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Despite a long history of research into nonlinear response theory, there has been no systematic
investigation into the maximum amount of nonlinear optical response attainable in solid-state mate-
rials. In this work, we present an upper bound on the second-order response functions of materials,
which controls the shift current response. We show that this bound depends on the band gap, band
width, and geometrical properties of the material in question. We find that delocalized systems
generally have larger responses than more localized or isolated ones. As a proof of principle, we
perform first-principles calculations of the response tensors of a wide variety of materials, finding
that the materials in our database do not yet saturate the upper bound. This suggests that new
large shift current materials will likely be discovered by future materials research guided by the

factors mentioned in this work.

The response functions of a material characterize its
behavior under external stimuli, such as electromagnetic
radiation. Such responses may grow linearly with the am-
plitude of the incident radiation, as is the case of absorp-
tion, or may be nonlinear. The latter category includes a
diverse set of phenomena such as second harmonic gener-
ation (SHG) [1], shift current [2H5], sum frequency gener-
ation [0], and excited state absorption [7], among others.
It is often desirable to generate large nonlinear optical
effects, from the point of view of fundamental science, or
for use in practical applications. While there has been the
occasional discovery of materials with large nonlinear re-
sponses, the materials properties limiting the magnitude
of these effects is not currently well understood.

In this paper, we treat the shift current bulk photo-
voltaic effect, which is the generation of current in a bulk
single-phase material under illumination, and is a second
order nonlinear optical effects. The induced current (J)
is proportional to the second power of the electric field
(E) of the incident light,

Jr (wout = O) = U?g(win)Es (win)Et(_win) (1)
where wjy is the frequency of the incident light, and wqyut
is the frequency of the response. As a result [3| [], the
shift current is present only in materials lacking inver-
sion symmetry. The shift photocurrent can therefore be
generated without the need for a traditional p-n junc-
tion, which has motivated the field of ferroelectric pho-
tovoltaics [2], Bl [SHIO].

In extended systems, the second order perturbation
theory expressions for the shift current is [3], [I1]
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Here, the sum over states includes all conduction (¢) and
valence (v) bands and corresponding integrals over the

Brillouin zone. The components of the momentum oper-
ator are denoted by p,.. The shift vector

-

Reri(c,v, k) = _E% arg(ck|p, |vk) — [xor (F) = xer (B)] (3)

contains the Berry connections (x), and has been linked
to topological ideas in nonlinear optics [I2HI4]. The shift
vector R can be understood as a generalized gauge in-
variant k-space derivative of the p operator [IT, 15], and
it is odd under the interchange of ¢ and v bands. This
formalism has been successfully used in first-principles
calculations of shift current [B] [16] [I7].

Second harmonic generation (SHG) is a closely related
second-order effect with a response wyy: = 2w;, instead
of wous = 0. The real part of the SHG nonlinear conduc-
tivity is
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Because of the similarities between Eqs. 2] and [, most
of the following results will also apply to the real part of
SHG conductivity with some modification.

In applications of shift current, the quantity of inter-
est is often not the the value of the response function at
a fixed frequency, but rather the values it takes across
a range of frequencies. For instance, the total current
produced by a photovoltaic device is given by the in-
tegral of o(wiy) weighted by the radiation intensities at
all incident frequencies. Alternatively, one may be inter-
ested in the average response of a material across a fre-
quency range instead of some predetermined frequency.
We therefore use the integral M = |[ odE| as a met-
ric for evaluating the overall magnitude of the nonlinear
response of a material [I8], where E = fiw. For the fre-
quency range of this integral, we consider contributions



from the lowest conduction and highest valence bands
of the material. This is therefore a metric for the lower
frequency range of the nonlinear optical spectrum of a
material. Having a large value of M does not necessarily
mean that the nonlinear response is large over the en-
tire Brillouin zone. Instead, the response can often be
concentrated in hot spots [19]. Despite the truncation
of Egs. to two bands, it should be stressed that the
bounds derived below are not the bounds of a purely
two-level model system, but are bounds for the lowest
two levels of a multi-level system. The difference is that
the second-order susceptibility for a pure two-level sys-
tem vanishes [20], whereas higher energy bands are taken
into account even in the two lowest levels of Egs. [2] [ via
the application of a sum rule [11].

We therefore consider the quantity (including a factor
of 2 for spin degeneracy of bands)

2med
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as a measure of the overall magnitude of shift current re-
sponses. For the real part of 051 we use MSHG = M /2,
with the additional factor of 1/2 arising from Eq. |4l SHG
is often measured in terms of the nonlinear susceptibil-
ity, which is related to the nonlinear conductivity by
X = oSHG /(2iwe).

We begin our derivation of an upper bound on M by
considering the Hamiltonian of the ¢ and v bands, which
determines the quantities appearing in Eq. A generic
Hamiltonian for this two band system (which may be
obtained, for instance, through the use of maximally lo-
calized Wannier functions [2IH23]) can be written as

where the 7; are Pauli matrices representing the band
degree of freedom. The shift current of such a Hamilto-
nian was derived in [24]. For simplicity, we focus here
on the longitudinal tensor components of the nonlinear
response functions, o;; along some direction . With
the above assumptions, our metric for the overall shift
current magnitude becomes

/ Bk h(k)-h
(2m)?

71'63

T 2h

where the derivatives h' = ﬁﬁ, R = %H are taken
along the direction of light polarization and current o,
and E(k) = 2|h(K)| is the band transition energy at k.
From the appearance of E(k) in the denominator of this
expression, it can already be seen that small band gaps
tend to favor large nonlinear responses, as has been noted
in [25]. This, however, does not mean that minimiz-
ing the band energy throughout the entire Brillouin zone
would yield the greatest possible response, because of the
competing factors of &’ and " in the numerator, which
favor variation in the Hamiltonian. In other words, dis-
persive bands would also tend to increase the amount of
response. We therefore expect that a balance of these
two factors determines the amount of response.

In a system with a fixed band gap, a rescaling of the
band width will increase the value of k", and hence of
M, without bound. In real materials, the Hamiltonian
is restricted to physically attainable values. In the tight-
binding picture, the band width grows with the strength
of the hopping between atomic sites. We therefore im-
pose the restriction that the Fourier components of i_i,
which are the hopping amplitudes between Wannier func-
tions [21], are bounded in magnitude and decay exponen-
tially with distance
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Here, A is the overall scale for the magnitude of the
Hamlltoman and ¢; are the hopping ranges which can
be different along different lattice directions R;. Since '
and 1 scale with A, and transitions E(k) are no less than
the band gap E, the form of Eq.[7] Isuggests that an upper
bound for M is proportional to (A/E,)?. To derive a gen-
eral upper bound, we proceed by boundlng the product

hn”n’Q’n” hnlngng th’ nl n’ < |hn”n” ”||hn1n2n3||hn nl n |
and the energy denominator F [1/|h( | < 4/EZ [26].
Using these inequalities and Eq. [§]in Eq.[7] we find
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where = (R,f ,v) is a dimensionless geometrical factor
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ping ranges (£), and the measurement direction ¢. This
bound holds for all non-zero values of A , Ey, and £&. The
detailed form of the geometrical factor is

g
depending on the crystal lattice (R =
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Here, the volume of the unit cell is V' = |det R|, the
sums run over all cyclic permutations of (1 2 3), and
V= ; Rjiv;. This geometrical factor is an increasing

function of the hopping ranges E The geometrical factor
can vary greatly in magnitude depending on the range
of hopping (Fig. , with the exact value depending on
the shape of the unit cell and direction of measurement.
= is a rapidly growing function of the hopping ranges,
asymptoting to £° for large values of £&. We therefore ex-
pect this factor to be large in materials where second- or
higher-neighbor hopping is comparable to nearest neigh-
bor hopping. Previous studies [5] have noted, based on
observing trends in the calculated shift current across
materials classes, that highly covalent materials with de-
localized wavefunctions tend to have large shift currents.
In the context of Eq.[9] we recognize two distinct, but re-
lated reasons for this trend. Firstly, materials with strong
covalent bonds would have large hopping amplitudes A.
Secondly, even if a material does not have particularly
strong first-neighbor hopping, the presence of further-
neighbor hopping comparable in magnitude would tend
to delocalize wavefunctions and increase the geometrical
factor Z. A further examination of Fig. [1] shows that
highly asymmetric unit cells tend to increase = as well,
which is supported by the observation that some of the
materials with highest predicted shift current contain 1-
dimensional chains or motifs [27, 28].

We compare our derived bound Eq. [0] with ab-initio
calculations in Fig. We have selected a test set of
950 non-centrosymmetric materials from the MATERIALS
PROJECT database [29], choosing those with less than 30
atoms per unit cell, for computational efficiency. We have
restricted our calculations to non-magnetic materials,
and to thermodynamically stable or metastable materi-
als with decomposition energy of less than 0.1 eV /atom.
These calculations were done with the PBE density func-
tional [30], using norm-conserving RRKJ pseudopoten-
tials [3I], and using a planewave basis set with kinetic
energy cutoff of 60 Ry. Spin-orbit coupling was in-
cluded at the fully-relativistic level for all calculations.
A Monkhorst-Pack 16 x16x 16 k-point mesh was used for
the self-consistent evaluation of the charge densities and
calculation of the nonlinear response tensors. While these
ab-initio calculations were performed at the level of den-
sity functional theory for computational efficiency, higher
accuracy can be achieved by using quasiparticle-corrected
quantities in the upper bound Eq. [0}

To make a direct comparison of ab-initio calculated
response tensors to our analytical bound, we integrate
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FIG. 1. Geometrical factor Z(¢) for the upper bound on non-
linear optical response, as a function of the hopping range &,
defined in Eq. [I0]of the text. The geometrical factor is shown
for different lattices, and for different measurement directions.
Anisotropic lattices show the highest potential for large non-
linear responses. Here, the tetragonal lattice has ¢/a = 2.0
ratio, and has largest nonlinear response upper limit for light
polarization and current measurement directions along the c-
axis.

the response tensors over an energy range corresponding
to transitions between the lowest conduction band and
highest valence band only. In Fig. 2] we plot, for each
material, the largest tensor component of |[ odE|. Su-
perimposed on the figure are contours corresponding to
values of the bound (Eq. E[) at particular values of A and
=, with E,; allowed to vary. Most of the materials in
the database fall below the contour with A=0.2 eV and
= = 1. We note that the trend of the ab-initio data-
points closely tracks the shape of the contours, with the
materials with the largest responses having the small-
est band gaps. Among these materials are the semimet-
als TaSes, TaS,, CagBisO7, and LaAlGe. The experi-
mentally measured SHG response of the Weyl semimetal
TaAs was shown to be an order of magnitude larger than
most other SHG materials [32]. The converse, however,
is not true: having a small band gap does not necessarily
mean that a material has large nonlinear response, as can
be seen from Fig. More generally, Eq. 0] is an upper
bound rather than a correlation across the space of all
materials.

In Fig. 2] there is a group of outliers which lie close
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FIG. 2. Integrated nonlinear response for a test set of semi-
conductors and semimetals. The largest tensor component of
the integrated nonlinear response for each material is plotted
against the band gap. Dashed lines indicate the value of the
nonlinear response upper bound (Eq. E[) as a function of the
band gap, for different values of hopping strength (A) and
geometrical factor (Z). Select materials with large responses
(TaSez, TaS2, CazBi2O7, LaAlGe), or which deviate from the
overall trend (SrGaSiH, SrAlISiH, CaAlSiH, NaSnP) are indi-
cated on the plot. Shown in purple are the integrated non-
linear response of BaGaSiH and the theoretical bound con-
structed using the A and = values of BaGaSiH.

to the A=0.2 eV, £ = 1 contour. This group contains
several Zintl-type materials (AXYH, with A= group 1
or 2; X,Y=group 13-16). These materials are likely to
have stronger or longer range bonding than other ma-
terials with the same band gap, and warrant further
study into their photophysical properties. Among this
group is BaGaSiH, with an integrated conductivity of
M = 2.7x107% A/V. We have constructed maximally lo-
calized Wannier orbitals from its frontier conduction and
valence bands, and fitted the hopping parameters of the
resulting Hamiltonian (Eq. @ to an exponential depen-
dence (Eq. , obtaining values of A = 0.91 eV, & = 0.80,
= = 10.12. The bound curve corresponding to the val-
ues of A and E of BaGaSiH is shown in Fig. [2] indicating
that the actual nonlinear response of BaGaSiH lies about
three orders of magnitude below its theoretical bound.
We compare this with BaTiOg, which is a prototypical
ferroelectric with experimental data for bulk photocur-
rent [17, 33] 34]. Compared to BaGaSiH, BaTiO3 has a
smaller integrated response at M = 1.6 x 107 A/V, and
less delocalized bonding, with A = 0.53 eV, £ = 0.61,
= = 0.64, which is also seen in the smaller spatial extent
of its Wannier orbitals (Fig. [3).

The trend that delocalization of wavefunctions en-
hances shift current is in agreement with theoretical pro-
posals [35] [36] and experimental observations in conju-
gated systems [37, [38]. With the hopping strength al-
lowed to potentially increase to large values, these results

FIG. 3. Wannier functions constructed from frontier (con-
duction and valence) orbitals of (a) BaGaSiH and (b) BaTiOs.
BaGaSiH is a large second harmonic generation and shift
current material, with integrated response tensor (see text)
Jodw =2.7x107°A/V. In contrast, BaTiOs has relatively
low nonlinear response, with [ odw = 1.6 x 1077A/V. These
differences are explained in terms of the bonding character
between the two materials. Isosurfaces of the Wannier func-
tions of the two materials are plotted, with the isolevel chosen
at 20% of the maximum value of the Wannier function. The
Wannier orbitals of BaGaSiH (£ = 0.80, = = 10.12) are more
diffuse than those of BaTiO3 (£ = 0.61, 2 = 0.64), giving rise
to longer range hopping in BaGaSiH.

indicate that Kuzyk’s bound [39] for the SHG of isolated
molecules can be broken by sufficiently delocalized sys-
tems. While only bulk materials were considered in our
ab-initio database, the formalism of Egs. is general
enough to include effects on the optical transition ele-
ments arising from heterogeneities such as point defects
which could localize the wavefunctions and reduce the
shift current.

In summary, we have derived a general upper limit
for the shift current and second harmonic generation re-
sponses of extended systems, showing that it is controlled
by the ratio of the hopping strength to the band gap of
the material, as well as being dependent on a geometri-
cal factor. These bounds may be used to guide materials
research, by suggesting materials with potentially large
responses, or as a screening tool to rule out unfavorable
candidates. Besides the design of individual shift cur-
rent materials, this work suggests that similar analytical
relations may be found for other optical phenomena in
solid state materials, such as second harmonic generation,
high-order frequency mixing processes, multi-photon ab-
sorption, and Raman scattering.
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