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Topology now plays a central role in physics, yet its applications have so far been restricted to
closed, lossless systems in thermodynamic equilibrium. Given that many physical systems are open
and may include gain and loss mechanisms, there is an eminent need to reexamine topology within
the context of non-Hermitian theories that describe open, lossy systems. The generalization of the
Chern number to non-Hermitian Hamiltonians initiated this reexamination; however, there is no
established connection between a non-Hermitian topological invariant and the quantization of an
observable. Using field-theoretical techniques, we show that no such relationship exists between the
non-Hermitian Chern number and the Hall conductivity, a consequence of the discontinuous nature
of Green functions of non-Hermitian Hamiltonians. Furthermore, we derive an exact formula for
the Chern-Simons Hall response of a generic two-level non-Hermitian Hamiltonian and present an
illustrative calculation for a non-Hermitian massive Dirac Hamiltonian in (2+1)-D. We conclude by
clarifying how these results extend to higher-dimensional systems and detailing their implications
for recent experiments.

The topological classification of matter represents a
significant enhancement in our understanding of the
physical properties of a great variety of systems, both
classical [1–3] and quantum-mechanical in nature [4, 5].
Of central importance within the topological classifica-
tion of matter is the identification of topological invari-
ants, which are quantities that remain unchanged in the
presence of symmetry-allowed perturbations [6–9]. While
the topological classification of matter has enjoyed much
success, its achievements have to date been limited to
idealized closed systems, as described by conventional
Hermitian Hamiltonians. Nonetheless, most physical sys-
tems are more aptly described as open, defined by a con-
nection to large reservoirs of additional states. Proper
theoretical descriptions of open systems must include
mechanisms of both loss and gain that account for the
flow of energy and particles between the system and ad-
ditional reservoirs [10–12]. The inclusion of gain and
loss mechanisms necessitates a non-Hermitian Hamilto-
nian, whose complex eigenvalues induce finite quasiparti-
cle lifetimes. Non-Hermitian Hamiltonians permit many
topological phenomena that are discordant with their
Hermitian counterparts including: exceptional points,
lines, and surfaces at which two eigenvectors merge into
one [13–19], unidirectional optical transport [20, 21],
bulk Fermi arcs [22], expanded topological classifica-
tions [23–26], and a modified bulk-boundary correspon-
dence [15, 27–36].

The breakdown of the conventional bulk-boundary
correspondence in non-Hermitian topological Hamiltoni-
ans calls for the reexamination of other predictions of
topology in non-Hermitian systems. One of the sacro-
sanct tenants of topological physics is the connection be-
tween topological invariants and quantized observables.
Within the context of gapped Hermitian Hamiltonians,

the Chern number of the energy bands is equivalent to
the number of chiral edge states, as required by the bulk-
boundary correspondence [6, 8, 9]. The connection be-
tween the number of edge states and the Chern number,
in turn, leads to a Hall conductivity quantized in units of
e2/h [37]. The Chern number thus provides both a math-
ematical classification of the Hamiltonian and a physical
characterization of the resultant phase.

In this work, we demonstrate that the intimate link
between the Hall conductivity and the Chern number no
longer holds in a non-Hermitian Chern insulator. Specif-
ically, we show that the Chern-Simons response coeffi-
cient in the the effective action of a non-Hermitian Chern
insulator is not quantized, despite the quantization of
the Chern number, as a result of the discontinuous na-
ture of the Green functions of non-Hermitian Hamil-
tonians. Importantly, we further show why the non-
quantization of the response is not contradictory to the
quantization of the Chern number. This is our central
result. Additionally, we derive an exact expression for
the non-quantized Chern-Simons (CS) Hall response of a
generic non-Hermitian two level system. As a concrete
demonstration of the disconnect between topology and
observable, we calculate the Hall conductivity of a non-
Hermitian massive Dirac Hamiltonian in (2+1)-D, which
has a non-zero Chern number.

We begin by examining the Hall conductivity of a
gapped, translationally invariant Hermitian system in
(2 + 1)-D. As calculated via the Kubo formula, the Hall
conductivity is

σxy =
ie2~
V

∑
m,n

(fm − fn)
〈m| v̂x |n〉 〈n| v̂y |m〉

(εm − εn)
2 , (1)

where V is the volume of the system, fi = f(εi) is the
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Fermi-Dirac distribution function, v̂i = 1
~dĤ/dki are the

velocity operators, εn and |n〉 are the energies and eigen-
states of the Hamiltonian Ĥ, and m, n index the eigen-
states of Ĥ. For a gapped Hamiltonian, Eq. (1) may be
recast in terms of the Chern number, n, an integral of
the Berry curvature over the Brillouin zone [37]:

n =
i

2π

∑
q∈occ

∫
BZ

εij 〈∂iΨq(k)| ∂jΨq(k)〉 d2k, (2)

where q indexes the occupied bands. The Hall conduc-
tivity is proportional to the Chern number, which is an
integer topological invariant of the bands, and is thus
quantized as σxy = ne2/h, where n ∈ Z.

However, Eqs. (1) and (2) fail for non-Hermitian
Hamiltonians as they explicitly rely upon the ability to
distinguish occupied and unoccupied eigenstates. The
failure is caused by the complex energy eigenvalues pos-
sessed by non-Hermitian Hamiltonians, for which the
Fermi distribution does not produce occupation proba-
bilities. Although the Kubo approach to the Hall conduc-
tivity is inappropriate for non-Hermitian Hamiltonians,
we may still construct the effective action of an exter-
nal U(1) gauge field to obtain the Hall conductivity, an
approach that is valid for both free and interacting the-
ories [38, 39]. The Hall response of a gapped system is
contained in the topological Chern-Simons term of the
effective action,

SCS[A] =
CCS

4π

∫
d3x εµνρAµ∂νAρ, (3)

where Aµ is the electromagnetic vector potential. The
Hall conductivity is proportional to the response coeffi-
cient, σxy = CCSe

2/h, which is topologically quantized
to integer values. Thus the electromagnetic response of
the Chern-Simons term is identical to the Kubo formula
for the Hall conductivity and we can identify CCS as the
Chern number.

Many non-Hermitian Hamiltonians possess a finite
spectral density in the gap, which permits the presence of
higher-order and non-local terms in the effective action
which contribute to the Hall conductivity, in addition
to the Chern-Simons term. Although progress has been
made towards evaluating these contributions [40, 41], the
quantization of the Hall conductivity fundamentally re-
lies on the quantization of the Chern-Simons coefficient.
As in the Hermitian case, the Chern number can be
defined as a topological invariant of the bands of non-
Hermitian Hamiltonians [13], but the identification of the
non-Hermitian Chern number with the Chern-Simons co-
efficient is not generally possible. By careful evaluation of
the Chern-Simons coefficient, we identify the underlying
structure of non-Hermitian systems responsible for the
disconnect between the Chern number and the Chern-
Simons coefficient. This disconnect prevents the quanti-
zation of the Hall conductivity arising from the Chern-

Simons term, which we refer to as the Chern-Simons Hall
response.

In the language of Green functions, the Chern-Simons
Hall response is calculated from the linear, antisymmetric
part of the polarization tensor as [42, 43]

σxy =
e2

h

εµνρ

24π2

∫
d3pTr

[
G
∂G−1

∂pµ
G
∂G−1

∂pν
G
∂G−1

∂pρ

]
,

(4)
where p = (ω, kx, ky), the frequency ω is integrated along
the imaginary axis of the complex plane, and G is the
Matsubara Green function. The Matsubara Green func-
tion in Eq. (4) is defined as

G(ω,k) = [ω −H(k)− Σ(ω,k)]
−1
, (5)

where H is the Hamiltonian and Σ is the self-energy. The
self-energy accounts for the presence of energy exchange
between the system and reservoirs as well as dissipative
interactions, both of which combine to imbue the quasi-
particles with a finite lifetime.

To clearly understand the topological quantization of
Eq. (4) for Hermitian systems, we recognize that the
Green function represents a homeomorphism, a continu-
ous bijection with a continuous inverse, between (2+1)-D
momentum space and the general linear group GL(N,C),
where N is the number of energy bands. Let us first
consider the continuum case, in which momentum space
is isomorphic to R3. Since the Green function ap-
proaches zero in the limits k → ∞ and ω → ∞, we
can compactify momentum space into the three-sphere
S3 by adding a point at infinity. With the point at in-
finity, the Green function now defines a three-loop in
GL(N,C) [44]. Therefore, the Green function is an el-
ement of the third homotopy group of the general linear
group, π3 (GL(N,C)), which is isomorphic to Z. In the
lattice case, momentum space can be compactified into
a pinched torus, whose third homotopy group is also iso-
morphic to Z [42]. Eq. (4) identifies to which element of
Z the Green function corresponds, guaranteeing the in-
teger quantization of the Hall conductivity in the Chern
insulator.

In order to evaluate Eq. (4), we must construct the req-
uisite Green function of the non-Hermitian Hamiltonian,
which we refer to as the non-Hermitian Green function.
Consider a general non-Hermitian Hamiltonian, written
as

H(k) = H0(k) + Γ(k), (6)

where the Hamiltonian has been broken up into Hermi-
tian, H0 = H†0 , and anti-Hermitian, Γ = −Γ†, compo-
nents. In this formulation, the anti-Hermitian compo-
nent is relegated to a self-energy term, giving the Mat-
subara Green function

G(ω,k) =
1

ω −H0(k)− Γ(k)sgn(Im ω)
, (7)
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where Σ(ω,k) = Γ(k)sgn(Im ω). In order to preserve
causality, we require the eigenvalues of Γ(k) to lie on the
negative imaginary axis [45].

The salient feature of the non-Hermitian Green func-
tion is the frequency dependence of the self-energy. The
self-energy depends on ω only via the signum function be-
cause it has been extracted from the Hamiltonian, which
has no dependence on ω. The frequency dependence
of the self-energy induces a discontinuity in every non-
Hermitian Green function at ω = 0, as demonstrated in
the schematic in Fig. 1. This discontinuity is avoided by
the self-energy of most common interactions by an addi-
tional dependence on ω that sets the magnitude of the
self-energy to zero at ω = 0. Such a discontinuous Green
function is not a homeomorphism and cannot be identi-
fied via Eq. (4) with an element of π3(GL(N,C)) ∼= Z.

The topological invariance of Eq. (4) may be proven by
demonstrating that the variation in the CS Hall response
induced by a variation of the Green function is identically
zero. Under the general distortion G → G + δG, the
variation is written as [45]

δσxy = −e
2

h

εµνρ

24π2

∫
d3p ∂µTr

[
δG∂νG

−1G∂ρG
−1
]
. (8)

For a smooth, continuous Green function, this expres-
sion can be recast as a surface integral via the diver-
gence theorem. Since the distortion δG must go to zero
at the boundary (ω → ±∞), the variation is identically
zero and the CS Hall response is a topological invariant.
However, the divergence theorem only applies to contin-
uous functions, and thus cannot be used to evaluate the
variation of non-Hermitian Green functions. Since δG is
arbitrary, the integral can effectively take any value, thus
the variation is finite and the CS Hall response is not a
topological invariant. The above discussion is completely
general to any non-Hermitian Hamiltonian as we have not
a priori assumed any particular form of the self-energy.

To illustrate the impact of a discontinuity in the
Green function, we consider a general diagonal self-
energy Σ(ω,k) = −iΓ0(ω,k)sgn(Im ω)I, where Γ0(ω,k)
is positive and real. This self-energy can be substituted
into the frequency variable in Eq. (8), resulting in a vari-
ation in the CS Hall response of the form [45]

δσxy =
e2

h

εij

24π2
×∫

d2kTr
[
δG∂iG

−1
0 G0∂jG

−1
0

]∣∣∣∣ω′=iΓ0(0,k)

ω′=−iΓ0(0,k)

, (9)

where G0 is the bare Green function with no self-energy
and the indices i and j span the momenta kx and ky. If
Γ0(0,k) = 0, this expression is zero and the CS Hall re-
sponse is a topological invariant. The self-energy arising
from any Fermi-liquid interaction, for example, is iden-
tically zero at ω = 0, and leaves the Hall conductivity

FIG. 1. Schematic representation of the inverse of a (a) con-
ventional Green function and (b) non-Hermitian Green func-
tion, as a function of iω. The non-Hermitian self-energy
Γ(k)sgn(Im ω) causes a discontinuity of magnitude 2Γ(k) =
2Γ0 at ω = 0.

an invariant. However, since Σ(ω,k) = Γ(k) has no fre-
quency dependence for non-Hermitian Green functions,
the terms in this expression do not cancel each other and
the result is finite. Since δG is arbitrary we find a finite
variation in the CS Hall response, as predicted above.

We can further understand the non-quantization of the
CS Hall response by considering a generic, gapped, two
level system described by the Hamiltonian

H(k) = d0(k)σ0 + d(k) · σ, (10)

where d0, di ∈ R and σ is a vector of the Pauli matrices.
The topological quantization of the Hall conductivity is
made clear by expressing it as [46]

σxy =
e2

h

∫
d2k

4π
d̂ ·

(
∂d̂

∂kx
× ∂d̂

∂ky

)
. (11)

The integral in this expression measures the solid-angle
that the vector d(k) sweeps out on S2 as the momen-
tum is integrated over the Brillouin zone. This geometric
quantity must be an integer, and is formally equivalent
to the Chern number.

The non-Hermitian generalization of this Hamiltonian
is

H(k) = (d0(k) + iΓ0(k))σ0 + (d(k) + iΓ(k)) · σ, (12)

where Γ(k) is a vector of real numbers and must sat-
isfy the requirement that the eigenvalues of H(k) have
negative imaginary components. In order to make the
following calculation more transparent, we suppress any
momentum dependence and use the following definitions:
b0 = d0 + iΓ0, b = d + iΓ, and b =

√
b · b. Using

Eq. (4) [45], we find the CS Hall response of a generic
two-level non-Hermitian Hamiltonian to be [47]
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σxy = −e
2

h

∫
d2k

2π2
Re

[
b̂ ·

(
∂b̂

∂kx
× ∂b̂

∂ky

)
×(

π

2
sgn(Re b)− ibb0

b2 − b20
− i arctanh

(
b0
b

))]
.

(13)

The infinitesimal angle swept out by the vector b(k) is
now multiplied by a function of the momentum, thus the
integral does not count the number of times b(k) covers
the sphere. This compact expression for the CS Hall
response as an integral over the Brillouin zone makes
manifest the absence of a topological interpretation.

To further elucidate the disconnection between Chern
number and bulk topological invariant, we now analyze
the CS Hall response of a model non-Hermitian Chern
insulator in detail. To this end, we utilize an inversion-
symmetric massive Dirac Hamiltonian, given by

H0(k) = −µσ0 + νFk · σ +Mσz, (14)

where µ is the chemical potential, νF is the Fermi veloc-
ity, and M > |µ| is the energy gap. When the chemical
potential is within the energy gap, the massive Dirac
Hamiltonian has a vanishing longitudinal conductance
and a Chern number C = − 1

2 [48], corresponding to a
half-quantized Hall conductance σxy = −e2/2h [49]. We
generalize this model to a non-Hermitian Chern insula-
tor by adding a constant diagonal imaginary term that
respects the same symmetry as the Hamiltonian,

H(k) = −(µ+ iΓ0)σ0 + νFk · σ +Mσz. (15)

As the anti-Hermitian component of the Hamiltonian,
Γ(k) = −iΓ0σ0, is proportional to the identity ma-
trix, the eigenvectors of the Hamiltonian and the Chern
number are unchanged from the Hermitian case. Using
Eq. (4), we calculate the CS Hall response of this non-
Hermitian massive Dirac Hamiltonian to be [45]

σxy =
e2

h

M

2π|M |

[
arctan

(
µ2 + Γ2

0 −M2

2Γ0|M |

)
− π

2

]
, (16)

in agreement with previous results on non-Hermitian
massive Dirac systems [50, 51]. Eq. (16) yields the prop-
erly quantized value σxy = −e2/2h in the Hermitian limit
Γ0 → 0, as expected. However, for any finite value of
broadening, Γ0, the CS Hall response is reduced from its
Hermitian value, as shown in Fig. 2, approaching σxy = 0
as Γ0 →∞. Because the eigenstate topology of this non-
Hermitian Hamiltonian is identical to that of the original
Hermitian Hamiltonian, the tunable value of the CS Hall
response makes clear the disconnect between topology
and observable.

With the loss of quantization in the Hall conductivity,
one expects an associated response in the longitudinal
conductivity [52]. As the broadening increases, a finite
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|
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FIG. 2. The longitudinal conductivity and magnitude of the
CS Hall response for the non-Hermitian Chern insulator as a
function of the broadening, Γ0, with µ = 0.1 eV and M =
1 eV. The CS Hall response monotonically decreases from
|σxy| = e2/2h to σxy = 0, while the longitudinal conductivity
monotonically increases from σxx = 0 to σxx = 1

π
e2/h.

spectral density develops in the gap, allowing for con-
duction through the bulk of the system. We may write
the longitudinal conductivity in terms of Green functions
as [53]

σxx = − e
2

2h

∫
d2k

(2π)2
Tr

[
Im GA(0,k)

∂H(k)

∂kx

× Im GA(0,−k)
∂H(k)

∂kx

]
,

(17)

whereGA(k, ω) is the advanced Green function [45]. Sub-
stituting the Green function of this non-Hermitian Chern
insulator into Eq. (17) gives the conductivity

σxx =
µ2 + Γ2

0 −M2

4πΓ0µ

[
2Γ0µ

µ2 + Γ2
0 −M2

+ arctan

(
2Γ0µ

M2 + Γ2
0 − µ2

)]
e2

h
,

(18)

In examining Eq. (18), we observe that in the Hermi-
tian limit, Γ0 → 0, the longitudinal conductivity goes
to zero, as it must for a Hermitian gapped system. In
both the massless limit, M → 0, and in the limit of in-
finite broadening, Γ0 →∞, the conductivity approaches
the theoretical minimum conductivity of a single Dirac
cone [53],

lim
M→0

σxx = lim
Γ0→∞

σxx =
e2

πh
. (19)

Between these two limits, the longitudinal conductivity
remains finite.
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A natural extension is to consider non-Hermitian sys-
tems in dimensions higher than (2+1). To this point, we
consider the (4 + 1)-D quantum Hall insulator, a higher-
dimensional analogue of the Chern insulator that is de-
scribed by the Chern-Simons action

Seff =
C2

24π2

∫
d4xdtεµνρστAµ∂νAρ∂σAτ , (20)

which corresponds a non-linear Hall response of the
form [38, 54]

jµ =
C2

8π2
εµνρστ∂νAρ∂σAτ . (21)

Here the coefficient C2 is the second Chern number of the
non-Abelian Berry phase [38], which may be expressed
via Green functions as

C2 = −π
2

15
εµνρστ

∫
d5p

(2π)5
Tr

[
G
∂G−1

∂pµ
G
∂G−1

∂pν

G
∂G−1

∂pρ
G
∂G−1

∂pσ
G
∂G−1

∂pτ

]
.

(22)

This integral is a higher-dimensional form of the topolog-
ical invariant in Eq. (4), as it identifies the Green func-
tion with an element of π5(GL(N,C)) = Z, resulting in
a quantized non-linear Hall response. The discontinuity
in non-Hermitian Green functions invalidates this topo-
logical quantization argument, as it did in the (2 + 1)-D
case, again leading to a disconnect between a topolog-
ical invariant and a quantized observable in a higher-
dimensional Chern insulator.

The fact that non-Hermiticity results in a non-
quantized Hall conductivity despite a quantized Chern
number seems to be directly at odds with the clear experi-
mental observations of the quantized Hall conductivity in
magnetically-doped three-dimensional time-reversal in-
variant topological insulators [55–59]. Such a mesoscopic
system is generally open and disordered, meaning it may
be best described by a non-Hermitian Hamiltonian that
accounts for finite lifetimes. The reason that the discon-
nect between topological observable and Chern number
is not present in magnetically-doped topological insula-
tors is that not all interactions result in non-Hermitian
self-energies with finite weight at ω = 0. For example,
consider the effect of magnetic impurity scattering on the
surface of a topological insulator. The anti-Hermitian
component of the self-energy resulting from magnetic im-
purity scattering is of the form [51]

Σ = −iΓ0|ω|sgn(Im ω), (23)

where Γ0 quantifies the broadening induced by the mag-
netic impurity scattering. We immediately notice that
the linear dependence of the self-energy on |ω| circum-
vents the discontinuity at ω = 0. The vanishing at ω = 0
of self-energies derived from interactions is a common

feature and is present, for example, in all Fermi liquid
interactions. The resulting Green function is continu-
ous for all k and ω and is a legitimate homeomorphism
from momentum space to GL(N,C). Therefore, Eq. (4)
produces a quantized CS Hall response, consistent with
experimental results.

In summary, we have studied the connection between
observables and topological invariants in non-Hermitian
Chern insulators. We have analytically shown via field-
theoretical techniques that there exists a disconnect be-
tween the Chern number and the CS Hall response
in (2 + 1)-D non-Hermitian Hamiltonians, the origin
of which is the discontinuity present in non-Hermitian
Green functions. This result, which is applicable to
all non-Hermitian Hamiltonians with eigenvalues in the
lower half of the complex plane, proves that there is
no simple relationship between the topology of eigen-
states and quantized observables in non-Hermitian sys-
tems. We derived an exact formula for the CS Hall re-
sponse of generic two-level non-Hermitian Hamiltonians
that clearly demonstrates the disconnect from the Chern
number. For the particular case of a non-Hermitian mas-
sive Dirac Hamiltonian, we showed that as broadening is
introduced, despite the unchanging eigenstates, the Hall
conductivity deviates from its quantized value and the
system develops a longitudinal conductivity. We have
further shown that the disconnect between topology and
observable may be extended to higher dimensional sys-
tems, specifically addressing (4+1)-D systems character-
ized by the second Chern number. Importantly, we have
illustrated that our results are consistent with the exper-
imental observations of the quantum anomalous Hall ef-
fect in magnetically-doped topological insulators. Our re-
sults demonstrate the necessity of reexamining perceived
links between topology and the quantization of observ-
ables in non-Hermitian systems.
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