28], spontaneous Raman scattering [29, 30],
time-domain terahertz spectroscopy (TDTS) [31–33] and
electron paramagnetic resonance (EPR) [34] have discov-
ered signatures of a field-induced QSL state above 7.5 T
in the form of a broad continuum at the 2D magnetic
Brillouin zone center. Yet, a complete understanding of
the origin of these excitations as well as of the spin dy-
namics is still lacking. Therefore, it is crucial to study
the salient features of the spin-wave excitations in the
unperturbed or weakly perturbed state.

The zig-zag ground state was theoretically shown to be
stabilized using the nearest-neighbor Heisenberg-Kitaev
(HK) model [13], in partial agreement with the exper-
imentally observed magnetic excitation spectrum [35].

However, deviations from this spin model have been
discovered early on, calling for additional terms in the
Hamiltonian [14, 23, 26, 36–43] such as the off-diagonal
Γ coupling (a symmetric exchange that is off-diagonal
in the Kitaev basis and couples the spin components
parallel to the bond orientation) and other terms be-
yond the nearest-neighbor exchange interactions. Ef-
fects of these exchange mechanisms have been observed
in the low-temperature magnetization [44], specific heat
[45], magnetic susceptibility [23, 44–46] and nuclear mag-
netic resonance spectra [47] of α-RuCl3, revealing strong
anisotropies for different magnetic field orientations. De-
spite extensive efforts to explain these observations, to
date a definitive consensus on the minimal theoretical
model describing the magnetic dynamics in α-RuCl3 has
not been reached. A promising route to identifying this
model is to address the response of the low-energy ex-
citation spectrum to external perturbations [48], which
directly reflects the complex interplay between different
coexisting phases. In this regard, the magnetic field de-
pendence of the magnon modes at terahertz (THz) fre-
quencies in a regime below the threshold for the field-
induced QSL state (0 to 5 T) is of particular relevance in
α-RuCl3.

In this study, we combine TDTS with linear spin-wave
theory (LSWT) and unveil the behavior of the low-energy
magnons in α-RuCl3. TDTS is a phase-coherent tech-
nique that allows for the direct measurement of com-
plex optical properties in the THz range. Using this ap-
proach as a function of external magnetic field, we dis-
tinguish features that were previously not resolved by
other probes. We observe two magnon modes around 2.0
and 2.4 meV, whose amplitudes and frequencies show a
complex field dependence between 0 and 4.8 T. By em-
ploying an extended HK model we can capture the zero-
field magnon frequencies and the qualitative dependence
of the mode frequencies on the applied magnetic field.
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FIG. 1. (a) Schematic representation of a transition metal cation (brown sphere) coordinated by six anions (not shown for
simplicity) at the vertices of an almost ideal octahedron. This gives rise to Kitaev exchange couplings along the x̂-, ŷ- and
ẑ-axes in the Kitaev basis as shown in red, green and blue, respectively. (b) Schematic magnetic configuration of zig-zag AF
order on the 2D honeycomb lattice of α-RuCl3 formed by central Ru3+ ions below TN. (c) Temperature dependence of the DC
in-plane magnetic susceptibility of α-RuCl3 at H = 1000 Oe. (d) Representative spectrum of 1− |t̃(ω)| as a function of energy
below TN at 2.1 K measured by TDTS. The spectrum can be modeled phenomenologically by two Gaussian resonances (I and
II) plus a linear background (dashed line).

This allows us to significantly restrict the extensive ex-
change parameter space that can realize a zig-zag ordered
state. Our results are suggestive of a scenario in which
the off-diagonal Γ exchange interaction plays a key role in
determining the low-energy physics of the material and
imparts a field-induced mixing of modes at higher fields.

The paper is structured as follows: Section II describes
the experimental methods, Section III focuses on the ex-
perimental data and the assignment of the observed col-
lective modes, Section IV discusses the LSWT analysis,
and Section V presents the conclusions.

II. EXPERIMENTAL METHODS

A. Crystal growth and characterization

The growth of high-quality single crystals of α-RuCl3
was carried out using the vacuum sublimation method.
Commercial-grade RuCl3 powder (Alfa-Aesar) was dehy-
drated in a quartz ampoule for a day. The vacuum-sealed

ampoule was then placed inside a temperature gradient
furnace set at 1080◦C for 5 hours. Next, the furnace
was allowed to cool down to 650◦C at a rate of 2◦C per
hour. The 1:3 (Ru:Cl) stoichiometry of our crystals was
confirmed using electron-dispersive x-ray measurements.
Our sample was further characterized by magnetic sus-
ceptibility measured in an in-plane field of H = 1000 Oe,
which shows a clear signature of a single magnetic tran-
sition at TN ∼ 7.5 K as determined from the cusp of
the curve in Fig. 1(c). The appearance of a single sharp
magnetic transition at TN confirms an ideal AB stacking
sequence in the low-temperature phase and a monoclinic
C2/m crystalline symmetry at room temperature of our
sample, as stacking faults in the form of an ABC-type
stacking order have been associated with an additional
TN of 14 K [23, 44, 45, 49, 50]. The presence of minimal
stacking faults in our sample was also corroborated by
single crystal x-ray diffraction.
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B. Time-domain terahertz magneto-spectroscopy

A 5 kHz, 1.55 eV central photon energy, 100 fs
Ti:Sapphire amplifier system was utilized to generate
THz pulses via optical rectification using a ZnTe crys-
tal. The resulting THz radiation was focused onto
the sample using off-axis parabolic mirrors, and subse-
quently detected via electro-optic sampling in a second
ZnTe crystal using a weak 1.55 eV gate pulse. For our
spectroscopic measurements, we used a home-built THz
magneto-optical spectroscopy setup in a transmission ge-
ometry. The sample was placed in a helium cryostat with
a split-coil superconducting magnet to apply static mag-
netic fields (Hext) in the 0 to 5 T range at temperatures
varying from 2 to 300 K. In our experiments, the sam-
ple was zero-field-cooled and TDTS was performed in the
Voigt geometry. In this measurement scheme, the exter-
nal magnetic field, Hext, was oriented perpendicular to
the THz propagation direction, in the honeycomb plane
along the b-axis which is shown in Fig. 1(b). The inci-
dent THz magnetic field was chosen to lie either along
the a- or b-axis. The crystal axes were determined via
x-ray diffraction.
To obtain the transmitted THz field as a function of

frequency, the measured time-domain signal was Fourier
transformed yielding a frequency response from 0.4 to 2.5
THz (∼ 1.65 to 10 meV). For a sufficiently thick sample
where temporal windowing of the time-domain signal is
appropriate, the frequency dependent complex transmis-
sion coefficient can be calculated by comparing the mea-
sured electric field through the RuCl3 sample and a bare
aperture reference of the same size,

t̃(ω) =
Ẽsam(ω)

Ẽref(ω)
=

4ñ

(ñ+ 1)2
e

iωd

c
(ñ−1).

Here, t̃(ω) is the complex transmission coefficient, Ẽsam

and Ẽref are the complex frequency-domain THz electric
fields of the sample and reference, respectively, ñ is the
complex refractive index of the sample, ω is the angular
frequency, d is the sample thickness and c is the speed of
light in free space. There is no analytical solution to Eq.
(1), but ñ can be numerically extracted following the iter-
ative procedure developed by Duvillaret et al. [51]. The
index of α-RuCl3 reveals a relatively weak temperature
and frequency dependence, and can therefore be assumed
to be constant (see Fig. S1 of the Supplemental Material
[52]). We obtain 1 − |t̃(ω)| from the magnitude of the
complex transmission coefficient. Owing to the nearly
constant index of refraction, this quantity can be simply
expressed as a function of the absorption coefficient,

|t̃(ω)| =
4n

(n+ 1)2
e−αd (1)

where α(ω) = ωκ/c. This approximation is justified by
the relation n ≫ κ, where ñ = n− iκ.

III. EXPERIMENTAL RESULTS

A. Temperature and magnetic field dependence

We now focus on the results of our TDTS experiment.
Figure 1(d) shows a representative spectrum of 1− |t̃(ω)|
below TN with the THz magnetic field (h) along the crys-
tallographic b-direction and no external field. We ob-
serve two distinct resonances (labeled I and II) around
2.0 and 2.4 meV, each of which can be described by its
amplitude A, broadening σ and center energy Ω. This
allows fitting of the spectra to the following functional
form,

f(ω) =

2
∑

i=1

Aie
−(ω−Ωi)

2/2σi
2

+Bω + C (2)

in the spectral range from 1.7 to 3.5 meV. In this narrow
spectral window, we model the resonances phenomeno-
logically using two Gaussian functions, and the last two
terms are used to model the background (dashed line in
Fig. 1(d)). The background is found to exhibit a negligi-
ble magnetic field dependence.
To clarify the nature of the observed resonances, in

the following we study their evolution as a function of
temperature (T ) and external magnetic field (Hext).
Figure 2 compares the temperature dependence of

the amplitude of modes I and II at two magnetic field
strengths, 0 T (panels a,c) and 4.8 T (panels b,d). For
Hext = 0 and h ‖ b, we observe that the amplitude
of resonance II undergoes an order parameter-like tem-
perature dependence with an onset around TN ∼ 7 K
(Fig. 2(c), circles). In contrast, the amplitude of reso-
nance I does not exhibit any discernible temperature de-
pendence (Fig. 2(c), triangles). Strikingly, when a mag-
netic field of 4.8 T is applied with Hext ‖ b, the mode
acquires a significant temperature dependence similar to
that of resonance II with a critical temperature around
6.5 K (Fig. 2(d)). This onset temperature determined
for both resonances matches well with the location of the
maximum in the magnetic susceptibility and the specific
heat anomaly that has been reported previously and was
associated with the zig-zag magnetic order.
Next, we study how these resonances evolve as a func-

tion of external magnetic field. In Fig. 3(a), we compare
the spectra taken in the Voigt geometry (Hext,h ‖ b, ex-
ternal field varying from 0 to 4.8 T) at 2 K. Figure 3(b)
tracks the field-dependent amplitude of resonances I and
II. Notably, the application of Hext first results in an en-
hancement of resonance II (circles). This initial rise in
the mode strength up to 3 T is subsequently followed by a
spectral weight redistribution between the two modes at
larger fields. Spectra measured for h ‖ a are presented in
Fig. S5 of the Supplemental Material [52]. We note that
modes I and II appear in both configurations. While for
T < TN their relative amplitude depends significantly on
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FIG. 2. (a,b) THz spectra of 1− |t̃(ω)| as a function of temperature at (a) 0 T and (b) 4.8 T, respectively, with Hext, h ‖ b.
The temperature is varied from 2 to 12 K as indicated by the color bar. (c,d) Temperature dependence of the amplitudes of
modes I (circles) and II (triangles) at (c) 0 T and (d) 4.8 T, respectively, obtained by fitting the spectra with two Gaussian
profiles and a constant linear background. Error bars indicate the 95% confidence interval. The solid black lines are guides to
the eye.

the magnitude and direction of Hext and h, the spectra
do not exhibit a sizable field dependence for T > TN at
T = 10 K (see Fig. S3 of the Supplemental Material [52]).
We also confirmed the existence of two distinct modes

in a second α-RuCl3 crystal (see Fig. S4 of the Supple-
mental Material [52]). Although minor differences be-
tween samples 1 and 2 are apparent, which can be ex-
plained by sample to sample variation, overall the spectra
exhibit the same features as the field is varied. Similar
to what is seen in Fig. 3, in Fig. S4 mode I also gains
notable spectral weight at increasing field strengths.

B. Assignment of the resonances

The observation of two resonances in the THz spec-
trum of α-RuCl3 suggests that these features can be as-
cribed to dipole-allowed zone-center collective modes. In
order to assign their nature, we consider various possi-

ble origins on the basis of the observed behavior. First,
we consider phonons. The first-order transition from a
monoclinic to a rhombohedral structure that takes place
in the temperature range from 60 to 150 K in α-RuCl3
[44, 50, 57] has been interpreted as evidence of a magneto-
elastic coupling scheme and a natural explanation for the
observed phonon anomalies in this material [57, 58]. This
raises the question as to whether a similar mechanism
could explain the unconventional temperature response
of mode I, invoking a phonon picture for the observed
resonances. However, our THz spectra remain unaltered
across this structural transition (see Fig. S2 of the Sup-
plemental Material [52]), suggesting instead a magnetic
origin of the modes. Thus, their assignment to back-
folded acoustic phonons or to the same magnetic mode
split by the presence of occasional stacking faults, which
has previously been associated with a higher TN of 14 K
[23, 44, 45, 49], can be ruled out by the temperature
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FIG. 3. (a) THz spectra of 1−|t̃(ω)| at 2 K with Hext, h ‖ b.
The applied external magnetic field is varied from 0 to 4.8 T
as indicated by the color bar. (b) Magnetic field dependence
of the amplitudes of modes I (circles) and II (triangles) ob-
tained by fitting the spectra with two Gaussian profiles and a
constant linear background. Error bars indicate the 95% con-
fidence interval. (c) Magnetic field dependence of the energies
of modes I (triangles) and II (circles). The lightly shaded ar-
eas mark the half-width at half-maximum of the Gaussian line
shapes.

dependence provided. This observation leads us to con-
clude that the two resonances are distinct excitations of
the underlying zig-zag AF order of α-RuCl3 with a single
TN of 7 K. Moreover, the presence of both modes above
TN (see Fig. S2 of the Supplemental Material [52]), yet
with smaller amplitude, suggests the persistence of short-
range spin correlations in the paramagnetic state above
the ordering temperature [27, 56].

Consistent with the hypothesis of a magnetic origin of
these resonances, we note that mode II has recently been
observed in independent TDTS [31–33, 59] and EPR [34]
experiments and assigned to a zone-center magnon of the
zig-zag ordered phase. On the other hand, while signa-
tures of mode I have also been seen in previous mea-
surements [28, 31], this resonance has never been dis-
cussed. Specifically, both INS [28] and TDTS [31] spec-
tra taken at different magnetic field amplitudes showed
two distinct features at the zone center, similar to ours.
While both studies modeled the spectrum in terms of
a single spin-wave peak, our extensive temperature and
field dependence precludes this interpretation. The field-
induced change in the mode response (Fig. 3) may result
from a modification of selection rules in the magnetic
dipole transition matrix elements of strongly spin-orbit
coupled α-RuCl3, which could potentially also explain
the anomalous temperature evolution of mode I at dif-
ferent field strengths that is shown in Fig. 2. Although
further theoretical studies elucidating the nature of mode
I are needed, such changes may emerge from anharmonic
effects linked to the symmetry breaking in this mate-
rial and an associated magneto-elastic coupling below
∼150 K [50, 57, 58]. Regardless of their nature, it follows
from the markedly different magnetic field dependences
of both branches that their assignment as a single mode
cannot explain our data. This aspect is of pivotal impor-
tance, as the correct identification of the fundamental
magnetic excitations places constraints on the exchange
interactions governing the spin Hamiltonian as will be
discussed in Section IV.

To explain the behavior of the two modes as a function
of magnetic field, we note that the threefold rotational
symmetry of the α-RuCl3 honeycomb layers leads to the
appearance of the zig-zag order in three distinct domains,
related by a spin-orbit-coupled rotation. At zero field,
these equivalent domains coexist with ordering wave vec-
tors parallel to the x-, y- and z-bonds ( ~Q1, ~Q2 and ~Q3,
respectively) [56, 60]. It is expected that the domains
do not align along a particular direction in the absence
of a field, as the rotational symmetry is preserved. In
contrast, in the low-field regime up to 2.5 T, our data
reveals clear characteristics of domain rearrangement in
agreement with earlier studies [28, 60].

Changes in the domain populations can be inferred
from the fact that when Hext 6= 0, the orientation of
local moments across the sample depends on the mag-
netic field strength through two mechanisms: (i) Within
each domain, “up” and “down” spins cant towards Hext

through a particular functional form, and (ii) The frac-
tion of spins within each domain varies as a function of
Hext. Classically, it is the fluctuations of these local mo-
ments that produce the resonance modes. Ultimately, the
system will favor an arrangement of moments that mini-
mizes the exchange energy, which can mainly be achieved
when the zig-zag chains are oriented perpendicular to the
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applied field.
Additional insight and confirmation for the domain-

rearrangment scenario was revealed by the dependence
of both resonances on an applied field for Hext ‖ b and
h ‖ a (see Fig. S5 of the Supplemental Material [52]). In
this configuration, we observe that the amplitude of mode
II decreases substantially when Hext > 1 T, while mode
I remains largely unchanged. This is in stark contrast
to the initial rise in amplitude of mode II and the subse-
quent spectral weight redistribution among modes that is
observed for h ‖ b (see Fig. 3(a,b)). This response is con-
sistent with the argument given above that a rotation of
the moments will take place such that the ordering wave
vector becomes parallel to the external magnetic field. A
continuous increase in the field strength along the b-axis
will eventually give rise to the preferential selection of the
domain with wave vector ~Q3 that is parallel to the b-axis
(or z-bond) in conjunction with a suppressed population

of the remaining two domains ( ~Q1 and ~Q2) in order to
satisfy the exchange interactions that stabilize the AF
zig-zag order. We find that a complete suppression of
these domains occurs around 2 T based on the onset of
the plateau region of mode II in Fig. 3(b).

IV. THEORETICAL ANALYSIS

A. Minimal spin model

For our LSWT calculations, we consider the following
spin Hamiltonian on a honeycomb lattice

Ĥ =
∑

<ij>

[

JSi · Sj +KSγ
i S

γ
j + Γ(Sα

i S
β
j

+ Sβ
i S

α
j )

]

− gµBHext ·
∑

i

Si (3)

where J, K and Γ represent the Hamiltonian exchange
parameters for the Heisenberg, Kitaev and symmetric off-
diagonal Γ term, the sum <ij> is over all nearest neigh-
bors and g, µB and Hext in the Zeeman term correspond
to the g-factor, the Bohr magneton and the external mag-
netic field, respectively. Here, α, β are perpendicular to
the Kitaev spin axis γ. The zig-zag order is a collinear
order at wave vector M in the 2D Brillouin zone. For
the Hamiltonian we consider, we find that at zero field
the spin moment may be oriented anywhere within the
plane through the Bloch sphere that is perpendicular to
the ordering wave vector Q. This relation between real
space and the spin Bloch sphere arises from the strong
spin-orbit coupling of the Hamiltonian.
To determine the dispersion of magnetic excitations at

finite magnetic fields, we compute the spin-wave spec-
trum in the partially-polarized zig-zag AF ordered spin
configuration (i.e. the classical ground state at nonzero
magnetic fields). Here, the zeroth-order starting point

for the spin-wave calculations is a four-sublattice non-
collinear magnetic configuration that is a function ofHext

and the various spin-orbit-coupled magnetic exchanges.
For simplicity, we focus on magnetic field orientations
that are perpendicular to the plane along which the spins
are confined in zero field, i.e. parallel to Q, and take the
ordering wavevector to be only along one type of bond
direction, say z-bonds. Canting of the local moments
along the field is then a linear process in the field mag-
nitude. We work with magnetic field magnitudes below
the saturation field of 7.5 T.

For a given set of values of Hext, and the Heisen-
berg, Kitaev and Γ spin exchanges, we first compute
the orientation of the zig-zag-ordered spins in the clas-
sical ground state of the model, and then calculate the
spectrum of spin fluctuations using standard Holstein-
Primakoff substitution within the local spin basis. Con-
sequently, the local polarized moment m (where m = 1
corresponds to the fully polarized classical state) is found
to be m = 2B(2J +K− Γ/2 +

√

K2 −KΓ+ (9/4)Γ2)−1.
Here, B is the Zeeman term including the g-factor and
the Bohr magneton. This relation is consistent with that
found in [40]. We note that the LSWT analysis for
such strong spin-orbit coupling was recently compared
with exact diagonalization [55, 56], which shows agree-
ment with the dispersion at low energies and additional
magnon breakdown effects at higher frequencies.

Throughout this work, we restrict ourselves to a min-
imal three-parameter model for the exchange couplings
including only the nearest-neighbor terms. Due to strong
spin-orbit coupling, LSWT is expected to break down.
Correspondingly, next-leading-order corrections to the
linear spin-wave Hamiltonian would not fully capture the
highly nonlinear effects that arise in the real quantum
system. While additional higher-order exchange terms
have been shown to produce a good description of the
spin dynamics (especially further-neighbor Heisenberg
interactions) [19, 38, 40, 55, 56], we remark that such
corrections are only expected to modify the dispersion
away from the zone center. Below we focus only on the
two lowest energy modes, where our spin-wave analysis
is expected to be robust.

The determination of the exchange interaction terms
for the spin Hamiltonian is based on two criteria. Our
primary focus is on identifying parameter sets that can
realize the zig-zag state and simultaneously match our ex-
perimentally observed magnon resonances at two distinct
energies as a function of field at the magnetic zone cen-
ter. Additional emphasis is given to finding a good cor-
respondence between the calculated magnon dispersion
and the spin-wave spectra obtained via inelastic neutron
scattering at zero field along the high symmetry direc-
tions. In these earlier studies, gapped spin excitations
with minima near 2 meV at the M point of the Brillouin
zone as well as a local minimum at the zone center have
been observed [26, 28]. In this respect, we will consider
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three parameter regimes that stabilize zig-zag order in α-
RuCl3 with zero-field modes close to the experimentally
observed energies of 2.0 and 2.4 meV.

B. LSWT in a magnetic field

Irrespective of the detailed microscopic description of
the precessional spin motion, our experimental findings
suggest that anisotropic exchange mechanisms beyond
the pure Kitaev interaction play a dominant role in α-
RuCl3, consistent with previous works [23, 26, 40, 43,
46, 55]. To provide a quantitative estimate of these cou-
plings, a clear observable is the evolution of the spin-
wave energies with an external field, as this quantity can
be captured within the framework of LSWT. The ex-
perimentally determined energies as functions of field for
resonances I and II are shown in Fig. 3(c) with purple
and blue symbols, respectively. Mode I only possesses
a weak field dependence, shifting slightly towards higher
energies as the field increases, whereas mode II softens
more steeply with an applied field.
Next, for a field applied in the b-direction, we obtain

the magnon dispersions using LSWT in Fig. 4. Panels
(a,c,e) show the calculated dispersions for Hext = 0 along
high symmetry directions of the magnetic Brillouin zone,
while panels (b,d,f) correspond to the magnetic field evo-
lution of the two lowest-lying magnon branches at the
Brillouin zone center. By varying the magnitude of Hext,
we study how the spin-wave energies renormalize under
the influence of the magnetic field. We investigate in
detail the behavior of the spin waves employing a model
Hamiltonian with (1) Γ = 0 and finite J, K (Fig. 4 (a,b)),
(2) ferromagnetic J (J < 0), AF K (K > 0) and Γ > 0
(Fig. 4 (c,d)), and (3) AF J (J > 0), ferromagnetic K
(K < 0) and Γ > 0 (Fig. 4 (e,f)).
As a starting point, it is reasonable to consider a sim-

ple model that comprises the least number of exchange
terms. It has been pointed out that a KΓ description
alone is not sufficient to stabilize zig-zag order [40]. Thus,
we explored the regime of finite J and K (Γ = 0) with
our primary focus being a good agreement between spin-
wave calculations and the lowest two magnon modes ob-
served at 2.0 and 2.4 meV via TDTS at zero field. We
restrict our parameter range to (J, K) = (-1.75, 3.1).
Although (1.75, -3.1) yields the same zero-field mode en-
ergies, here, we do not consider this parameter regime
as a zig-zag state has been found to only exist in the
nearest-neighbor HK model when the Kitaev coupling is
AF, i.e. K > 0. In Fig. 4(a), we plot the magnon dis-
persion at zero field along the high symmetry directions
of the magnetic Brillouin zone. In this coupling scheme,
the magnetic order is established via the ferromagnetic
(FM) Heisenberg exchange within the chains while adja-
cent zig-zag chains couple antiferromagnetically through
K > 0. Notably, at zero field, the calculated magnon

energies at the Brillouin zone center capture the exper-
imental data points of Fig. 3(c) (marked by filled black
symbols in Fig. 4(a)).

We next turn to the field dependence of the calculated
magnon dispersions and compare these with our data.
The disagreement between the calculated spin-wave dis-
persion in an applied field (Fig. 4(b)), in which the
lowest two modes soften whereas the higher ones bend
upward, and the experimental data shown in Fig. 3(c)
illustrates that the contribution of an off-diagonal Γ in-
teraction beyond the nearest-neighbor J and K exchange
couplings is crucial. A notable discrepancy is also appar-
ent between the spin-wave spectra obtained by inelastic
neutron scattering revealing a noticeable dip at the M

point [26, 28] and the calculated magnon dispersions in
the HK model. Additionally, a significant Γ coupling has
been suggested to account for the different Curie-Weiss
temperatures that were measured for external fields ap-
plied parallel and perpendicular to the honeycomb planes
[23, 40, 46]. Below, we demonstrate that a spin model
supplemented with a significant anisotropic Γ interaction
is indeed in better agreement with the experimentally ob-
served magnon behavior in this study. We will further
demonstrate that although an FM Kitaev term in our
model may potentially explain the empirical field depen-
dence of the modes, our careful search of the parameter
space suggests that an AF Kitaev interaction is better at
fitting the zone-center spin waves.

Figure 4(c) shows the calculated energy-momentum
dispersion relation of four magnon branches at Hext =
0 for a dominant Γ and a sizeable AF Kitaev term. An
excellent match is obtained when J = -0.95 meV, K =
1.15 meV and Γ = 3.8 meV near the Brillouin zone cen-
ter. This is highlighted by the filled circles and trian-
gles, which denote the values of the magnon energies ex-
tracted from our TDTS data for Hext = 0. Importantly,
a finite Γ term is required to reproduce the measured
magnetic field evolution of the spin-wave excitations at
the magnetic zone center by our TDTS measurements
(Fig. 3(c)), in addition to the reported gap of ∼ 2 meV
seen near the M point in previous neutron scattering
studies [25, 26, 28, 35]. A qualitative agreement with
our experimental results is retrieved, in that resonance
I blueshifts with increasing field while resonance II red-
shifts. The fitted parameters predict a crossing of the
two distinct modes at ∼ 3.6 T (Fig. 4(d)). Conversely,
our experimental finding points towards the existence of
an apparent avoided crossing. Hence, we argue that the
correct interpretation of our data presented in Fig. 3(c) is
a field-induced mixing between the two magnon modes.

To motivate this interpretation, we rely on phenomena
arising in other systems that show clear mixing behav-
ior. In general, two energetically close elementary exci-
tations can be considered as coupled quantum oscillators
when they are characterized by similar energies, the same
momentum and the same symmetry [61]. When the fre-
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FIG. 4. (a,c,e) Magnon energy-momentum dispersion relation obtained from LSWT for Hext = 0 along high symmetry directions
of the magnetic Brillouin zone and (b,d,f) energy versus field of the relevant lowest two magnon branches in α-RuCl3 at the
zone center for Hext ‖ b using an (a,b) HK model, (c,d) HKΓ model with K>0 and (e,f) HKΓ model with K<0. Dashed lines
are guides to the eye indicating the mixing of modes, and the solid symbols mark the experimental points obtained via TDTS.

quencies are brought sufficiently close to each other upon
tuning an external parameter (Hext in our case), the un-
derlying interaction between the two modes leads to their
hybridization, and the mode eigenvectors become indis-
tinguishable. Clear signatures of mode mixing are repre-
sented by similar temperature dependences, inter-mode
transfers of spectral weight and mode frequency repulsion
[61–64].

In this respect, the peculiar temperature dependence
shown by the amplitude of mode I at 4.8 T (Fig. 2(b)) in
our experiments, as well as the redistribution of spectral
weight occurring between the two modes starting around
3.5 T (Fig. 3(b)), are strongly reminiscent of a similar
mode mixing character. By the same token, the two res-
onances become comparable in amplitude near 4.8 T (see
Fig. 3(b)), pointing towards an enhanced coupling be-
tween the two excitations. This coupling scheme is fur-
ther supported by the noticeable spin-wave broadening
and the concomitant growth of the overlapping region
at higher fields (3.0 to 4.8 T), which is bounded by the
lightly shaded areas that mark the half-width at half-
maximum of the Gaussian line shapes (Fig. 3(c)).

From previous studies of magnon-magnon interactions,
it is known that highly nonlinear effects are large and
unavoidable for a strongly spin-orbit coupled Hamilto-
nian. The off-diagonal anisotropic Γ term in particular
has been demonstrated to play an important role in non-
linear spin dynamics, giving rise to the breakdown of the
single-particle formalism [38, 40, 55, 56]. These effects
have in fact been highlighted in exact diagonalization
calculations [55, 56, 65] and various other approximation
schemes [39, 40, 65, 66], in which strong anharmonicity
and decay into lower energy magnons necessarily arise as
a consequence of the Kitaev and Γ terms in the Hamilto-
nian. Therefore, it may be anticipated that a consid-
erable mixing between the two spin-wave branches in
Fig. 4(d) occurs in line with our empirical observation

(Fig. 3(c)).

With such anharmonic effects observed in α-RuCl3, a
natural question that arises is the relevance of magneto-
elastic interactions that have been reported to prevail
in this system in the temperature range of ∼ 60-150 K
[50, 57, 58]. Although there is no direct evidence of a
change in the crystal structure in the low-temperature
regime near 7 K where the zig-zag order is stabilized,
it remains to be explored whether and to what extent
the strong spin-lattice interactions as revealed by Ra-
man studies and the magnon mixing behavior reported
in our current work are related to one another. Such
anharmonic magnon interactions are expected since the
off-diagonal Γ interaction is known to originate from the
symmetry breaking of the crystal structure due to lattice
distortions [43]. However, further theoretical and exper-
imental studies are required to investigate the relevance
of these effects in the context of the low-temperature be-
havior of zig-zag ordered α-RuCl3.

Lastly, we demonstrate that our data can also be fit-
ted reasonably well with an alternative set of exchange
parameters, in which the Kitaev term is ferromagnetic.
This scenario has been investigated by several ab-initio
[39, 65, 67] and experimental [26, 27, 68] studies. The
magnon dispersions from our model with dominant fer-
romagnetic K, where K = -3.50 meV, Γ = 2.35 meV and
J = 0.46 meV, are depicted in Fig. 4(e,f). We note that
our measurements together with LSWT presented herein
cannot establish the actual sign of the Kitaev term, i.e.
K < 0 or K > 0. Nevertheless, our key focus in this
study is to highlight the important role played by the
anisotropic Γ term in the spin Hamiltonian [43, 55], which
is confirmed by both parameter sets. Moreover, the iden-
tification of two closely-spaced spin-wave excitations via
TDTS and their respective field evolution allows us to sig-
nificantly restrict the parameter space to a very narrow
window and determine the hierarchy of exchange terms
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in this spin-orbit coupled material.

V. CONCLUSIONS

To conclude, we studied the low-energy magnon
dynamics of α-RuCl3 using time-domain terahertz
spectroscopy. Our data suggest the presence of two
magnon modes, whose amplitudes and energies as a
function of external magnetic field evolve distinctly.
From the magnetic field dependence of the magnon
energies at the Brillouin zone center and the observed
anti-crossing behavior near 4.8 T, we infer a set of
exchange parameters using linear spin-wave calculations.
Our experiments strongly suggest the ubiquity of other
exchange mechanisms beyond the simple Heisenberg-
Kitaev model, in particular the off-diagonal Γ coupling,
as well as the importance of nonlinear magnon processes
in the spectroscopic signatures of α-RuCl3.
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