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Search for parafermions and Fibonacci anyons, which are excitations obeying non-Abelian statis-
tics, is driven both by the quest for deeper understanding of nature and prospects for universal
topological quantum computation. However, physical systems that can host these exotic excitations
are rare and hard to realize in experiments. Here we study the domain walls and the edge states
formed in spin transitions in the fractional quantum Hall effect. Effective theory approach and exact
diagonalization in a disk and torus geometries proves the existence of the counter-propagating edge
modes with opposite spin polarizations at the boundary between the two neighboring regions of the
two-dimensional electron liquid in spin-polarized and spin-unpolarized phases. By analytical and
numerical analysis, we argue that these systems can host parafermions when coupled to an s-wave
superconductor and are experimentally feasible. We investigate settings based on ν = 2

3
, ν = 4

3
and

ν = 5
3

spin transitions and analyze spin-flipping interactions that hybridize counter-propagating
modes. Finally, we discuss spin-orbit interactions of composite fermions.

I. INTRODUCTION

Since early years of quantum physics, it has been
recognized that symmetry with respect to an exchange
of particles results in the two possible quantum statis-
tics, Bose-Einstein statistics for particles with integer
spin and Fermi statistics for particles with half-integer
spin. About fifty years later researchers realized that
particles/quasiparticles confined to one dimension1 or
two dimensions2,3 can obey a different statistics, which
F. Wilczek called anyon statistics, for which an ex-
change results in the wavefunction picking up any pos-
sible quantum-mechanical phase. Furthermore, it was
realized4–8 that for degenerate states, an exchange, or
more appropriately, braiding of particles or quasiparti-
cles in two dimensions may result in nontrivial unitary
transformation of the corresponding wavefunctions, i.e.
in the non-abelian statistics. It was recognized recently
that the non-abelian statistics opens new ways of ap-
proaching a fault-tolerant quantum computation. An ap-
proach to the topological quantum computation based on
the Majorana fermions has been widely studied in recent
years9–12. However, it became apparent that such sys-
tems are not computationally universal because braid-
ing operations for Majorana fermions cannot approxi-
mate all unitary quantum gates13,14. In order to realize
the universal topological quantum computation, other
kinds of non-Abelian anyons are required. In particu-
lar, parafermions have been shown to have denser ro-
tation groups and their braiding operations can enable
two-qubit entangling gates15,16. Furthermore, a two di-

mensional array of parafermions can support Fibonacci
anyons with universal braiding statistics17. Therefore, it
is of great interest to find experimentally realizable sys-
tems which can host parafermions. In a seminal paper18,
Clarke, Allicea and Shtengel proposed that parafermions
can appear in the fractional quantum Hall effect (FQHE)
regime at filling factors ν = 1

m if two counter-propagating
edge states from two adjacent 2D electron gases with op-
posite g-factors are gapped by the proximity supercon-
ducting pairing and spin-orbit induced tunneling.

Here we propose that a single layer of the 2D elec-
tron gas in a magnetic field near the spin transition
between the filling factor ν = 2

3 spin-unpolarized and
spin-polarized states can be used to create a domain
wall that will host parafermions when coupled to an s-
wave superconductor, and use exact diagonalization of
small systems in order to confirm this result microscop-
ically. We discuss feasible experimental settings, ana-
lyze viable spin-flipping mechanisms capable of gapping
counterpropagating modes with opposite spin, and dis-
cuss possible realizations of topological superconductiv-
ity and parafermions in spin transitions besides ν = 2

3 .

The FQHE spin transitions have been observed at the
filling factor ν = 2

3 and other fractions19,20, e.g. when an
in-plane component of a tilted magnetic field is varied,
resulting in a change in electron spin system. Such spin
transition can be understood in terms of the composite
fermion (CF) picture21. The FQHE states at a filling
factor ν = n

2n−1 for electrons can be mapped onto the
integer quantum Hall states at a filling factor n for CFs.
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FIG. 1. (Color online). a: The schematic plot of the com-
posite fermion energy levels. When the magnetic field is in-
creased, there is a level crossing(black circle) of the Λ0↓ and
Λ1↑ which leads to a spin transition from spin-unpolarized
state to spin-polarized state. b: A schematic plot of the edge
states. The arrows represent the direction of the their veloc-
ities and colors represent spin up(red) spin down(blue).

The energy of the n-th CF level is:

Ens = ~ωcfc (n+
1

2
) + sgµBB, (1)

where the CF cyclotron energy ~ωcfc is proportional
to the characteristic electron-electron interaction energy

scale e2

lm
, lm =

√
~ceB⊥ is the magnetic length, and B⊥

is the out of plane component of the magnetic field B.
The second term is the Zeeman energy, the index s = ±1,
represents the up and down spin states of the compos-
ite fermions. Since the cyclotron and Zeeman energies
have different magnetic field dependencies, the levels Λp,↓
and Λp+1,↑ have to cross at some B∗ > 0, as shown in
Fig.1(a). Therefore, at B < B∗ electrons of 2

3 state oc-
cupy Λ0↑ and Λ0↓ levels and the system is in the spin-
unpolarized phase, while at B > B∗ they occupy Λ0↑
and Λ1↑ states and it is in the spin-polarized phase. Fur-
thermore, it has been shown that electrostatic gates con-
trol electron-electron interactions, so that in a triangu-
lar quantum well the composite fermion cyclotron energy

~ωcfc ∝ e2√
l2m+z20

, where z0 is the extent of the electron

wavefunction in the direction of the spatial quantization.
Therefore it is possible to induce the spin-polarized and
spin-unpolarized fractional quantum Hall phases in a sin-
gle quantum well underneath different electrostatic gates.
In this case a controlled domain wall that separates re-
gions with different spin polarizations should emerge22,23.
Experimentally transitions can then be achieved by both
tuning the effective Coulomb interaction and/or by tun-
ing the Zeeman coupling via the in-plane component of
the magnetic field24.

The boundary between polarized and unpolarized re-
gions of the 2d electron liquid results in edge-like states,
which we will call edge states despite they are, strictly
speaking, different from the true edge states flowing at
the boundary of the quantum Hall samples. The reason
for a difference between these two kinds of edge states

is obvious. For edges at the sample boundary, the spin-
unpolarized or spin-polarized phase has to decrease its
density (filling factor) from ν = 2

3 in the bulk to ν = 0 at
the sample boundary. For the boundary between two
ν = 2

3 phases, the density stays nearly constant, the
change in density has to be less than that correspond-
ing to the width of the ν = 2

3 plateau.

The first goal of our paper is to demonstrate the exis-
tence and investigate the nature of the edge states flowing
through the domain wall between polarized and unpo-
larized fractional quantum Hall spin regions. The edge
states of the quantum Hall systems were widely studied
over the years25–34. For the filling factor ν = 2

3 , edge
states of the fractional quantum Hall liquid at the sam-
ple boundaries have been studied in both spin-polarized
and various kinds of unpolarized phases35–39. In has been
predicted that both phases of ν = 2

3 electron liquid can
be characterized by two counterporopagating edge modes
at the sample boundaries.

A new setting emerges on the spatial boundary be-
tween the two different topological orders, i.e. the do-
main wall between spin-polarized and unpolarized phases
realized in the neighboring regions of the 2D electron liq-
uid. When the 2

3 polarized and unpolarized states are far
apart, there are four edge modes with two states moving
in one direction and two states moving in the opposite
direction. When they are brought closer together, one
can anticipate that there are only two edge modes are
left, see Fig.1(b). This can be understood intuitively in
terms of the composite fermion picture. The edge states
associated with the common Λ0↑ level will merge and dis-
appear, and only the edge states associated with the Λ0↓
and Λ1↑ levels will remain. This picture implies that the
remaining edge states propagate in opposite directions
and carry opposite spins. We will present simple qualita-
tive ariguments to justify this picture, and demonstrate
it rigorously by using the effective field theory. We will
also apply exact diagonalization method in a disk and
torus geometries.

It then follows that the domain wall excitations in the
proximity of an s-superconductor are possibly character-
ized by a parafermion non-abelian statistics. The domain
wall system is similar to the setting discussed in18 with a
boundary of two fractional Hall liquids having opposite
values of the electron g-factor at a filling factor ν = 1/3
in proximity to an s-superconductor. We will see indeed
that the proximity coupling of the fractional quantum
Hall ferromagnet domain wall area to an s-wave super-
conductor induces parafermions.

In an experimental setting, one needs to control the on-
set of topological supercondutivity and be able to induce
and move the boundaries between topological and non-
topological superconducting regions. Parafermions must
be located at the boundaries between these regions. Thus
an ability to change the boundaries between these regions
allows to move parafermions, which would be ultimately
necessary for their braiding. However, when crossing be-
tween the composite fermion Landau levels takes place,
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proximity coupling to the domain wall will always yield
a topological proximity superconductivity, in much the
same way as it happens in topological insulators40,41.
Then no trivial proximity superconductivity at any value
of induced superconducting order parameter is expected.
In order to have both types of proximity superconductiv-
ity and potentially a boundary between the two regions
with different superconducting order with the location of
distinct from that of superconducting contacts , one has
to induce a gap due to tunneling between the two coun-
terpropagating edge states with opposite spin. When
this tunneling is tuned, an onset of topological supercon-
ductivity depends on the competition of tunneling and
proximity superconducting gaps. If an induced super-
conducting order parameter in the domain wall changes
its amplitude along the domain wall, the possibility to
move parafermions along the domain emerges.

We will study the effective theory of states in the
domain wall when two gapping mechanisms are intro-
duced: superconducting pairing and spin-flip tunneling
across the domain wall caused by an in-plane compo-
nent of a magnetic field, and demonstrate an emergence
of parafermions in this system. We find that in a sin-
gle quantum well the spin-orbit coupling is negligible be-
tween fractional quantum Hall edge states with opposite
spins belonging to the first electron Landau level. Our
simulation shows that despite a small g-factor in a GaAs
system, gapping of the edge states can be realized by an
in-plane component of a the magnetic field. Spin transi-
tions in GaAs have been also observed at a filling factor
8/342, which potentially opens a possibility of emergence
of parafermions in high Landau levels fractional quantum
Hall systems at magnetic fields below 1T. We also pro-
pose that a good candidate for observing parafemions is
CdMnTe system with the effective Zeemann splitting of
the order to the cyclotron frequency, where the fractional
quantum Hall effect has been observed in43. Further-
more, in this system, the fractional quantum Hall effect
spin transition was observed at ν = 5/3, and there have
been also signatures of the spin transition at ν = 4/3.
In these cases, the fractional quantum Hall edge states
that potentially experience crossing originate from dif-
ferent electron Landau levels, and in these circumstances
spin-orbit interactions result in a sizable anticrossing gap.
Because spin-orbit coupling can be effectively tuned by
electrostatic gates, this setting would allow to tune the
parafermion zero modes and their braiding using only
gate voltage.

We would like to underscore that our results not only
provide a path to a new platform realizing universal topo-
logic al quantum computation, but also illustrate a gen-
eral method to study the edge states on the boundary
of systems with different topological orders.We also de-
veloped a scheme for numerical modeling of fractional
quantum Hall states in proximity of an s-superconductor.

Our paper is organized as follows: In Sec.II we analyse
edge states on the boundary between topologically dis-
tinct 2

3 spin polarized and unpolarized states. Sec III is

devoted to the numerical calculations of edge states on
on the disk, and Sec. IV presents the numerical calcu-
lations of edge modes on the torus. In Sec.V we disuss
the emergence of parafermion zero modes and Sec. VI
describes the numerical calculation of these modes. In
Sec. VII we will discuss a possible parafermion setting
based on ν = 4

3 and ν = 5
3 spin transitions and spin-

orbit interactions of composite fermions. We summarize
our results in Sec. VIII. In Appendix, we evaluate spin-
flipping interactions of the quasiparticles orignating from
the lowest Landau level.

II. ANALYTIC CONSIDERATION OF EDGE
STATES ON THE BOUNDARY BETWEEN ν = 2

3
SPIN-POLARIZED AND SPIN-UNPOLARIZED

FRACTIONAL QUANTUM HALL STATES.

In this section, we will use the effective theory in order
to analyze the structure of the edge states on the bound-
ary between 2

3 spin polarized and unpolarized phases an-
alytically. We will quantitatively show that there remain
only two edge modes, which propagate in opposite direc-
tions and have carry opposite spins. An analytic theory
is essential because not only it sheds light on the nu-
merical calculations in the following sections, but is also
necessary for the study of the emergence of parafermions.

Before considering the quantitative theory, we first
qualitatively explain why there are edge states on the
boundary between the two regions with topologically dif-
ferent orders. The formation of the edge modes are al-
ways related to the confinement potentials acting at the
edges. Naively it seems that there is no confinement po-
tential around the internal edge in our case. However, we
actually have intrinsic spin-dependent confinement po-
tential. Indeed, from the analysis in the introduction, we
see that there is a level crossing between the edge states
with opposite spins. The composite fermions in the Λ0↓
level in the spin-unpolarized phase can not tunnel into
region of the spin-polarized phase because Λ0↓ level has
a higher energy there, see Fig.2(a). The same story also
applies for the composite fermions of the Λ1↑ Landau
level in the spin polarized phase. Therefore, the compos-
ite fermions of these two levels characterizing opposite
spins are subject to the effective spin-dependent potential
confinements. A spatial gradient of this spin-dependent
potential constitutes a spin-dependent electric field. De-
pending on the experimental setting, the spin-dependent
confinement and electric fields are controlled either by
varying z0-extent of the electron wavefunction in the di-
rection orthoogonal to the 2D plan by electrostatic gates
or by a spatial variation of the Zeeman coupling of the
electron spin to an external magnetic field. The spin-
dependent electric field acts together with the effective
residual magnetic field, which is due to joint effect of the
external magnetic field and the Chern-Simons field. For
ν = 2

3 , the effective magnetic field is negative38, but it
is the same in both the spin-polarized and unpolarized
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FIG. 2. (Color online). a: A schematic plot of the com-
posite fermion energy levels in the bulk of the spin-polarized
and spin-unpolarized regions. Potential barriers for compos-
ite fermions of the Λ1↑ Landau level and composite fermions
of the Λ0↓ Landau level are shown. b: Possible edge modes on
the boundary of spin-polarized and spin-unpolarized regions.
The two modes in the middle corresponding to Λ0↑ can pair
and form a gap. They are not considered in the low energy
theory. c: illustration of the crossed effective magnetic field
B∗ and electric field E resulting in counterpropagating modes
of opposite spin and opposite velocities v in the shaded do-
main wall area. The electric field E is opposite for up and
down spin states, as follows from potential barriers in Fig. 2a.

phases. Assuming a simple model, in which the change
of potentials for each of the spins is linear in coordinate
across the domain wall, we find that composite fermions
with spin polarization up are subject to the crossed effec-
tive magnetic field and the electric field of one sign. For
the spin polarization down, we again have crossed mag-
netic and electric fields, with an effective magnetic field
being the same as for the spin up, but with the oppo-
site electric field. Thus, we have two counterpropagating
composite fermion edge states of opposite spins due to
these crossed effective magnetic and electric fields, see
Fig.2(c). This situation is analogous to the case of edge
states at the domain wall between polarized and unpo-
larzed 2D regions in the case of the integer Quantum Hall
effect23. If Hamiltonian of the system contains only the
out of plane magnetic field, the counterpropagating edge
states experience no backscattering. An in-plane mag-
netic field results in hybridization of these edge states
with opposite spins. This in-plane field, however, should
be not strong enough to alter the character of neighbor-
ing spin phases.

We now discuss the effective theory for the boundary of
the polarized and unpolarized regions. The Lagrangian
density in the effective theory for the bulk fractional
quantum Hall state can be written in the form29,32:

L = − 1

4π
KII′aIµ∂νaI′lambdaε

µνλ − e

2π
qIAµ∂νaIλε

µνλ

+ sIωµ∂νaIλε
µνλ, (2)

where aIµ represents n Abelian Chern Simons (CS) gauge
fields, Aµ is the electromagnetic gauge field, ωµ describes
the curvature of the space, K is an n×n nonsingular inte-
ger matrix describing the coupling between the CS gauge
fields, q is an n-component integer vector describing the
coupling between the CS gauge fields and the electromag-
netic gauge field, s is an n-component half-integer vector
describing the coupling between the CS gauge fields and
the curvature. An Abelian quantum Hall state can be
classified by a set {K,q, s}, which determines the long
distance properties of the state. Therefore, this set char-
acterizes the topological order of the Abelian quantum
Hall fluid. For the ν = 2

3 case, it takes the following
values in the spin- polarized phase:

K1 =

(
1 2
2 1

)
,q1 =

(
1
1

)
, s1 =

(
1
2
− 1

2

)
. (3)

For the spin-unpolarized phase this set is defined by:

K2 =

(
1 2
2 1

)
,q2 =

(
1
1

)
, s2 =

(
1
2
1
2

)
. (4)

The form of the K matrix can be understood in terms
of the composite fermion picture38. For the ν = 2

3 state,
there are two components each occupying a single CF
Λ-level in an effective antiparallel magnetic field. Thus,
the corresponding contribution to the K matrix is Kij =
−δij . Each component should have two fluxes attached,
so we add an integer 2 to each element of the K matrix.
From Eqs. (3) and (4), we see that the only difference
between the spin-polarized and unpolarized phases is the
spin vector s, as expected. In Eq. (2), the second and
the third terms are similar. If we regard q as a vector
describing the unit of the electric charge carried by the
two CF components, s can be regarded as describing the
“curvature charge” carried by the CF components.

We now consider the physics of the edge states. We
note that for the edge states in the domain wall, due
to the absence of a boundary with vacuum, simple ar-
guments based on ν = 1 forward-mowing mode border-
ing vacuum and 1/3 backward-flowing mode of holes can
no longer be applied even for the spin-polarized phase.
Similarly, analogous composite fermion picture with two
edges, one separating 2 and 1 filled composite fermion
Λ-levels and the other separating Λ-levels 1 and 0, which
upon antiparallel flux attachment are characterized by
electron filling factors 2/3, 1/3 and 0, also does not work.
The reason is, instead of vacuum at the boundary, we
have a phase of nearly the same density, within the in-
terval of densities on the ν = 2

3 plateau. Therefore the
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K-matrix description of Wen32 is the reliable way to ap-
proach the solution of this problem.

When the fractional quantum Hall liquid is confined by
the boundaries of the sample, the action S =

∫
dxdydtL,

where L is given by Eq. (2), is not gauge invariant for the
CS gauge fields. To restore the gauge invariance, one has
to introduce an action that describes the edge physics:

Sedge =
1

4π

∫
dtdx[KIJ∂tφI∂xφJ −VIJ∂xφI∂xφJ ]. (5)

In the equation (5), we assume that the edge is along
the x−axis, φI is the field that describes the I-th compo-
nent of the edge branches, aIi = ∂iφI and ρI = 1

2π∂xφI
is the density of the I-th branch. K is the same matrix
as in the bulk phase, and one can show that its positive
eigenvalues correspond to the left-moving branches, and
its negative eigenvalues scorrespond to the right-moving
branches. V is a positive-definite matrix that encodes the
non-universal interactions between edge branches. We
now study the properties of the edge states between two
Abelian FQH phases. Assuming the edge is along y = 0
axis, and using the same gauge argument as in Ref.32, we
find that the {K,q, s} for the new state is

K = K1

⊕
−K2,q = q1

⊕
q2, s = s1

⊕
s2. (6)

A similar situation for bilayers was considered in Ref.35,
however the spin vectors did not play any role there. Here
we include spin vectors into the picture. In Eq. (6),
dim(K) = dim(K1)+dim(K2), and all edge branches are
retained. After considering the tunneling perturbation,
we see that two of the edge branches can be removed
from the low energy theory. Following Ref.35, we define
the following quantities:

φ(m) = miφi, q(m) = miqi,

s(m) = misi, K(m) = miKijmj , (7)

where m is an integer valued vector, and repeated indices
mean summation. We define further a set of local fields:

Ψm = e−iφ(m), (8)

which obey

Ψm(x)Ψm′(x
′) = (−1)q(m)q(m′)Ψm′(x

′)Ψm(x) (9)

for x 6= x′. From the properties of K matrix in the
symmetric representation we have:

(−1)K(m) = (−1)q(m) (10)

Thus, if K(m) is odd, the field Ψm is fermionic, and if
K(m) is even, it is bosonic. Now we consider the tunnel-
ing perturbation:

T =

∫
dx[t(x)Ψm(x) + h.c.]. (11)

It should be bosonic and charge conserving, hence q(m) =
s(m) = 0 and K(m) even. The scaling dimension of Ψm

is ∆(m) that satisfies the inequality

∆(m) >
1

2
|K(m)|. (12)

If the tunneling perturbation is relevant, the modes in
Ψm become massive and are removed from the low en-
ergy theory. From the scaling perspective it is potentially
relevant if the scaling dimension ∆(m) < 2. So, with the
constraints given above, we conclude that the condition
for m that leads to a potentially mass generating pertur-
bation is

K(m) = q(m) = s(m) = 0. (13)

We see that although the space may be flat, the spin
vector still plays a role in the properties of edge states.

We now apply this analysis to the edge states at the
boundary of ν = 2

3 spin-polarized and unpolarized re-
gions. The set {K,q, s} of the effective theory for this
state, where two phases coexist, is:

K =

 1 2 0 0
2 1 0 0
0 0 −1 −2
0 0 −2 −1

 ,q =

 1
1
1
1

 , s =


1
2
1
2
1
2
− 1

2

 .

(14)
In terms of CF theory, we can identify fields φi as φ1,
φ2 corresponding to Λ0↑, Λ0↓ respectively, and φ3, φ4
corresponding to Λ0↑, Λ1↑ respectively. From Eqs. (13)
and (14), we find out two independent solutions for m:
m1 = (1, 0,−1, 0) and m2 = (0, 1,−1, 0). The solution
m2 represents tunneling between Λ0↓ and Λ0↑, which is
unlikely to happen since there is an energy gap. There-
fore, only the operator Ψm1

is relevant and potentially
mass generating, and φ1, φ3 are removed from the low
energy theory. Thus, we have shown that in the K-matrix
description there are only two counter-propagating edge
states with opposite spins.

Quite remarkably on the level of K-matrix descrip-
tion, in the low energy sector of the domain wall, neutral
modes do not emerge, and spin-charge separation of the
spin-unpolarized phase does not appear. There are al-
ways questions of possible edge reconstruction, the role
of disorder, and in this particular case, a problem of how
the domain wall edges couple to the true edges at the
boundary of the sample, which is even more complicated
than behaviour of edge states in homogeneous phases in
the corners of a sample. However, our conclusion on the
two counter-propagating states with opposite spins in the
domain wall, supported by the K-matrix description as
well as by a handwaving crossed electric and effective
magnetic fields argument, rings true. We shall see that
this picture is also suppproted by the exact diagonaliza-
tion in disk and torus geometry.
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III. NUMERICAL CALCULATIONS IN THE
DISK GEOMETRY

Here we will use exact diagonalization in the disk ge-
ometry in order to confirm the conclusions of the previous
section about the induced edge states on the boundary
of the ν = 2

3 spin-polarized and spin-unpolarized regions.
Some of the results in this section have already been
briefly discussed in our paper Ref.24. For completeness
of our analysis, we include these here, with an improved
numerical procedure and extended discussion.

We simulate the system of 8 electrons in a mag-
netic field using the disk geometry shown schematically
in Fig.3(a). In this model we use a spatially depen-
dent Zeeman energy to control the spin polarization in
z − direction, see Fig.3(b). The central region of the
disk with a radius R1 is characterized by a large Zee-
man term EmaxZ , while the outer region with the outer
diameter R2 is set to EminZ = 0. The Zeeman term is
varied smoothly within the region defined by an interval
of r given by R1 < r < R1 + ∆R, resulting in a smooth
variation of the wavefunctions across the disk and avoid-
ing spurious effects originating from an abrupt change
of the Zeeman splitting. When there are 8 electrons on
the disk, the allowed single particle states have angular
momentum 0 6 m 6 11. Thus, R2 =

√
22lm = 4.8lm.

We design the central region in such a way that it con-
tains half of the electrons, corresponding to the condition
R1 + ∆R =

√
11lm = 3.3lm. We set R1 = 2.9lm and

∆R = 0.4lm. We anticipate that the resulting spin den-
sity will reflect that electrons should be spin-polarized in
the central region and spin-unpolarized in the outer re-
gion in the difference of spin densities in inner and outer
regions. Note that due to a strong penetration of electron
wavefunction from the outer R1 < r < R2 region into the
inner r < R1 region of the disk, the central region will
contribute significantly to average spin polarization of all
states. We shall see that this contribution of the central
region leads to a decrease in the difference of the average
spin splitting

∫
ψ(r)∗EZ(r)ψ(r)d2r for the modes on the

two sides of the domain wall to about < 6%, similar to
the experimental conditions of Ref.24.

The electron Hamiltonian is given by:

Hd =
1

2m∗

∑
i

(
p +

eA

c

)2

i

+ Ez(ri)σ
(i)
z + Ui

+
∑
ij

e2

ε|ri − rj |
. (15)

The first term and the second term in Eq.(15) are ki-
netic energy and Zeeman energy respectively. The third
term is the parabolic confinement U(r) = Cr2, confin-
ing electrons to the disk, with C = 0.036e2/εl3m, and
the last term is the Coulomb interaction between elec-
trons. This Hamiltonian is diagonalized using a config-
uration interaction method. The states are classified by
their projections of the total angular momentum on the
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R

r
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Unpolarized
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0 r r+δ R
0.00
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E
Z
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9.9

9.95
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E
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ϵ r
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FIG. 3. (Color online). a: Disk geometry for the simulation
domain. b: The profile of the Zeeman splitting of electron
states. c: Spectra of 8 electrons on the disk with the profile
of the Zeeman splitting shown in Fig.3(b). They are charac-
terized by an total angular momentum Lz and a total electron
spin Sz. The ground state with Lz = 46 is circled red. Edge
excitations with the same Sz = 2 as in the ground state and
with Lz = 45, 47, corresponding to the addition or subtrac-
tion of a single flux, are circled black.

z-axis, Lz, and the total spin of electrons, Sz. We ex-
actly diagonalize this Hamiltonian for 8 electrons in a
spatially varying Zeeman energy that models the coexis-
tence of spin polarized and unpolarized states at a filling
factor ν = 2/3. The exact diagonlization spectra are
given in Fig.3(c). We have identified the ground state,
which is spin-polarized in the center and unpolarized in
the outer region of the disk, as well as the edge states
flowing close to the boundary between spin polarized and
spin unpolarized regions. Their number and spin density
distributions are calculated. The results are shown in
Fig.4(a)-4(f).

The ground state has a total angular momentum Lz =
46 and a total spin Sz = 2. The total spin indicates that 6
electrons are in spin up state and 2 electrons are in spin
down state, as expected. In the CF picture, there are
N electrons with N/2 occupying Λ0↑ and N/4 occupying
Λ1↑ in the center region and Λ0↓ in the outer region. The
total angular momentum of the ground state is:

Lz = pN(N − 1) + LCFz = N(N − 1)

− (
N

4
(
N

2
− 1) + (

N

4
− 3)

N

8
+ (

3N

4
− 1)

N

8

= N(N − 1)− N(N − 3)

4
=
N(3N − 1)

4
(16)
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. (Color online). a: The ground state electron den-
sity (red) and spin density (blue) for 8 electrons on the disk
containing the domain wall between polarized and unpolar-
ized states at a filling factor 2/3 in a magnetic field. b: The
density profile (red) and spin polarization (blue) for the edge
state M = 45. c: The density profile (red) and spin polariza-
tion (blue) for the edge state M = 47. d: The differences of
density (red) and spin (blue) between M = 45 edge state and
the ground state. e: The differences of density (red) and spin
density (blue) between M = 47 edge state and the ground
state. f: Spin density difference between edge state M = 45
and M = 47.

For N=8, Lz = 46 indeed, coinciding with our numerical
result. The ground state is separated by a gap from the
rest of the spectra as shown Fig.3(c), and does not carry
the electric current. From the spin profile in Fig.4(a),
the ground state is indeed spin-polarized in the center of
the disk and spin-unpolarized in the outer region.

The lowest energy excitations that have spin polariza-
tion of the ground state and correspond to a substraction
or addition of a single flux have Lz = 45 and Lz = 47, see
Fig.4(b) and Fig.4(c). These are the modes that carry
an electrical current. When compared to the ground

state, they have ∆L = −1 and ∆L = 1 respectively.
This indicates that these two edge states have opposite
components of linear velocities. The differences in den-
sity and in the spin polarization density between the two
edge states and the ground state are shown in Fig.4(d)
and Fig.4(e). We observe that the density differences are
large only around the internal edge, which confirms that
these two edge states correspond to the internal bound-
ary between regions with large and small Zeemann in-
teractions, i.e. the domain wall. In Fig.4(f), we show
the results for the difference of spin densities of the two
modes near the domain wall between polarized and un-
polarized region. Despite the finite size effects in a small
system, the exact diagonalization clearly identifies that
the two edge states in the domain wall area have com-
ponents of spin density with opposite orientation. Our
numerical study clearly shows that there are two counter-
propagating edge states in the domain wall with different
spin polarizations, which is consistent with our analysis
in Sec.II.

IV. NUMERICAL CALCULATIONS ON THE
TORUS

In this section, we will numerically study the system in
a torus geometry. The advantage of the torus geometry
is that it allows to avoid considering the edge between
the fractional Quantum Hall liquid and a vacuum that
is present in the disk configuration. Hence physics of
the induced edge between spin polarized and unpolarized
regions is elucidated.

The torus geometry is represented as a rectangular cell
with periodic boundary conditions. This geometry has
been considered in Ref.44 for the 1

3 FQH state. We apply

the method of Ref.44 to our case. We take the coordinate
system such that the boundary of the rectangular cell is
given by x = 0, x = a, y = 0, y = a, with the vector

potential
−→
A = (0, xB). We have 2πl2B

N
a2 = ν, therefore

a =
√

24πlB = 8.68lB , and there are m = N
ν = 12 single

electron orbitals in the cell. The wavefunctions of these
orbitals are given by:

φj(
−→r ) = (

1

aπ1/2lB
)

1
2

∞∑
k=−∞

e
[i

(Xj+ka)y

l2
B

−
(Xj+ka−x)

2

2l2
B

]
(17)

where j labels the j−th orbit, 1 6 j 6 m, and Xj = j
ma

is the coordinate of the guiding center. The Hamiltonian
of the system can be written as:

Ht =
1

2m∗

∑
i

(
p +

eA

c

)2

i

+ Ez(ri)σ
(i)
z

+
∑
ij

V (ri − rj). (18)

The first and the second terms are the kinetic and
Zeeman term, correspondingly. The third term is the
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(a) (b)

(c)

(d)

FIG. 5. (Color online). a: The torus geometry for a spatially
varying Zeeman energy. b: The amplitude of Zeeman energy
along the toroidal direction. c: Spectra of 8 electrons on
the torus without Zeeman splitting. The ground state has
three-fold degeneracy. d: Spectra of 8 electrons on the torus
with profile of Zeeman energy shown in Fig.5(b). Electrons
are characterized by a total angular momentum (mod 12) Lz
and a total spin Sz of particles. Ground state is the Lz = 0
and Sz = 2 state, circled red. Edge excitations with the
same Sz = 2 as in the ground state with Lz = 1, 11, which
correspond to the addition or subtraction of a single flux, are
circled black.

Coulomb interaction of electrons in real space, and due
to the boundary conditions, it is given by:

V (r) =
∑
s

∑
t

e2

ε|r + sax̂+ taŷ|
, (19)

where x̂ and ŷ are unit vectors along x and y directions,
s and t are integers. The Coulomb matrix elements are

determined by:

Vj1j2j3j4 =
1
2

∫
d2r1d

2r2φ
∗
j1

(r1)φ∗j2(r2)V (r1 − r2)φj3(r3)φj4(r4)

= 1
2a2

2πe2

εq

∑′
q

∑
s

∑
t δqx, 2πsa δqy,

2πt
a
δ′j1−j4,t ×

exp[− l
2
Bq

2

2 − 2πis j1−j3m ]δ′j1+j2,j3+j4 . (20)

Here the symbols with prime are defined modulo m and
the summation over q excludes q = 0. From the above
expression we observe that the total angular momentum
is conserved only modulo m. Therefore, we are going
to use the total angular momentum M(modm) and the
total spin S to classify the quantum states.

We first exactly diagonalize the 8-electron Hamiltonian
in the lowest Landau level in the absence of the Zeeman
term. In this case, only the Coulomb terms play a role.
The spectra are shown in Fig.5(c). We find that the
ground state state has the degeneracy three, which is
consistent with Ref.45, in which the degeneracy is shown
to be given by |det(K)| . Eq.(4) indeed gives the degen-
eracy three.

Now we turn on the spatially dependent Zeeman term
defined by Fig.5(a) and 5(b). We divide the torus into
four equal regions. One of these regions has large Zee-
man energy EmaxZ , while the opposite side of the torus
is subject to zero Zeeman energy. Zeeman energy varies
smoothly in the regions between these two from zero to
EmaxZ . Exact diagonalization leads to spectra shown in
Fig.5(d). We observe that there is a single ground state
with M = 0 and S = 2 circled red in Fig.5(d). The
reason for the lifted degeneracy is a broken symmetry
of magnetic translations in the presence of the spatially
varying Zeeman term.

We find the density profile and the spin polarization
of the ground state, shown in Fig.6(a). The density
is fluctuating slightly around ν = 2/3, as expected.
The spin polarization is almost unity within the region
where EZ = EmaxZ (region A) and has a dip in the re-
gion EZ = 0 (region B). This clearly indicates that the
electrons are spin-polarized in the region A and spin-
unpolarized in the region B. Therefore, our numerical cal-
culation indeed simulate the state in which spin-polarized
and spin-unpolarized fractional quantum Hall phases co-
exist.

We now study the edge states. Comparison of Fig.5(c)
and Fig.5(d) shows several low energy excitations. We
are most interested in the two states with the same total
spin as the total spin in the ground state. The two states
correspond to to single edge state quanta flowing in the
positive and negative poloidal directions. These states
are circled black in Fig.5(d). Their total spin equals 2,
and their angular momenta are L = 1 and L = 11, re-
spectively. Their density distributions and spin polariza-
tions, as well as the differences between these densities
and those in the ground state are calculated, see Fig.6(b)
- Fig.6(e). In order to compare the spin polarizations of
the edge states, we also calculate the difference in spin
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. (Color online). a: The ground state electron den-
sity (red) and spin density (blue) for 8 electrons on a torus
containing the domain wall between spin-polarized and unpo-
larized states at a filling factor 2/3 in a magnetic field. b: The
density profile (red) and spin polarization (blue) for the edge
state M = 1. c: The density profile (red) and spin polariza-
tion (blue) for the edge state M = 11. d: The differences of
density (red) and spin (blue) between M = 1 edge state and
the ground state. e: The differences of density (red) and spin
(blue) between M = 11 edge state and the ground state. f:
Spin difference between edge state M = 11 and M = 1.

polarizations S11 − S1, plotted in Fig.6(f). We see in-
deed that a domain wall (spin transition) emerges be-
tween regions A and B. Therefore, our numerical study
on the torus also supports the conclusion that there are
two counter-propagating edge states with opposite spin
polarizations in the domain wall between spin-polarized
and spin-unpolarized states.

V. EMERGENCE OF PARAFERMION MODES

From the qualitative arguments, analytic theory and
numerical calculations, we found that the edge states
comprising the domain wall have opposite components of
velocity and spin. Therefore, these states can potentially
be coupled to an s-wave superconductor, a pre-requisite
for generating topological superconductivity. In the inte-
ger quantum Hall ferromagnets, proximity superconduct-
ing coupling has resulted in topological superconductiv-
ity in the domain wall region and in the Majorana zero
modes at the boundaries between topological and trivial
superconducting regions23. In the FQH regime, we antic-
ipate the emergence of parafermions due to the fractional
charges and fractional statistics of states comprizing the-
domain wall in much the same way as in18. In this sec-
tion, we will quantitatively show how the parafermions
emerge and can be controlled when coupled to an s-wave
superconductor in the presence of spin-flipping interac-
tions discussen in Appendix.

The physics of the edge modes is described by the ac-
tion Eq.(5) with K matrix given by Eq.(14). To simplify
the expressions, we redefine the fields φ11 = φ1, φ12 = φ2,
φ21 = φ3, φ22 = φ4. After quantizing these fields, we
have the following commutation relations17,46:

[φ1α(x), φ1β(x′)] = iπ[(K−1)αβsgn(x− x′) + iσyαβ ],(21)

[φ2α(x), φ2β(x′)] = iπ[(−K−1)αβsgn(x− x′) + iσyαβ ],(22)

[φ1α(x), φ2β(x′)] = iπ[(−K−1)αβ + iσyαβ ]. (23)

From the analysis of Sec.II, the remaining edge modes
are generated by the fields φ2 and φ4. From Eq.(21) to
(23), we find their commutation relations:

[φ2(x), φ2(x′)] =
iπ

3
sgn(x− x′), (24)

[φ4(x), φ4(x′)] = − iπ
3

sgn(x− x′), (25)

[φ4(x), φ2(x′)] =
iπ

3
. (26)

Therefore, φ2 and φ4 satisfy exactly the same commuta-
tion relations as φR and φL in Ref.18. We now discuss
the emergence of parafermions. We observe that the path
that lead to parafermions in18 cannot work in the present
case. The reason is, the spin-orbit interactions for elec-
trons in the ground level are exceedingly small (see Ap-
pendix) and cannot sufficiently gap the two counterprop-
agating modes. We will analize the possibility to gen-
erate transitions between counterpropagating edges with
opposite spin by applying the in-plane magnetic field. It
is important that the orbital part of the wavefunctions of
the two counterpropagating are nearly the same, a small
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(a) (b)

FIG. 7. (Color online). a: A schematic plot of experimental
realization of parafermion zero modes. b: The spatial profile
of the superconducting pairing and Zeeman-induced ampli-
tudes ∆(x) and T (x) induced by proximity effects in Fig.7(a).

difference exists only because these states are subject to
opposite electric fields, due to the gradient of Zeeman
splitting of the opposite spin states in the domain wall
region. Thus, it is sufficient to mix spins by an in-plane
magnetic field in order to generate transitions between
the edge states. This hybridization results in the tunnel-
ing gap. At the same time, moderate in-plane magnetic
fields keep the spin states of neighboring quantum Hall
liquids unchanged. Coupling the domain wall area to a
conventional s-type superconductor, we introduce all in-
gredients for emergence of parafermions, and can apply
a general argument discussed in18.

We envision the following architecture of the
parafermion setting. For the proximity superconductivy,
preliminary considerations show that proximity coupling
to the edge quantum Hall states requires contacts with
small Shottki barriers, allowing to control propagation
of the Cooper pairs and electrons by the applied voltage.
We assume that a proximity superconductors contact the
domain wall area from the sides, as opposed to tradition-
ally invisioned superconductor on the top of the semico-
ducting wire, quantum dot or a quantum well. Side con-
figuration has additional advantage of gradually changing
induced superconducting coupling from the contact to
the region inside the domain wall area. When the com-
petition of superconducting and tunneling gap leading
to transition from trivial to topological proximity super-
conductivity depends on relative value of gaps, spatial
dependence of the superconducting coupling will allow
to tune the boundary between normal and topological
superconductivity, where parafermions are expected to
reside, by tuning this relative value. However, to sim-
plify our consideration of emergence of parafermions, we
follow18 and consider the architecture in Fig.7(a), assum-
ing for simplicity that two trivial superconducting regions
are separated by a region, which produces a spin flip be-
tween edge states, i.e. the tunneling gap. The spatial
profile of the pairing potential and tunneling for this sim-
plified picture is given in Fig. 7(b). We redefine the fields
φ2/4 = ϕ ± θ. The Hamiltonian of the interface is given

by H = H0 +H1, where

H0 =
mv

2π

∫
dx[(∂xϕ)2 + (∂xθ)

2], (27)

m = 3, and

H1 ∼
∫
dx[−∆(x)cos(2mϕ)− T (x)cos(2mθ)]. (28)

Assuming that angles θ and ϕ obey ϕx<x1
= πn1ϕ/m,

θx∈(x1+l,x2) = πnθ/m, ϕx>x2+l = πn2ϕ/m, we have:

[n2ϕ, nθ] = i
m

π
. (29)

At low energy, we can focus on the interval between xj
and xj + l governed by the effective Hamiltonian

Heff =
mv

2π

2∑
i=1

∫ xi+l

xi

dx[(∂xϕ)2 + (∂xθ)
2]. (30)

We identify the operators

aj → ei(π/m)(njϕ+nθ), (31)

which commute with Heff and represent zero modes
bound to areas between superconducting regions and the
region where the gap between edge states is induced by
tunneling. These modes obey the following relations:

a2mj = 1, ajaj′ = aj′aje
i(π/m)sgn(j′−j). (32)

Therefore, they are parafermion operators producing the
2m−fold ground state degeneracy.

VI. NUMERICAL CALCULATIONS OF THE
PARAFERMION ZERO MODES

Having demonstrated that parafermions emerge in the
simple model of the previous section, we now show nu-
merically that parafermions arise when an s-wave super-
conductivity and tunneling are added to the quantum
Hall states in a microscopic model. In the numerical
simulation here, the appearance of parafermion modes is
indicated by an emergence of a six-fold degenerate ground
state.

The Hamiltonian of the system is given by

H = Ht +Hsc +Hbx − µN̂ + C(N̂ − N̂0)2. (33)

The first term Ht is given by Eq.(18). As illustrated in
Sec.II and IV, two domain walls form in the boundary re-
gions between the spin polarized and unpolarized quan-
tum Hall liquids. The boundary regions are the inter-
mediate regions between EmaxZ and 0 in Fig.8(b), which
occur in the intervals [a/4, a/2] and [3a/4, a]. Each do-
main wall supports two counter-propagating edge modes
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(a) (b)

FIG. 8. (Color online). a: A schematic plot of the system.
The superconducting order couples predominantly only clos-
est states comprising domain wall. When induced on the top
half of the torus, it results in dominant coupling of domain
wall counterpropagating states with opposite spins and small
coupling of all other states. An in-plane magnetic field is is
confined in the domain wall and assumed to affect the bottom
half of the torus; b: (top) – The rectangular representation
of the torus. The green shaded region is subject to in-plane
magnetic field and is located near one of the domain walls.
(bottom)– The profile of the Zeeman coupling caused by the
component of magnetic field in z−direction, which is perpen-
dicular to the plane of the rectangular. Domain walls form in
two regions [a/4, a/2] and [3a/4, a].

with opposite spin polarizations. The second term Hsc

is the superconducting pairing term

Hsc=

∫
dr(∆(r)Ψ†↑(r)Ψ†↓(r)+∆∗(r)Ψ↓(r)Ψ↑(r)),(34)

where ∆(r) is the Bogoliubov-De Gennes pairing poten-
tial. This pairing potential generally has to be deter-
mined self-consistently. Quite obviously, ∆(r) depends
on the chosen gauge describing an application of mag-
netic field to the system, like generally gauge-dependent
Ψ↓(r) and Ψ↑(r) in Eq. (34).

Whilst self-consistent evaluation of ∆(r) is beyond the
scope of the present paper, in order to capture super-
conducting correlations in our system we use the follow-
ing physical considerations. We take first ∆(r) equals
constant value ∆1 = ∆ on the top half of the torus,
and constant value ∆2 = 0 on the bottom half of the
torus, see Fig.8(a). If we express the field operators
Ψ(r) in terms of the creation and annihilation operators

a†j and aj that add or annihilate an electron in states

given by Eq.(17), the superconductong pairing becomes

Hsc =
∑
j,n ∆jna

†
j↑a
†
n↓ + H.c., with j, n = 1, 2, ...,m.

When the total number of states m is an even number,
we obtain for j + n = m, 2m

∆jn =
∑

k+q=−1

∆1

2
√
π

∫ a

0

dx exp(−[
(Xj + ka− x)2

2

+
(Xn + qa− x)2

2
]), (35)

where Xj = a jm . For j + n odd numbers, we obtain:

∆jn =
∑
k,q

i(−∆1)

2π
3
2m(k + q + j+n

m )

∫ a

0

dx exp

( −[
(Xj + ka− x)2

2
+

(Xn + qa− x)2

2
]). (36)

In these two equations we observe a Gaussian depen-
dence on the distance between guiding centers of Landau
states on the torus. The superconducting pairing goes
down exponentially for states being far from the domain
wall. We will now assume that a single matix element Eq.
(36) with j = 4 and n = 3, which corresponds to coupling
of closest domain wall states defined by the wavefunc-
tions Eq.(17), describes the superconducting correlations
in our system. All other matrix elements are considered
vanishing47. We note that such treatment corresponds to
experimental conditions, for which superconducting pair-
ing is envisioned only for the edge states comprising the
domain wall.

The third term Hbx in Eq. (33) is a spin-flipping tun-
neling term. In this section, this is the in-plane Zeeman
coupling along the x-axis (x and y directions on the torus
are defined in Fig.8(b)). In an in-plane magnetoc field,

Hbx =
∑
i
1
2gµB(ri)σ

(i)
x . In our numerical calculations,

B(r) = B if x ∈ [0.35a, 0.45a] and y ∈ [0, 0.5a], where a is
the length of the torus in x- and y- directions. Otherwise
B(r) = 0, as shown in Fig.8(b). In the second quantiza-

tion representation, Hbx =
∑
j,nBjna

†
j↑an↓ + h.c., with

j, n = 1, 2, ...,m. For j = n, we have:

Bjn =
∑
k=q

gµB

4
√
π

∫ 0.45a

0.35a

dx exp(−[
(Xj + ka− x)2

2

+
(Xn + qa− x)2

2
]). (37)

For the difference j − n being odd numbers, the Bjn is
given by

Bjn =
∑
k,q

i
gµB

2π
3
2m(k − q + j−n

m )

∫ 0.45a

0.35a

dx exp

( −[
(Xj + ka− x)2

2
+

(Xn + qa− x)2

2
]). (38)

The fourth term in Eq. (33) is the chemical potential,
and the fifth term is the charging energy similar to that
introduced in48. It represents the capacitor energy asso-
ciated with the change of the number of electrons. These
two terms are used to tune the electron number in the
ground state of the system to the desired number.

We now consider the Hilbert space of the numerical
simulations. Here we take minimal possible number of
four electrons in the six orbitals defined in Eq.(17), so
m = 6. Two electrons (half of the total number) have the
same spin, representing spin-polarized phase, and other
two electrons represent the other half in spin-unpolarized
state and have opposite spins. Thus, three electrons have
spin up, and one electron is in spin down state, so the
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(a) (b)

FIG. 9. (Color online). a: The lowest energies in N = 2, 4, 6
sectors ofHt. b: Including µ = 0, C = 0.2, the lowest energies
has been shifted so N = 4 sector has the lowest energy and
it’s in the (4,1) sector.

total spin of electrons S = 1. We use the pair (N, S)
to represent the set of states with total electron num-
ber N and total spin S. Without superconductivity and
tunneling, the Hilbert space is (4, 1). The superconduct-
ing term HSC emerging from coupling of domain wall
counterpropagating states with opposite spins mixes the
states with different numbers N , and the spin-flipping
term HBX mixes the states with different total spins S.
Therefore our Hilbert space in numerical calculations is
the following set of pairs{(6, 2), (6, 1), (6, 0), (4, 2), (4,
1), (4, 0), (2, 1), (2, 0)}.

If Hamiltonian contains only Ht, the lowest energies of
the N = 2, 4, 6 sectors are shown in Fig.9(a). The N = 6
sector has a lower energy than N = 4 sector. However
choosing µ = 0, C = 0.2, we find that the lowest energy
is in the N = 4 sector, see Fig.9(b). The lowest energy
state is in the (4, 1) sector because of our special choice
of the profile of the Zeeman coupling in z-direction (See
Fig. 8(b)), guaranteing that (4, 1) states are more stable
than (4, 2) and (4, 0) states. There are other ways to
choose µ and C in order to make (4, 1) the lowest energy
states. We choose this special set because the half width
of the BCS wave function is of the order of

√
N49 so N =

2, 4, 6 sectors all play important roles in the ground state
properties. Therefore, a change of µ and C will not affect
the topological properties of the system. Experimentally
C should be a fixed number for the system and we only
need to tune the chemical potential µ.

Now we include the Hsc and Hbx into the simulations.
The special choice of a localized Hbx allows us to focus
only on a single domain wall. The edge states on the
other domain wall will be gapped out due to the prox-
imity superconducting order. In our system, the emer-
gence of the parafermion mode means the appearance of
a six-fold ground state degeneracy. Exactly diagonaliz-
ing Hamiltonian Eq.(33), we obtain the spectra shown in
Fig.10. In Fig. 10(a), we fixed the value of B and change
the superconducting pairing ∆. We find that the system
evolve from a single ground state to a three-fold ground
state, and finally to a six-fold ground state. Based on
general consideration of Sec. V, we assume that this six-

(a)

(b)

FIG. 10. (Color online). a: The energy dependence on su-
perconducting pairing potential ∆ with a fixed B = 1T . Red
rectangles indicate the range of parameters for the six fold
degenerate ground state sub-space, which is separated from
the bulk by a gap. This is the evidence for the appearance
of parafermion modes. Green reactngle corresponds to a re-
gion, in which degeneracy tends to three-fold. b: The en-
ergy dependence on the in plane magnetic field with a fixed
∆ = 0.05meV. The six fold ground state degeneracy also ap-
pears and persists for a broader parameter regime. The en-

ergy is measured in units of e2

εlB

fold ground state degeneracy represents the emergence
of parafermions. The six states do not have exactly the
same energy like in section 5. The reason is, arguments of
section V apply, strictly speaking, for 1D systems, while
our simulation treats a 2D system. Hence the degeneracy
is lifted because of a possible tunneling between the edge
states and other bulk orbitals. We observe that when the
pairing potential is further increased, the system evolves
into a three-fold degenerate state. The reason for this
effect can be the system entering a gapped phase domi-
nated by ∆. In Fig. 10(b), we fix the value of the order
parameter ∆ and change the in-plane field B. We ob-
serve that the six-fold degenerate ground states appear
at experimentally feasible B of a few Tesla that will not
alter the spin state of the fractional quantum Hall liquid .
When B is increased further, provided the spin states of
neigboring FQHE liquids are not altered, the system can
enter a tunneling dominated gapped regime with three-
fold degenerate ground state. Thus by exact diagonal-
ization we find that the system can enter a phase which
has six-fold degenerate ground state. In our calculation
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FIG. 11. (Color online). The phase diagram of our system.
The red region represents states which has six fold ground
state degeneracy. The green region represents states which
has three fold ground state degeneracy. Black region repre-
sents gapless states. We identify a gap, when the maximum
energy difference between candidate states should be at least
two times as large as the second maximum energy difference.
In this phase diagram we observe that the six fold ground state
degeneracy regime are separated from other gapped states by
gapless regions, which means that a quantum phase transition
may occur between these regimes. We identifyl the phase rep-
resented by the red region as the topological superconducting
phase supporting parafermion zero modes.

with six particles, charging energy restriction made the
relevant values of ∆ and B quite experimentally feasible.
The calculation, of course, must be extended to systems
with larger number of particles in order to confirm this
result.

To analyze the properties of the system further, we
plot the phase diagram of the system in a wide range of
∆ and B in Fig.11. We find that the phase A, which
has six fold ground state degeneracy (represented by red
in Fig.11), is separated from other gapped phases by a
gapless incompressible regime. When we go from other
gapped phases to phase A, the gaps first close and then
reopen. A quantum phase transition may occur during
this process. Combining numerical results with the an-
alytic consideration, we conclude that it is legitimate to
call the phase A the topological superconducting phase
that supports parafermions.

VII. PARAFERMION SETTINGS BASED ON
ν = 4

3
AND ν = 5

3
SPIN TRANSITIONS

Spin transitions in the fractional quantum Hall effect
can also be observed at filling factors ν = 4

3 and ν = 5
3 . In

experiments on CdMnTe such a prominent transition at
ν = 5

3 was observed in43. CdMnTe experiment at ν = 4
3 ,

although less prominently, also suggests a possible spin
transition. These transitions can be easily understood
both in terms of electron Landau level and composite
fermion Landau (Λ) level pictures.

In terms of electron Landau levels, at low but quantiz-
ing magnetic fields, the splitting between spin-resolved
Landau levels is dominated by a large positive contri-

bution of s-d exchange between electrons and Mn ions.
The ground orbital Landau level in CdMnTe in magnetic
fields about 3T is the ground orbital Landau level with
spin down (0, ↓)e , and the next partially filled electron
Landau level (1/3 or 2/3 filled for ν = 4

3 and ν = 5
3 ,

correspondingly) is the first excited orbital Landau level
with the same spin, (1, ↓)e . While a positive exchange
contribution to Zeemann splitting Eex becomes saturated
at low magnetic fields and is independent of the magnetic
field, the bulk negative g-factor leads to decrease of the
Zeemann splitting ~ΩZ with an increase of the magnetic
field. At the magnetic field such that ~ωe−~ωZ−Eex = 0,
levels (0, ↑)e and (1, ↓)e would cross in the absence of
spin-orbit interactions. Instead, spin-orbit interaction
leads to an anticrossing of Landau levels and anticross-
ing of the corresponding edge states22,23,50. Nevertheless,
at magnetic fields higher than the anticrossing field, the
electron Landau level that is predominantly (0, ↑)e be-
comes partially filled. Due to this transition the total
electron spin polarization decreases from 5/3 = 1 + 2/3
to 1/3 = 1 − 2/3 for ν = 5

3 , and from 4/3 = 1 + 1/3

to 2/3 = 1 − 1/3 for ν = 4
3 , while the spin polariza-

tion of electrons in the first excited electron Landau level
changes sign.

While this electron picture does not take into account
electron-electron interactions, it is important for under-
standing these transitions, because it clearly shows that
the transition involves anticrossing of levels and can be
controlled via spin-orbit interactions. However, in order
to understand the edge states of the system, we turn our
attention to consideration of the composite fermion pic-
ture.

The ν = 4
3 fractional quantum Hall state is a particle-

hole symmetric to the principal states, 4/3 = 2−2/(4−1)
and can be described by two filled composite fermion
Landau levels. In quantizing but sufficiently low mag-
netic fields in CdMnTe, these two filled CF hole levels
are (0, ↓)cf and (1, ↓)cf , representing a spin-polarized CF
phase. At sufficiently high magnetic fields, the two filled
levels are (0, ↓)cf and (0, ↑)cf , and composite fermions
become spin-unpolarized. At the true boundary of the
sample, the edge starts with bulk density 4/3, raises to
density 2, decreases to density 1 and then goes to 026.
The edge corresponding to the filled ground level ν = 1
goes around the sample, and can be removed from low
energy theory from the internal boundary between two
differently spin-polarized regions. At this boundary, for
one of the phases we have two hole composite fermion
edges responding to (0, ↓)cf and (1, ↓)cf Lambda- levels
closer to the bulk of the corresponding region, followed
by the outer edge corresponding to the electron Landau
level (1, ↓)e. For the other phase region, the internal
CF hole edges correspond to (0, ↓)cf and (0, ↑)cf Λ lev-
els, and the outer edge corresponding to electron Landau
level (0, ↑)e. The question now arises whether any of the
edges can be removed from low energy picture. Gener-
ally 1/3 charge quasiparticles cannot tunnel through the
region of charge 1 quasiparticles, and that is a correct
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statement for the true edge of the sample. However, the
closest edge states in the domain wall originating from
the Landau levels (1, ↓)e and (0, ↑)e become hybridized
and form a helical domain wall, which conducts in the
presence of impurities or smooth random potential and
constitutes a compressible region23. Hence there is no
longer a prohibition for 1/3 charge channel to tunnel and
couple to another 1/3 charge through this compressible
channel. Then, by using the argument similar to that
in Sec. II, we can remove edge states corresponding to
(0, ↓)cf in both phases from the low-energy sector. The
remaining (0, ↑)cf and (1, ↓)cf states constitute two coun-
terpropagating hole charge 1/3 states with opposite spin.
Interestingly enough, they coexist with a helical domain
wall made of hybridized (1, ↓)e and (0, ↑)e electron chan-
nels. However, the superconducting coupling and spin-
flipping interaction can still produce gaps for1/3 charge
counterpropagating states with opposite spins, leading to
parafermions. At the same time, a helical domain wall
made of hybridized (1, ↓)e and (0, ↑)e channels will result
in Majrorana modes23.

The ν = 5
3 fractional quantum Hall state and spin tran-

sition is desribed similarly. 5/3 = 2− 1/(2 + 1) and can
be described by one filled composite fermion hole Lan-
dau level. In weaker magnetic fields, this is the (0, ↓)cf
level, and in higher magetic fields, this is the (0, ↑)cf hole
level. However, analysis shows that at the domain wall
boundary between two phases with different spin polar-
ization, these two CF edge states are again separated
by a helical domain wall made of hybridized (1, ↓)e and
(0, ↑)e electron channels. Similarly to ν = 4

3 domain wall,

ν = 5
3 domain wall suggests coexistense of parafermions

and Majorana fermions. The structure of the domain
wall in this case exhibits coexisting (1, ↓)e and (0, ↑)e
edges and (0, ↓)cf (1, ↑)cf edges.

An interesting question emerges whether the spin-flip
gapping mechanism for the (0, ↑)cf and (1, ↓)cf counter-
propagating CF hole states, can be stronger due to spin-
orbit interactions, in contrast to similar CF states dis-
cussed in Sec. II. For ν = 2

3 states, composite fermion
states are produced by default from electron states of
the ground Landau level. If our starting point is these
ground Landau level states, and we consider spin-orbit in-
teractions as a perturbation, then all intra-Landau level
spin-orbit matrix elements vanish, and spin-orbit cou-
pling does not have any effect in the bulk. In the ap-
pendix, we demontrate that for the domain wall that
defines a mid-plateau peak in the resistivity, the edge
states of (0, ↑)cf and (1, ↓)cf composite fermions levels
are characterized by an extremely small spin-orbit gap.

The ν = 4
3 states in CdMnTe originate from full (0, ↓)e

Landau level and (0, ↑)e Landau level in the phase with
2/3 total spin polarization, and from full (0, ↓)e Landau
level and from (1, ↓)e Landau level in the phase with 4/3
total spin polarization. In the latter case, if we include
(1, ↓)e level into a starting point for composite fermions,
we clearly go beyond lowest Landau level approach to
composite fermions. However, large exchange splitting

ν=5/3 (LLs 0↓,0↑) ν=5/3 (LLs 0↓,1↓)

Λ0↑ Λ0↓

FIG. 12. (Color online). The domain wall and edge states
at ν = 5

3
.Electrons occupy (0, ↓)e and (0, ↑)e Landau levels

in a phase with total spin density 5/3 and (0, ↓)e and (1, ↓)e
Landau levels in a phase with total spin density 1/3. The
outermost black edge channel around both regions is integer
(0, ↓)e edge. Closest edges in the domain wall area are edges
corresponding to integer levels (0, ↑)e ( blue) and (1, ↓)e (red).
The innermost levels are composite fermion hole Λ-levels (0, ↓
)cf (red) (1, ↑)cf (blue)

that is nearly independent of magnetic feild in CdMnTe
makes the (1, ↓)e Landau level much lower in energy than
(0, ↑)e state in a wide range of magnetic fields. Lowest
Landau level restriction is justified, of course, in the limit
of very large magnetic fields. However, spin transitions,
crossing and anticrossing of levels take place at much
smaller fields, and their consideration with inclusion of
higher electron Landau levels is justified. Once the (1, ↓
)e level is included in the Hilbert space for evaluating
interactions, the spin-orbit effects become important.

To illustrate the importance of spin-orbit effects, it is
also worth emphasising that when spin-orbit effects are
sizable, it is of interest to consider the problem explicitly
taking into account spin-orbit interactions right from the
start of investigating the quantum Hall system. CdMnTe
quantum wells are affected by the spin-orbit interactions
of Rashba type51, which can be described by the spin-
dependent vector potential52–54, which acts together with
electromagnetic vector potential defined by the magnetic
field. In a perpendicular magnetic field H = (0, 0, H) the
electron Hamiltonian is given by

H =
1

2m∗

(
p− e

c
A + Aso

)2
+

1

2
(gµH + Eex)σz, (39)

where A is the magnetic vector-potential, the spin-
dependent vector potential Aso = αm(σy,−σx, 0), m∗

and g is the effective electronmass and g-factor, orre-
spondingly, and Eex is the contibution of Mn ions in the
spin-splitting of electron levels taken in the mean field
approximation. We assume the Rashba constant to be
spatially independent and include constant energy term
α2mi nto electron Hamiltonian. The energy eigenvalues
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for this problem are given by

E0 = 1
2 (~ωc + gµH + Eex) + α2m (40)

En,± = ~ωcn+ α2m

±
√

1
4 (gµH + Eex + ~ωc)2 + (~α/`m)

2
n, (41)

The eigenfunctions have the following form:

ψ0 =

(
u0
0

)
; ψn,± =

(
an,±un
bn,±un−1,

)
, (42)

where spinor coefficients an,± and bn,± are nonzero,and
|an,±|2 + |bn,±|2 = 1

For electrons in CdMnTe at small magnetic fields, due
to large Eex, the ground state energy is E1,−, and the first
excited level has energy E2,−. The electron spectrum
is characterized both by crossings, e.g.,of E0 and E1,−
levels, and by anticrossings, e.g., of E2,− and E0 levels. Is
is noteworthy that spin in the ground level at small fields
deviatets from z−direction due to spin-orbit interactions,
hence it is certainly important for composite particles in
this regime.

We now include spin-orbit interactions in the Chern-
Simons procedure. The mean-field Hamiltonian of the
system reads

H =
1

2m∗

(
p− e

c
A∗ + Aso

)2
+

1

2
(gµH + Eex)σz + V,

(43)
where A∗ is the effective vector potential that takes
into account both external magnetic and average Chern-
Simons magnetic field, and V are electron-electron in-
teractions. The naive solution for energies of composite
fermion levels becomes

E0 = 1
2 (~ω∗c + gµH + Eex) + α2m (44)

En,± = ~ω∗cn+ α2m

±
√

1
4 (gµH + Eex + ~ω∗c )

2
+ (~α/`∗m)

2
n, (45)

Thus, in the naive solution, in addition to the effective
magnetic field defining the cyclotron frequency, the spin-
orbit term is also expressed in terms of magnetic length
characterizing the effective rather than the external mag-
netic field. It is, of course clear, that this spectrum has
to be renormalized by interactions. Nevertheless, it is ap-
parent that it can be characterized by both crossings and
anticrossings. Edge channels originating from CF levels
that experience antiicrossing can be strongly gapped by
spin-orbit interactions.

VIII. SUMMARY

In this paper, we have considered first the domain wall
between spin-polarized and spin-unpolarized regions of
the 2D electron liquid in ν = 2

3 fractional quantum Hall
state. Analytic considerations show that the domain wall
between the spin-polarized and spin-unpolarized regions

of the 2D electron liquid hosts two edge states that are
counter-propagating and have opposite spin polarization.
This picture is confirmed using numerical calculations in
a disk and torus geometries. We proved both analyti-
cally and numerically that the edge states can support
parafermions when the domain wall area is proximity-
coupled to an s-wave superconductor. Hilbert space for
exact digonalization study significantly increases due to
account of superconducting correlations. We have dis-
cussed control of parafermion zero modes due to hy-
bridization of edge states by spin-flipping interactions. In
GaAs for ν = 2

3 spin transitions, a tilted magnetic field
with an in-plane component controlling spins can be used
for gapping edge channels, while spin-orbit interactions
are negligible. In ν = 4

3 and In ν = 5
3 spin transitions in

fractional quantum Hall effect in CdMnTe, parafermions
modes also emerge and can be controlled by electrostatic
gates due to sizable spin-orbit anticrossing gap. We dis-
cuss near absence of spin-orbit coupling for composite
fermions at ν = 2

3 for all principal composite fermion
states, and emergence of spin-orbit interactions in sys-
tems like CdMnTe in the presence of exchange splitting
of electron states. In these systems, spin-orbit interac-
tions arise for states that are particle-hole symmetric to
the principal states in the presence of spin, such as ν = 4

3

and In ν = 5
3 .

Experimental observation of spin phase transitions in
fractional quantum Hall effect is not limited to the low-
est orbital Landau level spin states even in non-magnetic
semiconductors42: s state with filling factor 8/3 has been
shown experimentally to support a spin transition in
GaAs. This observation further validates inclusion of
the first excited Landau level spin spin states into com-
posite fermion picture, as we discussed for filling fac-
tor 4/3 and 5/3 states.In terms of composite fermion
model of spin transitions based on crossing of CF Lan-
dau levels, filling factor 8/3 state is similar to 2/3 in the
ground Landau level. This supports the idea of possible
parafermionic states in the stting of first excited electron
Landau level and potentially opens experimental oppor-
tunities to use lower range of magnetic fields, improving
conditions for generating superconducting order in in-
duced domain walls between different spin phases.
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Appendix: Spin-flipping interactions in the lowest
Landau level.

Tunneling between two counterpropagating fractional
quantum Hall edge states with opposite spin polarization
requires spin-flip interactions. One candidate is spin-
orbit interaction suggested for setting considered in18,
and the other is spin-flip due to an in-plane component
of a tilted magnetic field. We now analyze the viability
of these interactions for generating tunneling gap.

The crossing in quasiparticle spectra in our system oc-
curs between composite fermion levels. In consideration
at the level of composite fermions, the ”orbital quanti-
zation” energy, or cyclotron frequency is entirely deter-
mined by the intra lowest Landau level electron-electron
processes. Landau level mixing can not change the pic-
ture as long as one always considers electrons of the
ground electron level as giving rise to composite fermion
quasiparticles. For this reason, the dispersion of compos-
ite fermions is defined by the Coulomb energy, and the
effective band mass of electron plays no role. Composite
fermions couple to the effective magnetic field, defined
by a compensation of the external magnetic field and
the Chern-Simons field. In contrast, Zeeman coupling
of composite fermions is described by the value of the
electron g-factor and an external magnetic field.

Considering composite fermions microscopically, one
generally has to start from spin up and down electrons
of the ground Landau level and include electron-electron
interactions. Spin-orbit interactions, such as the Rashba
or Dresselhaus spin-orbit coupling can be included per-
turbatively. It is clear, however, that for the ”bulk” 2D
electrons, the matrix elements of the spin-orbit coupling
between up and dow states with the same orbital wave-
function simply vanish. That is not the case for tran-
sitions between ”edge” modes. Indeed, our setting in-
cludes either two electrostatic gates with differing volt-
ages, leading to different electron densities underneath
them and ultimately to composite fermion level struc-
ture shown in Fig 2a, or can be described by the varying
electron Zeeman coupling leading to the same picture. In
both cases, electrons in the domain wall that eventually
become composite fermion edge states are subject to a
spin-dependent potential and the corresponding electric
field that is opposite for the two electron spin directions.

Then the lowest Landau level wavefunctions for two
spin directions in the Landau gauge with magnetic field
H ‖ z vector potential A = (0, Hx, 0) and spin-
dependent electric fields in x−direction with magnitude
E are given by

Ψ↑ = exp ikyy

exp

[
− 1

2

(
x−x↑
lm

)2]
√
lm

(A.1)

Ψ↓ = exp ikyy

exp

[
− 1

2

(
x−x↓
lm

)2]
√
lm

, (A.2)

where

x↑ = −l2mky −
eEl2m
~ωc

, (A.3)

x↓ = −l2mky +
eEl2m
~ωc

, (A.4)

ωc is the electron cyclotron frequency and ky is the elec-
tron wavevector along the domain wall. Ψ’s are the wave-
functions in the corresponding crossed electric and mag-
netic fields. These two wavefunctions are not orthogo-
nal due to different x↑ and x↓. The matrix element of
the, e.g., Rashba spin-orbit interaction described by the
Hamiltonian HR = α(σxky − σykx), with kx = −i ∂∂x , is
given by

〈Ψ↑|HR|Ψ↓〉 = α
eE

~ωc
exp

[
−
(
eElm
~ωc

)2
]
. (A.5)

At electric field E = 0 the spin-orbit matrix element van-
ishes, as it should be in the bulk 2D electrons case. The
eq. A43 is a perturbative result obtained using the lowest
Landau orbital wavefunctions, but it contains ~ωc in the
denominator as if it is related to an admixture of a higher
Landau level. This is not accidental. Indeed using con-
sideration of Rashba interaction in the previous section ,
the result A50 can then be obtained in the leading order
by calculating the matrix element of the interaction de-
scribing the spin-dependent electric field, HE = eExσz
between two exact bulk spin-orbit states.

We now consider the magnitude of the spin-orbit gap
for edge modes, which is governed bythe magnitude of
the electric field E. The experimentally possible narrow-
est domain wall (in the x−direction) is approximately
50nm, and so that the magnitude of the gap is defined
by the difference of energies of the like spins underneath
the two electrostatic gates, Fig 2a. This value of this
energy difference, however, is strongly restricted by the
requirement that the fractional quantum Hall system un-
derneath both gates is within the ν = 2/3 quantum Hall
plateau. Such restriction means that the difference of en-
ergies on the left and right of the domain wall is limited
by the Zeeman energy that corresponds to the length
of the interval of magnetic fields corresponding to the
plateau, i.e. the plateau width. In experiments24, where
the domain wall in the fractional quantum Hall effect
was observed and electrostatically controlled, the mea-
sured width of the plateau is δB = 0.35T . In this case
the magnitude of the spin-orbit matrix element in GaAs
system is negligibly small ∼ 1− 2µeV .

Therefore for the domain wall setting, experimen-
tally feasible in-plane Zeeman field of order of 1T, that
leads to a tunneling gap sufficient for the emergence of
parafermions in our modeling, becomes a preferential
mechanism for generating a hybridization of edge states
with opposite spin and a corresponding tunneling gap.

The situation changes, however, for a settings based
on spin transitions at ν = 4/3 and ν = 5/3 in a system
like CdMnTe43 discussed in Sec. VII. In both of these
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cases, edge states near a tentative spectral crossing be-
long to different electron Landau levels, and spin-orbit
interactions result in anticrossing with an anticrossing
gap in CdMnTe of the order to 50µeV 23. This spin-orbit
gap can be effectively controlled by the electrostatic gate,

which then can control emerging parafermions similarly
to control of Majorana zero modes in23. This allows then
to use in-plane magnetic field as an independent knob,
opening additional opportunities for performing braiding
operations55,56.
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