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We show that topological phases of the Dirac system in arbitral even dimensional space are simulated by LC
electric circuits with operational amplifiers. The lattice Hamiltonian for the hypercubic lattice in 2n dimensional
space is characterized by the n-th Chern number. The boundary state is described by the Weyl theory in 2n− 1
dimensional space. They are well observed by measuring the admittance spectrum. The results are extended
to non-Hermitian systems with complex Dirac masses. The non-Hermitian n-th Chern number remains to be
quantized for the complex Dirac mass.

I. INTRODUCTION

Topological insulators were originally discovered in con-
densed matter physics. Now the notion has been extended to
cold atoms1, photonics2,3 and acoustics4–7. A recent finding is
that it is also applicable to electric circuits8,9. Various topo-
logical phases have been simulated by electric circuits8–18. In
this context, non-Hermitian topological systems are among
hottest topics of artificial topological systems16,19–25. Never-
theless, all these phases are also realizable in condensed mat-
ter in principle. It is an interesting problem to explore exotic
topological phases which would never exist in condensed mat-
ter.

An obvious example is the topological phase in the spa-
tial d dimensions (dDs) with d ≥ 4. The four-dimensional
(4D) quantum Hall effect is one of them26. It is simulated
via 2D quasi-crystals27 or topological pumping in photonic
systems28–30 and optical lattices31,32. They are characterized
by the second-Chern number. In the same way, the 6D quan-
tum Hall effect is realized in 3D topological pumping33,34.

In this paper, we show that topological phases of the Dirac
system in any even dimensional space are simulated by LC
electric circuits with operational amplifiers. Especially, we
construct topological phases characterized by the n-th Chern
number in 2nDs for arbitral n. We start with the Dirac Hamil-
tonian defined on the hypercubic lattice. The n-th Chern num-
ber is analytically calculated since it is determined by the
Dirac theory at the 22n high-symmetry points. Then we show
that the boundary states are described by the Weyl theory in
(2n-1)D. They are manifested by calculating the density of
states (DOS), which is proportional to |E|2n−2. Finally, we
point out that they are well signaled by admittance spectrum.

II. MODEL HAMILTONIAN

The Dirac Hamiltonian in 2nD space is given by

H2n =

∫
d2nk

[
ψ† (k) Γjkjψ (k) +Mψ† (k) Γ0ψ (k)

]
,

(1)
where Γµ with j = 1, 2, · · · , 2n and µ = 0, 1, 2, · · · , 2n
are the gamma matrices satisfying the Clifford algebra
{Γµ,Γν} = 2δµνI , while M is a constant representing the
Dirac mass. The system becomes non-Hermitian when the

mass M is taken to be complex. All the analysis is valid both
for Hermitian and non-Hermitian systems.

The gamma matrix Γ2n
µ in 2nDs has a 2n dimensional rep-

resentation, which is recursively defined by

Γ2n
0 = σx ⊗ I2n−2, Γ2n

2n = σz ⊗ I2n−2,
Γ2n
j = σy ⊗ Γ2n−2

j , Γ2n
2n−1 = σz ⊗ Γ2n−2

0 (2)

for 1 ≤ j ≤ 2n− 2, and Γ2
0 = σz , Γ2

1 = σx, Γ2
2 = σy .

The corresponding lattice model is35,36,

H2n (k) =

2n∑
µ=0

ψ† (k) dµΓµψ (k) , (3)

where

d0 = m+ t

2n∑
j=1

cos kj , dj = λ sin kj , (4)

with the on-site potential m, the hopping amplitude t and the
spin-orbital interaction λ. The energy spectrum is given by

E = ±
√∑2n

µ=0 (dµ)
2.

First, we show the bulk DOS of the Hermitian system in
Fig.1(a1)-(c1). The system is an insulator due to a finite gap.

Next, we show the energy spectrum in the ReE-ImE
plane37 for the non-Hermitian system in Fig.2(a1)-(c1). The
two bulk spectra are separated by a line given by ReE = 0.
This structure is called a line gap38 charactering an insulator
in the non-Hermitian system. It is a generalization of a point
gap charactering an insulator in the Hermitian system.

The gap closes at the 22n high-symmetry points K =
(K1,K2, · · · ,K2n), where Kj = 0, π. By evaluating (4) at
these points, we obtain a set of 22n Dirac Hamiltonians (3)
together with

d0 = m+ t

2n∑
j=1

(−1)
Kj/π ≡ m̄, dj = (−1)

Kj/π λkj , (5)

where d0 is the Dirac mass at the point K. We define the sign
of the Dirac Hamiltonian by η (K) ≡ (−1)

∑
Kj/π = ±1.

III. NON-HERMITIAN n-TH CHERN NUMBER

The topological insulator without any symmetry is classi-
fied by the Z index for both of the Hermitian39,40 and non-
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FIG. 1: (a1)–(c1) DOS of the bulk in n-th Chern insulators for the
Hermitian system as a function of the energy E for (a) D = 2 with
C1 = −1, (b) D = 4 with C2 = 3, and (c) D = 6 with C3 =
−10. There are finite gaps, dictating that the systems are insulators.
(a2)–(c2) DOS of the boundary states as a function of the energy E.
The dark blue curves represent the DOS for all bands numerically
obtained, the magenta curves represent the DOS for the energy (14)
analytically obtained, and the dotted cyan curves represent the DOS
for the energy (15) analytically obtained. These numerical results are
well fitted by analytical results of the Weyl theory in the vicinity of
the Fermi energy. We have set t = λ = m = 1.

Hermitian systems38. In the case of the Hermitian system, the
topological number is the n-th Chern number. It is also ap-
plicable to the non-Hermitian system by using the following
definition.

By generalizing the non-Hermitian Chern number17,37,41–46,
we define the non-Hermitian n-th Chern number as

Cn =
1

(2π)
n

∫
1

n!

n∧
Fd2nk, (6)

where F is the non-Hermitian non-Abelian Berry curvature,

Fαβij = ∂iA
αβ
j − ∂jA

αβ
i + i [Ai, Aj ]

αβ
, (7)

with the non-Hermitian Berry connection41,47–49

Aαβi (k) = −i〈ψL
α (k) |∂ki |ψR

β (k)〉. (8)

Here, |ψR
β (k)〉 and |ψL

β (k)〉 are the right and left eigenstates,
H|ψR

β (k)〉 = E|ψR
β (k)〉 and H†|ψL

β (k)〉 = E∗|ψL
β (k)〉.

Substituting (5) into (6), the n-th Chern number is given by

Cn (Kµ) = η
(4n− 1)!!

2n−1 (2n− 1)!

∫
d2nk

m̄

(k2 + m̄2)
(2n+1)/2

,

(9)
which is explicitly calculated as

Cn (Kµ) = η
m̄

2
√
m̄2

. (10)

It readsCn (Kµ) = η/2 for Re[m̄] > 0 andCn (Kµ) = −η/2
for Re[m̄] < 0. It is quantized even for a complex mass.

The topological phase boundaries are determined by the
massless condition m̄ (Kµ) = 0, which is independent of the
value of the spin-orbital interaction λ.

FIG. 2: Energy spectrum in the ReE-ImE plane for (a) D = 2
(L = 100), (b) D = 4 (L = 25) and (c) D = 6 (L = 25), where L
is the length of the hypercube. (a1)–(c1) There are gaps in the bulk
spectrum, showing that the system is an insulator. (a2)–(2) There are
boundary states connecting two bulk spectra, which is on the ImE =
0 line. They are Weyl boundary states. We have set t = λ = 1 and
m = 1 + 0.1i.

FIG. 3: n-th Chern number as a function of m for (a) D = 2, (b)
D = 4 and (c) D = 6. We have set λ = 1.

Then the total n-th Chern number for the lattice Hamilto-
nian is Cn =

∑
Kj
Cn (Kj), where the summation is taken

over all the highest symmetry points. We show the n-th Chern
number as a function of m/t in Fig.3. It is always quantized
and jumps when the mass becomes zero.

IV. WEYL BOUNDARY STATES

The boundary states emerge in a topological phase of an
insulator. Let us review the case of 2Ds, where we analyze a
nanoribbon with a finite width along the x2 axis. First of all,
the dynamical degree of freedom with respect to x2 is frozen
by the Jackiw-Rebbi solution of the Dirac equation50, where
the mass has a spatial dependence. On the other hand, the
lattice structure along the x1 axis allows us to introduce the
crystal momentum k1. Consequently, the dynamical degree
of freedom is carried solely by the momentum k1 along the
edge.

Similarly in 2nDs, we analyze a nanostructure with a fi-
nite thickness along the x2n axis, while the other directions
are periodic. We numerically calculate the energy spectrum
of the non-Hermitian system in the ReE-ImE plane as in
Fig.2(a2)–(c2). There are lines connecting two separated bulk
spectra along the ImE = 0 line in topological phases. They
are Weyl boundary states, which remains to be real even for
the non-Hermitian system. It results in the emergence of a
zero-energy solution, which is the Jackiw-Rebbi solution as
we now demonstrate.
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FIG. 4: Cone structure of the Weyl boundary state. The vertical axis
is E, while the horizontal axes are kx and ky . We have set the other
momenta are zero, kj = 0 for 3 ≤ j ≤ 2n − 1. It does not depend
on the dimension. The parameters are the same as Fig.2.

The Dirac equation describing the boundary states is given
by

(m̄ (x2n)σx ⊗ I2n−2 − iλ∂x2nσy ⊗ I2n−2

+

2n−1∑
j=1

kjσz ⊗ Γj−1)ψ = 0, (11)

where m̄ (x2n) is a spatially dependent mass, m̄ (x2n) =
m0 tanh(x2n/ξ), with ξ the penetration depth. We seek a
zero-energy solution by solving(

0 m̄ (x2n)− λ∂x2n

m̄ (x2n) + λ∂x2n
0

)(
ψA
ψB

)
= 0,

(12)
and find that ψA(B) ∝ exp[∓λ−1

∫
m̄ (x2n) dx2n]. This is

exactly the Jackiw-Rebbi solution. The zero-energy solutions
exist when the integrands converge. We have obtained the
Jackiw-Rebbi solution even in the non-Hermitian system.

Since the dynamical degree of freedom with respect to x2n
is frozen, the dimensional reduction occurs from 2nDs to
(2n−1)Ds, where the dynamical degrees of freedom are crys-
tal momenta kj with 1 ≤ j ≤ 2n − 1. The zero-energy so-
lution is localized at the boundary, where the mass becomes
zero. Hence, the boundary Hamiltonian is described by the
Weyl Hamiltonian in (2n− 1)Ds,

H2n−1 (k) =

2n−1∑
j=1

ψ† (k) djΓjψ (k) , (13)

whose energy spectrum is given by

E (k) = ± |λ|

√√√√2n−1∑
j=1

sin2 kj . (14)

The energy dispersion is linear near the Fermi level,

E (k) = ± |λk| . (15)

We show the boundary states numerically obtained as a func-
tion of kx and ky for the n-th Chern insulator based on the
Hamiltonian (3) in Fig.4, where we have set kj = 0 for
3 ≤ j ≤ 2n− 1. It is well fitted by (14).

The DOS is

ρ (E) =

∫
δ(E − λ

√√√√2n−1∑
j=1

sin2 kj)d
2n−1k, (16)

FIG. 5: Projection of the unit hypercube onto the 2D plane. (a)
4D hypercube and (b) 6D hypercube. Circles represent the unit cell
shown in Fig.6, and colored links represent the conection between
two unit cells as in Fig.6. The coordinates are shown in (a) and (b).

which is proportional to

ρ (E) ∝ λ |E|2n−2 (17)

in the vicinity of the Fermi level.
We numerically calculate the DOS of the thin film in the

case of the Hermitian system in Fig.1(a2)-(c2). In the vicinity
of the Fermi level, the DOS of the total band is well fitted
by the DOS determined by the boundary lattice Hamiltonian
(14) and the DOS (17) of the Weyl Hamiltonian. The DOS of
the Hamiltonian is observable by measuring admittance, as we
shall see later. Thus, it is an experimental signature to detect
higher-dimensional Weyl boundary states.

V. ELECTRIC CIRCUIT REALIZATION

We next explain how to simulate the above model in higher
dimensions by electric circuits. First, we note that a hypercu-
bic lattice in any dimensions can be projected to a 2D plane
as illustrated in Fig.5. The lattice points of a hypercube are
projected to different positions in the 2D plane. Although the
links cross each other, they can be avoided by using a bridge
structure of wiring. We consider a hypercubic lattice struc-
ture in 2nDs whose unit cell contains 22n sites, which is the
dimension of the Γ matrix.

Let us explain an instance of the 4D lattice, i.e., the case
of n = 2. A single cube (L = 1) contains 16 sites as in
Fig.5(a1). A pair of two sites are connected by a colored link,
which is parallel to one of the four axes, i.e., the x-axis (red),
the y-axis (green), the z-axis (purple) and the u-axis (cyan).
A lattice with size L = 3 is illustrated in Fig.5(a2), which
is obtained by dividing an edge of a single cube into L = 3
pieces.

Second, we associate one unit cell with each site, and one
link circuit with each link: There are four types of link cir-
cuits in 4D lattice as illustrated in Fig.6. Actual forms of the
unit cell and the link circuits are constructed by analyzing the
Kirchhoff current law.

The Kirchhoff current law of the circuit under the applica-
tion of an AC voltage V (t) = V (0) eiωt is given by8,9,

Ia (ω) =
∑
b

Jab (ω)Vb (ω) , (18)
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FIG. 6: Basic elements for electric circuit realization of the second-
Chern insulator on the 4D hypercubic lattice. The dotted rectangle
represents the unit cell. Colored circuits in (a) red, (b) green, (c)
purple and (d) cyan represent links parallel to four independent axes
x, y, z and u, respectively. (e) Each node is grounded either by a
capacitance (C0) or an inductor (L0), together with an operational
amplifier14 (Rop) and a resistor (R0). The resister (R0) is added in
order to make the system stable. See also Fig.5 how to construct a
whole circuit using the unit cell and links.

where the sum is taken over all adjacent nodes b, and Jab (ω)
is called the circuit Laplacian. The eigenvalues of the circuit
Laplacian are called the admittance spectrum, which provides
us with an information of the bulk spectrum of the correspond-
ing Hamiltonian.

We explain the method to implement an electric circuit cor-
responding to the Hamiltonian. The Hamiltonian is written
in the form of the 2n × 2n matrix. Each component has
the form of e±ikµ , −e±ikµor ie±ikµ . We express the term
e±ikµ by capacitors iωCe±ikµ , the term −e±ikµ by induc-
tors − 1

iωLe
±ikµ , and the term ie±ikµ by operational ampli-

fiers iRXe±ikµ as in the case of the previous studies8–14,17,18.
We introduce operational amplifiers Rop in order to make the
Dirac mass complex. Then we connect each node either by a
capacitor C0 or an inductor L0 to the ground as in Fig.6(e).
The addition of operational amplifiers Rop may make the sys-
tem unstable due to the gain induced by them. We can over-
come the problem by introduding resistorsR0 parallel to them
as in Fig.6(e). By using appropriate resistors, we can tune the
system so that the gain is cancelled. For illustration in Fig.2
we have neglected the effect of resistors R0 since they only
shift the energy.

Let us explicitly show the implementation in the case of
4Ds. In order to make a circuit simple, we take a representa-
tion Γ0 = σz⊗I , Γx = σx⊗σx, Γy = σx⊗σy , Γz = σx⊗σz
and Γu = σy⊗I for the second-Chern insulator. We show the
element of the circuit structure in Fig.6. We use these struc-

tures colored in red, green, purple and cyan as x, y, z and u
links in Fig.5, while the unit cell is denoted by black dotted
rectangles.

It is straightforward to write down the circuit Laplacian51

Jab explicitly in terms of the capacitors, the inductors and the
operational amplifiers used in the circuit given in Fig.6. Then,
we fix these parameters in electric circuit so that the circuit
Laplacian J is identical to the Hamiltonian H . It follows
that J = iωH , provided the resonance frequency is given
by ω0 = 1/

√
LC = 1/

√
L0C0. The relations between the

system parameters are t = C, λ = CX = (ω0RX)−1, and
m = −4nC + C0 − (iωRop)−1. An important observation is
that we may change the mass m by tuning C0. Then, we may
induce topological phase transitions by controlling the Chern
number based on the formula (10) together with (5).

We present an explicit form of the circuit Laplacian corre-
sponding to the circuit in Fig.6 in the main text. It is a sum of
five terms in 4Ds, J =

∑
µ=0,x,y,z,u Jµ, with

J0 =
1

iωR0
+

 m+ 0 0 0
0 m+ 0 0
0 0 m− 0
0 0 0 m−

 , (19)

Jx =

 f+x 0 0 g0x
0 f+x g0x 0
0 g0x f−x 0
g0x 0 0 f−x

 , (20)

Jy =


f+y 0 0 g−y
0 f+y g+y 0
0 g−y f−y 0
g+y 0 0 f−y

 , (21)

Jz =

 f+z 0 g0z 0
0 f+z 0 −g0z
g0z 0 f−z 0
0 −g0z 0 f−z

 , (22)

Ju =

 f+u 0 g−u 0
0 f+u 0 g−u
g+u 0 f−u 0
0 g+u 0 f−u

 (23)

with

m+ = C0 − (iωRop)−1, (24)

m− = −(ω2L0)−1 + (iωRop)−1, (25)

f+j = 2C cos kj − 2C, (26)

f−j = −2(ω2L)−1 cos kj + 2(ω2L)−1, (27)

g+j = −(ω2LX)−1eikj + CXe
−ikj , (28)

g−j = CXe
ikj − (ω2LX)−1e−ikj , (29)

g0j = (iωRX)−1eikj − (iωRX)−1e−ikj . (30)

The system becomes an LC resonator.
The eigenvalues of the circuit Laplacian give an admit-

tance spectrum8–13. Indeed the band structure of the circuit
Laplacian can be experimentally observed11 directly. Then,
the DOS of the Laplacian is proportional to the DOS of the
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Hamiltonian. Thus, the DOS of the Laplacian is measured by
the DOS of the admittance by integrating out the momentum.

VI. DISCUSSIONS

We have shown that topological insulators in any dimen-
sions are simulated by electric circuits. In elementary par-
ticle physics, the spatial dimension is believed to be higher
than three according to string theory. On the other hand, the
classification table of the topological insulator dictates the ex-

istence of the topological systems in higher dimensions38–40.
However, these higher dimensional systems are impossible to
approach experimentally. Our results will open a rout to study
higher dimensional physics in laboratory.
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