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We argue that the peak which can be observed in fidelity susceptibility around Berezinskii-
Kosterlitz-Thouless transition is shifted from the quantum critical point (QCP) at J. to J* in
the gapped phase by a value |J* — J.| = B?/36, where B? is a transition width controlling the
asymptotic form of the correlation length & ~ exp(—B/+/|J — J¢|) in that phase. This is in con-
trast to the conventional continuous QCP where the maximum is an indicator of the position of the
critical point. The shape of the peak is universal, emphasizing close connection between fidelity sus-
ceptibility and the correlation length. We support those arguments with numerical matrix product
state simulations of the one-dimensional Bose-Hubbard model in the thermodynamic limit, where
the broad peak is located at J* = 0.212 that is significantly different from J. = 0.3048(3). In the
spin-3/2 XXZ model the shift from J. =1 to J* = 1.0021 is small but the narrow universal peak is
much more pronounced over non-universal background.

Introduction.— A quantum phase transition occurs
when a small variation of a parameter in a Hamiltonian
leads to the dramatic change of the ground-state prop-
erties of the quantum system'. This basic idea was be-
hind suggesting fidelity — the overlap between the ground
states of the system for slightly shifted values of the ex-
ternal parameter J — as a universal probe of quantum
criticality?. Dramatic change of the system’s proper-
ties across the critical point results in a drop of fidelity
enabling both the location of the critical point and the
determination of the universal critical exponent v char-
acterizing the divergence of the correlation length?'7.
The fidelity has applications in as wide a context as that
of the quantum phase transitions themselves. It affects
critical dynamics of decoherence'®, has links with Fisher
information and metrology'?-2?, matters for shortcuts to
adiabaticity?®!, and is instrumental to define geometry of
quantum states?2.

The natural approach to search for the critical point
would be to fix the shift § of the parameter J and then
scan various values of J. In the extreme limit of § — 0
this is equivalent to looking at the fidelity susceptibility.
This approach is well established by now?324. The posi-
tion of a generic continuous critical point is indicated by
the peak of the fidelity susceptibility defined as the sec-
ond derivative of fidelity with respect to the small shift
of the external parameter. An outstanding problem re-
mains, however, in the case of the Berezinskii-Kosterlitz-
Thouless (BKT) quantum phase transition and universal
behavior of fidelity in its vicinity. We address this prob-
lem in this article. We argue that in the BKT transition
the value of the external parameter for which the sys-
tem is changing most rapidly, manifested by the univer-
sal peak in fidelity susceptibility, is significantly shifted
from the critical point toward the gapped phase. The
shift is proportional to the width of the transition with
a universal proportionality factor of 1/36.

There is substantial body of literature on fidelity in the
BKT transition2°3%. Most of the results were obtained

for finite system sizes. The shifted peak was often seen,
disbelieved, and attempts were made at its explanation.
For instance, Ref. [30] argued that the peak is approach-
ing the critical point logarithmically in the system size.
In this paper, in order to avoid any finite size effects, we
consider the fidelity directly in the thermodynamic limit
where the relevant quantity is a fidelity per lattice site:
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with |J;) being the ground state of Hamiltonian H(.J;).
The fidelity susceptibility follows as
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which corresponds to expansion of the fidelity per site
around its minimum at 6 = 0, where f(J,J) = 0, to the
second order in §.

In the rest of the paper we discuss universal features of
these quantities in the vicinity of the BTK critical point.
We begin by briefly reviewing the universal scaling of fi-
delity in the vicinity of the conventional continuous criti-
cal point. We use these conventional results to argue that
for the BKT transition the maximum of fidelity suscep-
tibility should appear deep in the gapped phase rather
than at the critical point. Then we introduce a scal-
ing ansatz for fidelity susceptibility, valid in the gapped
phase around the BKT critical point, and use it to quan-
tify the position of the maximum. We corroborate these
predictions with numerical iDMRG calculations for the
Bose-Hubbard model and the spin-3/2 XXZ model, both
in the thermodynamic limit.

Generic scaling of fidelity susceptibility.— Let us con-
sider a Hamiltonian H(J) in d spatial dimensions with
a continuous critical point at J.. The external field J is
coupled to a relevant perturbation with a well defined



scaling dimension. Near J. the correlation length di-
verges as & ~ |J —J.| 77, defining the critical exponent v.
Now, the universal contribution to fidelity susceptibility

is expected to scale®?12 as
~ dv—2
Xr(J) oc [J = Je|™ . 3)
For instance, in the often considered exactly
solvable®3133  one-dimensional Ising chain v = 1

resulting in xg(J) ~ |J — J./7t. It is diverging for
J — J. and dominates the behavior of fidelity sus-
ceptibility when dv < 2. Otherwise, non-universal
system-specific corrections ~ O(1) are dominant and
fidelity susceptibility cannot be used as a useful probe
of the critical point.

The above scaling predictions need to be carefully re-
considered in the vicinity of the BKT transition. In this
case, when the system is tuned towards the critical point,
the correlation length in the gapped phase is diverging
faster than any polynomial:

&) = Goexp (B/VIT= ). )

Consequently, Eq. (3) cannot be directly used. Above,
we can interpret B2 as a non-universal width of the tran-
sition.

A heuristic way to proceed is to locally approximate
the exponential divergence in Eq. (4) with a power
law. This introduces an effective exponent: v(J) =
dlog&(J)/dlog|J — J| = BT — J.|71/2. Now v(J) di-
verges as J — J,, suggesting that the universal contribu-
tion in Eq. (3) is subleading in this limit. However, for
large enough |J — J.| there is a regime where v(J) < 2/d
and the universal contribution can dominate. This opens
a possibility that a peak of fidelity appears in that regime
for some value of J* different then J.. Its position de-
pends on the width B2, with a smaller width leading to
a more pronounced peak at J* closer to J..

Scaling ansatz.— In order to quantify this general
intuition we follow'®3* and postulate the scaling hy-
pothesis for the universal part (we introduce tilde
to indicate this) of log-fidelity per site f(Jl, J2) =
b—dg (f(Jl)b_l, f(Jg)b_l).

Similar approach was also, for instance, very recently
used to characterize the behavior of the Loschmidt echo
in the vicinity of the (conventional) continuous critical
point?®. Using the freedom to choose the scaling factor
we can rewrite it as

F(I, J2) = €(J1) g (1,€(J2) £( 1)) - (5)

The second factor has a minimum equal 0 for J; = Js, i.e.
g(1,1) = 0. There are two interesting limits to consider
here, both revealing universal behavior.

First, when Jy; = J. is tuned exactly to the critical
point and J; = J. + ¢ is away from the critical point in
the gapped phase. This allows to conclude that

FIde) ~ €)™ (6)

For the conventional critical point with £(J.+49) ~ |§]77,
Eq. (6) leads™ to the scaling f(J. + 9, J.) ~ |§|™. Here
we extend this prediction to the BKT transition. By
employing Eq. (4) and setting d = 1, we obtain
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Such contribution is vanishing exponentially for J; —
J.. However, depending on the smallness of B, for some
intermediate range of § it might still be visible above the
non-universal background ~ O(].J; — J.|?) = O(§?). In
the following we support this with numerical results.
Second, we can set Ji o = J £ g and Taylor expand

f(J1,J2) to the second order in ¢. This gives the fidelity
susceptibility as a second derivative of Eq. (5) calculated
at & = 0, see Eq. (2). Note that f(J1, J2) has a minimum
for J; = Jy when fidelity is calculated with respect to
the same state, i.e., for 6 = 0, and consequently g(1,1) =
g'(1,2)]z=1 = 0. For the conventional critical point, £ ~
|J — J.|7", this gives an alternative derivation of scaling
of fidelity susceptibility in Eq. (3), see Ref. [13].

Here, we extend this analysis to the BKT transition.
Employing Eq. (4) and Taylor expanding Eq. (5) to the
second order we obtain the scaling of the universal part
of fidelity susceptibility as

W)= Ap IV

with a prefactor A = &, ¢” (1, 2)|,=1/4. Tt provides good
approximation for log-fidelity per site f (J — g, J+ g) ~
162xp(J) for § < |J — J.>2, i.e. in the limit of two
states being close as compared with their distance from
the critical point. Otherwise higher orders in the expan-
sion in ¢ should become relevant, see e.g. Eq. (7).

Equation (8) is the central prediction of this paper.
The maximum of the above universal contribution is
reached for J* such that

|J* — J.| = B?/36. (9)

It is significantly shifted from the critical point, by a
value proportional to the system-specific transition width
B2. The proportionality factor, 1/36, is universal, how-
ever. The magnitude of the peak scales as B~% or, more
precisely, 115.6AB~* with other parameters fixed. The
peak is more pronounced for a more narrow transition.
In the following we consider two models with widely dif-
ferent widths B2.
Bose-Hubbard model.— First we consider

H(J) = _JZ (bjn+1bm + blnberl)"F% ZnM<nm_1>7

(10)
where b,,, is a bosonic annihilation operator on site m
and n,, = binbm is a particle number operator. We set
the energy scale by fixing U = 1. We consider a unit
filling per lattice site, (n,,) = 1, in which case the model
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FIG. 1. Fidelity in the Bose-Hubbard model at unit filling

(nm) = 1. In (a) we show fidelity susceptibility (points),
calculated using § = 0.004. The broad maximum is found
at J* ~ 0.212, wheres the position of the critical point>°
Je ~ 0.3048. We fit (red line) the dependence in Eq. (11)
and obtain: ¥, = 2.00(5), A = 0.312(4), B = 1.84(5). The
error bars corresponds to the fitting error. In (b) we show
fidelity per site calculated as an overlap with the critical point
(points). We fit (red line) Eq. (12). The fit gives xo = 1.23(2),
B =1.72(1). In the fit, position of the critical point was fixed
at J. = 0.3048. Finally, the inset shows the difference between
the fidelity and the non-universal background emphasizing the
universal part. Red line is plotted using parameters obtained
above by fitting the total fidelity in the linear scale, showing
full consistency with Eq. (12). We show the results for two
values of the uMPS bond dimensions (D = 2896 and, focusing
on the peak, D = 5792) to indicate very good convergence of
the obtained numerical data. In iDMRG simulations local
Hilbert space was truncated at n,, = 6 particles.

exhibits a quantum phase transition in the BKT univer-
sality class®”3® between a gapped Mott insulator phase
for J < J. and a gapless superfluid phase for J > J..
We employ uniform matrix product states (uMPS)
simulations of the model®*** taking advantage of the
fact that the fidelity per lattice site can be directly cal-
culated from the largest eigenvalue of the mixed transfer
matrix naturally occurring in a scalar product between
two uMPS’s. We employ a variant of iDMRG algorithm*?
with 2-site unit cell incorporating U(1) symmetry*44.

For the Bose-Hubbard model it corresponds to conser-
vation of total particle number. Employing symmetries
not only greatly speeds up the simulations allowing to
reach significantly larger uMPS’s bond dimensions, but
also lets us fix the desired particle density without the
need to resort to chemical potential. All simulated states
were converged up to maximal change of Schmidt values
in the last iteration below 10710,

We find the position of the critical point, as well as
the reference value of the parameter B from the diver-
gence of the correlation length in Eq. (4). Precise ex-
traction of the correlation length from uMPS requires
proper extrapolation, as was recently shown in Ref. [36]
by some of us. Correlation length is a non-local quan-
tity which converges very slowly with uMPS bond di-
mension D. Proper extrapolation however, allows to ef-
fectively take the limit D — oo. In that article, the
correlation function was fitted with the scaling form
log¢ =logéy + B/ J. — J + as/J. — J, which also in-
cludes a sub-leading correction. For the Bose-Hubbard
model considered here, this leads to J. = 0.3048(3),
B =1.61(4), ag = —3.52(24) and & = 0.262(39). These
values of J. and B are in very good agreement with an
independent fit of the scaling of the energy gap in a fi-
nite system in Ref. [28]. A number of numerical estimates
of J. obtained within various previous studies (including
among others the position of the maximum of the fidelity
susceptibility obtained in Ref. [25] for a finite system of
few sites) is collected in Table I in the review [38].

Numerical simulations of fidelity susceptibility in the
thermodynamic limit are shown in Fig. 1(a) with the wide
maximum located at J* = 0.212. In order to fit numeri-
cal data we supplement the universal prediction (8) with
a non-universal sub-leading constant :
26_B‘J_Jc‘71/2
xr(J) ~Xx,+ AB A (11)
Above, Y, can be understood as averaging the unknown
non-universal contribution over the considered window
of J’s. Note that the latter can in principle also depend
on J. To minimize such effect, without introducing more
complicated fitting model, we focus the fit on the vicinity
of the peak. The value of £ = 2.00(5), see Fig. 1, and
& = 1.23(2) calculated below at the critical point differ
slightly which we expect is resulting from slightly varying
non-universal contributions. Those changes are however
few times smaller than the size of the peak at J* and for
smooth changes should not affect much the position of
the peak.

By the same token, the universal part of the fidelity
per site with respect to the critical point in Eq. (7) is
supplemented with a non-universal background:

Xo (J — J.)% + Ag exp (—B/\/\J - Jc|> :
(12)

with Ap = ¢(1,00). Numerical simulations are shown

in Fig. 1(b). As expected, the non-universal background

f(J, Je) ~

N | =
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FIG. 2. Fidelity in XXZ spin—3/2 model. In (a) we show

fidelity susceptibility (blue), calculated using 6 = 0.001. The
narrow maximum is found at J* ~ 1.0021, wheres the position
of the critical point J. = 1. We fit (red line) the dependence
in Eq. (11) and obtain: %, = 8.2(3), A = 0.0030(1), B =
0.285(1). The error bars corresponds to the 95% confidence
bounds from the nonlinear fit. In (b) we show fidelity per
site calculated as an overlap with the critical point (blue).
We fit (red line) Eq. (12). The fit gives xo = 8.9(3), B =
0.261(1). The inset shows the difference between the fidelity
and the non-universal background emphasizing the universal
part, where the red line is plotted using the data fitted above
for the total fidelity.

dominates over the universal part close enough to the
critical point, but adding the universal part in Eq. (12)
is necessary to describe the observed data — compare with
the dashed line in Fig. 1(b). The inset shows that in the
intermediate range of J. — J the universal part can be
discerned from the background and is captured by the

fit with remarkable accuracy. This demonstrates self-
consistency of our scaling theory.
XXZ spz'n-% model. — Next we proceed with

H=" (5555 ; + 555, +J55,5%,,), (13)

where S%¥* are standard spin—% operators acting on
site m. The model has the BKT critical point*®*® at
J. = 1 separating the gapped phase for J > 1 from
the gapless region for —1 < J < 1. Reference [36] re-
ports fitting the scaling form of the correlation length
as log¢ = logéy + B/vJe. — J + asv/J. — J, with B =
0.304(12), as = —5.4(12) and & = 4.26(85). The fitted
Je = 0.99993(4) obtained there is in excellent agreement
with the exact value of J. = 1. The relative transition
width B?/J, is almost 8 times smaller than in the BH
model making the fidelity susceptibility peak more pro-
nounced at J* that is closer to J..

We use Egs. (11,12) to fit numerical results for the
fidelity susceptibility and the fidelity per site with respect
to the critical point. Results of our numerical simulations
are shown in Fig. 2. The fitting parameters are consistent
with those obtained from the correlation length. Again,
the scaling theory is able to discern the universal part
of the fidelity with respect to the critical point from its
non-universal background.

Conclusion.— The shifted fidelity peak is not an ar-
tifact but hard reality. When measured by a distance
in the Hilbert space, the ground state undergoes fastest
changes not at the BKT critical point but away from it
in the gapped phase. The shape of the peak is universal,
just as universal is its shift equal to 1/36 of the width of
the transition.
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