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CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic.
Yet, CoO is strongly insulating owing to significant electronic correlations, thus classifying it as a
Mott insulator. We investigate the magnetic fluctuations in CoO using neutron spectroscopy. The
strong and spatially far-reaching exchange constants reported in [Sarte et al. Phys. Rev. B 98
024415 (2018)], combined with the single-ion spin-orbit coupling of similar magnitude [Cowley et
al. Phys. Rev. B 88, 205117 (2013)] results in significant mixing between jeff spin-orbit levels in
the low temperature magnetically ordered phase. The high degree of entanglement, combined with
the structural domains originating from the Jahn-Teller structural distortion at ∼ 300 K, make the
magnetic excitation spectrum highly structured in both energy and momentum. We extend previous
theoretical work on PrTl3 [Buyers et al. Phys. Rev. B 11, 266 (1975)] to construct a mean-field
and multi-level spin exciton model employing the aforementioned spin exchange and spin-orbit
coupling parameters for coupled Co2+ ions on a rocksalt lattice. This parameterization, based on
a tetragonally distorted type-II antiferromagnetic unit cell, captures both the sharp low energy
excitations at the magnetic zone center, and the energy broadened peaks at the zone boundary.
However, the model fails to describe the momentum dependence of the excitations at high energy
transfers, where the neutron response decays faster with momentum than the Co2+ form factor.
We discuss such a failure in terms of a possible breakdown of localized spin-orbit excitons at high
energy transfers.

I. INTRODUCTION

Mott insulators are materials where conventional band
theory fails, predicting metallic behavior owing to half-
filled bands, with the origin of the insulating response
indicative of strong electronic correlations1–5. Mott insu-
lators are parent materials for high-temperature cuprate
superconductivity6–8. Moreover, there have been some
suggestions that these insulators may even be implicated
as being parent to some iron-based superconductors9–13.
These Mott insulators display well-defined spin excita-
tions, however rapidly breakdown14–17 on charge doping
towards superconductivity.18 More recently, Mott insu-
lators with strong spin-orbit coupling have been of par-
ticular interest in the search for unconventional topolog-
ical states19–21. These studies have focussed on 4d and
5d transition metals with strong spin-orbit coupling re-
sulting in jeff = 1

2 ground states, and new Kitaev bond

directional phases22–24. However, much of the single-
ion physics that results in these jeff = 1

2 ground states

is present in Co2+-based compounds that also display
strong spin-orbit coupling25,26.

In this context, it is timely to investigate the classic
Mott insulator CoO, where significant spin-orbit coupling
is present and comparable to the magnetic exchange. In
this study, we investigate the mixed spin-orbit transitions
in CoO through their parameterization with a multi-level
spin-orbit exciton model extending previous theoretical
work on PrTl3

27. While this model reproduces the ex-
perimental data at low-energy transfers, we show that
its failure at high energy transfers is accompanied by a

possible breakdown of these excitations.

For the past several decades, CoO has been one of the
most extensively studied Mott insulators. The 3d metal
monoxide was among the first orbitally-ordered materials
to be investigated with neutron diffraction28. Its primi-
tive unit cell consists of one 3d7 Co2+ and one 2p6 O2−,
corresponding to 13 valence electrons. With an odd num-
ber of valence electrons, conventional band theory29,30

would predict CoO to be metallic. However, CoO is a
very strong insulator31 with a room temperature resistiv-
ity of 108 Ω · cm, and an optical band gap of 2.5 eV32–34,
with evidence for metallic behavior being found only un-
der extremely high pressures on the order of 100 GPa35.

Possessing a cubic Fm3̄m structure36–40 at room tem-
perature (Fig. 1(a)), CoO assumes long-range antiferro-
magnetic order at TN ∼ 290 K41, in contrast to the
long-range ferromagnetism predicted by general band
coupling models that assume a dominant direct ex-
change42,43. Despite being the subject of many neutron
diffraction studies, its magnetic structure has proven to
be particularly contentious, with both collinear44,45 and
non-collinear46,47 models describing diffraction patterns
equally well48–52.

As illustrated in Fig. 1(b), the 4T1 crystal field ground
state for CoO corresponds to the d7 Co2+ assuming a high
spin (S = 3

2 ) configuration, yielding an orbital triplet
with one hole in the t2g orbital manifold. The result-
ing orbital degeneracy, coupled with both a Jahn-Teller
driven36 unit cell distortion and various far-reaching large
exchange interactions, yields a complex magnetic excita-
tion spectrum that results from the strong entanglement
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of multiple spin-orbit levels (Fig. 1(c)). The resulting
multi-parameter spin-orbital Hamiltonian incorporating
both exchange and spin-orbit coupling of similar magni-
tude, further complicated by the complex magnetic or-
dering and structural distortions, has made the under-
standing of the magnetic excitations in this material par-
ticularly difficult53.

By employing both the spin-orbit coupling constant λ
and the magnetic exchange constants J that were exper-
imentally determined in our previous work54,55 on the
magnetically diluted monoxide Mg0.97Co0.03O, we will
show that the low energy magnetic excitation spectrum
of CoO measured in the Néel regime by inelastic neutron
spectroscopy is reproduced by a mean-field multi-level
spin-orbit exciton model based on Green’s functions27.
Our parameterization successfully captures the fine struc-
ture of well-defined low energy spin excitations present
at the magnetic zone center and also the broadening in
both momentum and energy at the zone boundaries. In
contrast, the model fails to reproduce the high energy
response consisting of high velocity excitations that de-
cay with momentum faster than the Co2+ form factor.
We suggest that this failure of the model provides evi-
dence for a breakdown of localized spin-orbit excitations
at high energy transfers, possibly replaced by delocalized
or itinerant-like fluctuations, despite CoO being a strong
Mott insulator.

This paper is divided into three general sections. In
the first section, we describe the theoretical framework
that we apply to parameterize the neutron scattering re-
sponse in CoO. We first outline the single-ion response
defining the crystal field Hamiltonian, and then discuss
the coupled equations-of-motion that were used to numer-
ically derive the neutron response. In the second section,
we first present the experimental data as measured with
neutron spectroscopy, followed by a direct comparison to
our multi-level spin-orbit exciton model. To conclude, we
discuss the high energy excitations and the poor agree-
ment with the Co2+ form factor and speculate as to their
origin.

II. THEORY

We first discuss the theoretical framework used to de-
scribe the localized magnetic response in CoO. The neu-
tron magnetic cross section is proportional to the mag-
netic dynamic structure factor S(Q, ω) defined by

S(Q, ω) = g2
Lf

2(Q)
∑
αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω), (1)

where gL is the Landé g-factor, f(Q) is the magnetic
form factor,50,56 and Sαβ(Q, ω) corresponds to the dy-
namic spin structure factor. Since the orbital angular

momentum is quenched (i.e.
〈
L̂
〉

= 0) for 3d7 Co2+, the

orbital contribution to the scattering cross section is as-
sumed to be weak, and therefore the spin operators pro-
vide the dominant contribution to the neutron scattering
cross section57. This assumption allows Sαβ(Q, ω) to be
defined in terms of expectation values of spin operators
Ŝν(i, t) of index ν = +, −, or z, acting on a site i at a
time t. Such a definition of the dynamic structure factor

FIG. 1. (a) First four coordination shells of the high tem-
perature CoO rocksalt structure. (b) Tanabe-Sugano dia-
gram for d7 Co2+ in octahedral coordination calculated by
Cowley et al.54. Shaded rectangles correspond to experimen-
tally measured excitations for cubic CoO at room tempera-
ture with heights and the width corresponding to experimen-
tal errors in energy and the statistical error of the refined
value for 10Dq/J(dd), respectively. The dashed red line at
10Dq/J(dd) ∼ 2.5 denotes the spin crossover from (left) high-
spin S = 3

2
, 4T1 to (right) low-spin S = 1

2
, 2E. (c) Calculated

normalized energy variation as a function of the tetragonal
distortion (Ĥdis) and the magnetic molecular field (ĤMF ) per-
turbations to the jeff manifolds from the ground state crystal
field triplet 4T1 of Co2+ in octahedral coordination. Both the
energy eigenvalues and individual parameters are presented to
scale.

is given by

Sαβ(Q, ω) =
1

2π

∫
dt eiωt〈Ŝα(Q, t)Ŝβ(−Q, 0)〉,

whose relationship to the response function Gαβ(Q, ω) is
given by the fluctuation-dissipation theorem as

Sαβ(Q, ω) = − 1

π

1

1− exp(ω/kBT )
=Gαβ(Q, ω). (2)

Motivated by previous work on PrTl3
27,58, the theoret-

ical portion of this paper begins by first writing down the
equations-of-motion for the response function in terms of
commutators involving the magnetic Hamiltonian Ĥ. We
then investigate this magnetic Hamiltonian in CoO to de-
fine both the single-ion states and how these states are
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coupled from site to site on the rocksalt lattice. Finally,
we apply mean-field theory to decouple the equations-
of-motion, thereby reducing the formula for the response
functions to a set of coupled linear equations that can be
computed numerically and directly compared with exper-
iment. In this approach, we use creation and annihilation
operators of the single-ion states rather than the Holstein-
Primakoff transformation for a single spin operator. This
approach allows for both the incorporation of spin-orbit
level mixing, and the explicit inclusion of the single-ion
terms in the Hamiltonian, such as spin-orbit coupling,
rather than employing anisotropy terms that incorporate
the orbital physics through perturbation theory59.

A. The Equation-of-Motion for the Response
Function

According to linear response theory, the response
function measured with neutrons is proportional to the
Fourier transform of the retarded Green’s function that
is given by

Gαβ(ij, t) = G(Ŝα(i, t), Ŝβ(j, 0))

= −iΘ(t)〈[Ŝα(i, t), Ŝβ(j, 0)]〉,
(3)

where Θ(t) is the Heaviside function. As shown in Sec-
tion I of the Supplementary Information60, by taking the
first time derivative ofGαβ(ij, t), applying the Heisenberg
equation-of-motion, and Fourier transforming from time
to energy, one arrives at the following equation-of-motion

ωG(Â, B̂, ω) = 〈[Â, B̂]〉+G([Â, Ĥ], B̂, ω), (4)

where Â and B̂ denote generic spin operators. Eq. 4 in-
dicates that deriving a model for the neutron scattering
response functions relies both on the understanding of
the Hamiltonian Ĥ and its commutator with the spin op-
erators. We now investigate the individual contributions
to magnetic Hamiltonian in CoO.

B. The Total Magnetic Hamiltonian Ĥ

The total magnetic Hamiltonian consisting of crystal
field (CF ) contributions and coupling between Co2+ on
sites i and j can be written as

Ĥ = ĤCF +
∑
ij

J(ij)Ŝ(i) · Ŝ(j).

By defining a molecular field Hamiltonian

ĤMF (i) =
∑
i

HMF (i)Ŝz(i),

where

HMF (i) = 2
∑
i>j

J(ij)〈Ŝz(j)〉, (5)

Ĥ can be written as a sum of a single-ion (Ĥ1) and an

inter-ion (Ĥ2) term given by

Ĥ1 =
∑
i

ĤCF (i) +
∑
i

Ŝz(i)

2
∑
i>j

J(ij)〈Ŝz(j)〉

 , (6)

and

Ĥ2 =
∑
ij

J(ij)Ŝz(i)[Ŝz(j)− 2〈Ŝz(j)〉]

+
1

2

∑
ij

J(ij)[Ŝ+(i)Ŝ−(j) + Ŝ−(i)Ŝ+(j)],
(7)

where 〈Ŝz(j)〉 denotes a thermal average given by

〈Ŝα〉 =
∑
n

fn〈n|Ŝα|n〉 ≡
∑
n

Ŝαnnfn, (8)

with Ŝαnn = 〈n|Ŝα|n〉, and fn is the Boltzmann thermal
population factor. The inclusion of a factor of 2 in Eq. 6
follows the convention that was established in Ref. 53 to
explicitly account for the double counting in the sum over
sites.

The procedure we follow to derive the neutron response
consists of two parts. First, we diagonalize the single-ion
component Ĥ1 for a given molecular field such that

Ĥ1 =
∑
n

∑
i

ωnC
†
n(i)Cn(i), (9)

where C(i) and C†(i) are ladder operators satisfying the
commutation relations [Cn(i), C†m(j)] = δijδnm, and ωn
are the energy eigenvalues. The second step consists
of using these states to apply mean-field theory on the
inter-ion Ĥ2 term to then compute the neutron response
using the equation-of-motion given in Eq. 4. We will
now discuss the eigenstates of the single-ion component
of the Hamiltonian Ĥ, followed by the inter-ion com-
ponent. This section concludes with the application of
mean-field theory on the inter-ion component, allowing
for the derivation of an expression for the Green’s func-
tion that can be calculated numerically and compared
directly to experiment.

1. Single-Ion Hamiltonian Ĥ1

As schematically illustrated in Fig. 1(c), the single-ion
component of the Hamiltonian consists of four compo-
nents

Ĥ1 = ĤCF + ĤMF =

(ĤCEF + ĤSO + Ĥdis) + ĤMF ,

corresponding to the contributions from the crystalline
electric field ĤCEF , spin-orbit ĤSO, structural distortion
Ĥdis, and mean molecular field ĤMF . Hyperfine nuclear
transitions are neglected since previous measurements61

have indicated that these are on the order of ∼ µeV, and
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thus beyond the experimental resolution of our study. We
now discuss each term of the Hamiltonian Ĥ1.
The Crystalline Electric Field, ĤCEF : As illustrated

in the Tanabe-Sugano62–64 diagram in Fig. 1(b), for the
case of CoO, the 3d7 Co2+ is octahedrally coordinated by
the weak field O2− ligand resulting in a crystal field split-
ting 10Dq that is weaker than the energy differences be-
tween the free-ion terms65. Consequently, the crystalline
electric field contribution ĤCEF can be treated as a per-
turbation to the free-ion basis states that are defined by
Hund’s rules incorporating the effects of electron-electron
Coulomb repulsion and the Pauli Exclusion Principle. A
combination of Hund’s first rule of maximum multiplicity
and second rule requiring the total orbital angular mo-
mentum L be maximized yields a total spin of S = 3

2

and orbital angular momentum L = 3, for the 3d7 Co2+,
corresponding to an orbital ground state term symbol of
4F .

The crystalline electric field ĤCEF contribution corre-
sponding to the octahedral coordination of the 4F free-
ion ground state by O2− ligands can be expressed in terms
of the Stevens operators Ô0

4 and Ô4
4, and the numerical

coefficient B4 < 066,67 as

ĤCEF = B4

(
Ô0

4 + 5Ô4
4

)
.

Since the spin-orbit coupling is expected to be consider-
ably weaker than the crystal field contribution for the 3d
Co2+, the complete set of commuting observables are L̂2,
L̂z, Ŝ

2 and Ŝz with corresponding good quantum num-
bers L, mL, s and ms in the Russell-Saunders L-S cou-
pling scheme; thus, by the Wigner-Eckart theorem, both
Stevens operators in ĤCEF can be defined in the |L,mL〉
basis, as summarized in Section II of the Supplementary
Information60.

The diagonalization of ĤCEF results in an orbital
triplet ground state (4T1), an excited orbital triplet (4T2),
and an orbital singlet 4A2, where ∆(4T1 →4 T2) = 480B4

and ∆(4T2 →4 A2) = 600B4. The Stevens factor B4 is
related to the crystal field splitting by 10Dq = 400B4

(Fig. 1(b)), where 10Dq was previously measured to be
∼1 eV54,68–72. Since the 4T1 crystal field ground state
and 4T2 first excited state are separated by ∼ 1 eV, it is
a valid approximation that the 4T1 ground state will ex-
clusively determine the magnetic properties of CoO73,74.
Spin-Orbit Coupling, ĤSO: The second perturbation to

the 4F free-ion ground state is spin-orbit coupling given
by

ĤSO = λL̂ · Ŝ, (10)

where λ is the spin-orbit coupling constant. A common
approach is to exclusively consider the 4T1 ground state,
requiring a projection from the original |L = 3,mL〉 basis
onto a smaller basis |l = 1,ml〉 that defines the subspace
that is spanned by the crystal field ground state. As dis-
cussed by Abragam & Bleaney66, this particular projec-
tion can be performed using representation theory. Here,
we outline an alternate method based on the matrix rep-
resentation of angular momentum operators75 that was
inspired by the work on 4d and 5d transition metal ox-
ides by Stamokostas and Fiete76.

The matrix approach begins by first determining the
set of eigenvectors |φCEF 〉 of the crystalline electric field

Hamiltonian ĤCEF in the |L = 3,mL〉 basis. Since
|φCEF 〉 is also a basis, a transformation matrix C can
be constructed that rotates from the |L = 3,mL〉 to the
|φCEF 〉 basis. The matrix C consists of columns corre-

sponding to eigenvectors of ĤCEF in the |L = 3,mL〉 ba-
sis arranged in order of increasing energy eigenvalues. In
the case of degenerate eigenvalues, a small perturbative
Zeeman term of the form εŜz, with ε being a small con-
stant, was applied to remove the degeneracy and uniquely
define the column order. For Co2+ in octahedral coordi-
nation with B4 set to −1, C is given by

C =



0 0 −0.79 0.61 0 0 0
0 0 0 0 −0.71 0 −0.71

0.61 0 0 0 0 −0.79 0
0 1.00 0 0 0 0 0
0 0 −0.61 −0.79 0 0 0
0 0 0 0 −0.71 0 0.71

0.79 0 0 0 0 0.61 0


.

Having obtained the transformation matrix, the rotation
from the |L = 3,mL〉 to the |φCEF 〉 basis can then be

accomplished by Ô|φCEF 〉 = C−1Ô|L,mL〉C.
For the L̂z operator, this transformation yields

C−1L̂zC =



1.50 0 0 0 0 −1.94 0
0 0 0 0 0 0 0
0 0 −1.50 −1.94 0 0 0
0 0 −1.94 −0.50 0 0 0
0 0 0 0 0 0 2.00

−1.94 0 0 0 0 0.50 0
0 0 0 0 2.00 0 0


,

illustrating the ground state orbital triplet 4T1, and the
excited orbital triplet 4T2 and singlet 4A2 states. We
note that the opposite sequence exists in the case of a
tetrahedral environment with an orbital singlet ground
state77. A comparison of the top 3 × 3 block matrix to
the L̂z operator in the |l = 1,ml〉 basis given by

L̂z =

 −1 0 0
0 0 0
0 0 1


confirms that the block matrix is equivalent to the L̂z
operator in the |l = 1,ml〉 basis, with a projection factor
α = − 3

2 , in agreement with previous approaches based
on representation theory. Therefore, in the low temper-
ature/energy limit, the spin-orbit Hamiltonian (Eq. 10)
can be rewritten as

ĤSO = αλ̂l · Ŝ,

corresponding to a new Hamiltonian consisting of new or-
bital angular momentum operators that act on the pro-
jected |l = 1,ml〉 basis.

By assigning an effective angular momentum operator
to the subspace spanned by the |l = 1,ml〉 basis, it is
implied these new operators must follow the same com-
mutation relations for general angular momentum opera-
tors. To check this fundamental requirement is satisfied,
we have transformed the three L̂x,y,z operators, each of
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which is a 7×7 matrix, to the |φCEF 〉 basis with the pro-
cedure outline above. We then extracted the top 3 × 3
block matrices of the projected matrices C−1L̂x,y,zC to

define l̂x,y,z, and confirmed that these matrices do follow
the commutation relations of angular momentum given

by l̂ × l̂ = îl. We note that the presence of a thermally
isolated low energy triplet does not guarantee that these
commutation relations are followed. An example of such
a failure has been recently discussed in the context of low
energy doublets in the heavy fermion CeRhSi3

78.

Having projected L̂ onto a fictitious operator l̂ to reflect
the triplet orbital degeneracy of the 4T1 ground state of
ĤCEF , we now derive the eigenstates of the perturbative
ĤSO term. The basis is now the 12 |l = 1,ml; s = 3

2 ,ms〉
states, and based on both the Landé interval rule and
the addition theorem of angular momentum, we expect
this Hamiltonian to yield three levels defined by jeff= 1

2 ,
3
2 , and 5

2 . Using the projection factor α = − 3
2 , and

the experimentally determined54 spin-orbit coupling con-
stant λ = −16 meV, the diagonalization of the spin-orbit
Hamiltonian ĤSO matrix yields

diag
(
ĤSO

)
=



−60 0 0 0 0 0 0 0 0 0 0 0
0 −60 0 0 0 0 0 0 0 0 0 0
0 0 −24 0 0 0 0 0 0 0 0 0
0 0 0 −24 0 0 0 0 0 0 0 0
0 0 0 0 −24 0 0 0 0 0 0 0
0 0 0 0 0 −24 0 0 0 0 0 0
0 0 0 0 0 0 36 0 0 0 0 0
0 0 0 0 0 0 0 36 0 0 0 0
0 0 0 0 0 0 0 0 36 0 0 0
0 0 0 0 0 0 0 0 0 36 0 0
0 0 0 0 0 0 0 0 0 0 36 0
0 0 0 0 0 0 0 0 0 0 0 36



,

confirming a doublet ground state with quartet and sextet
excited manifolds (Fig. 1(c)) with ∆(doublet→quartet)
= −36 meV ≡ 3

2αλ and ∆(quartet→sextet) = −60 meV

≡ 5
2αλ. Finally, we may confirm that each manifold cor-

responds to jeff = 1
2 , 3

2 , and 5
2 , respectively, by projecting

the components of the effective total angular momentum

operator ĵ = l̂ + Ŝ onto the subspaces spanned by the
spin-orbit manifolds of ĤSO. As was the case for the

projection onto the subspace spanned by the 4T1 crystal
field ground state, such a projection is accomplished by
first defining a transformation C which rotates operators
from the |l,ml, s,ms〉 basis to the |φSO〉 basis with the

columns being the eigenvectors of ĤSO arranged in in-
creasing energy. Rotating the ĵz operator onto the |φSO〉
basis yields

C−1ĵzC =



−1
2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0 0 0
0 0 −3

2 0 0 0 0 0 0 0 0 0
0 0 0 −1

2 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0 0 0
0 0 0 0 0 3

2 0 0 0 0 0 0
0 0 0 0 0 0 −5

2 0 0 0 0 0
0 0 0 0 0 0 0 −3

2 0 0 0 0
0 0 0 0 0 0 0 0 −1

2 0 0 0
0 0 0 0 0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 0 0 0 3

2 0
0 0 0 0 0 0 0 0 0 0 0 5

2



.

A comparison of the block matrices of the projected ĵz
operator as given above to the Ĵz operator in the |jeff =
1
2 ,mj〉, |jeff = 3

2 ,mj〉, and |jeff = 5
2 ,mj〉 bases confirms

that the top 2 × 2, middle 4× 4 and bottom 6× 6 block
matrices corresponds to jeff = 1

2 ,
3
2 , and 5

2 manifolds,

respectively. By projecting the ĵx and ĵy operators, it
can be shown that these block matrices also satisfy the
canonical commutation relations of angular momentum.

The Distortion Hamiltonian, Ĥdis: The next pertur-

bation to the single-ion Hamiltonian corresponds to the
structural deformation of the CoO unit cell that accompa-
nies long-range antiferromagnetic order, resulting in the
distortion of the crystalline electric field from ideal octa-
hedral coordination79. While the exact symmetry of the
low temperature phase has proven to be particularly con-
tentious, we will consider a simple tetragonal distortion,
corresponding to a uniaxial distortion along the z axis.
Utilizing symmetry arguments,80 the influences of such a
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distortion on the crystalline electric field is given by

Ĥdis = B2Ô0
2 = Γ

(
l̂2z −

2

3

)
,

with a distortion parameter Γ.
The Molecular Field Hamiltonian, ĤMF : The final

term in the single-ion Hamiltonian corresponds to the ef-
fect of the molecular field that results from the magnetic
order of Co2+ moments in the rocksalt lattice. ĤMF

behaves as a Zeeman-like term, resulting in a splitting
of the nearly degenerate jeff levels. By considering a
single dominant next-nearest neighbor 180◦ Co2+-O2−-
Co2+ superexchange pathway with a magnetic exchange
constant J2, the corresponding mean molecular field is
given by

ĤMF =
∑
i

HMF (i)Ŝz = 2z2J2〈Ŝz〉Ŝz,

where HMF (i) is defined by Eq. 5 above, and z2 denotes
the number of next-nearest neighbors. As summarized by
Fig. 1(c), the result of such a strong value of this exchange
interaction is the significant entanglement between in-
dividual jeff levels, in contrast with other Co2+-based
magnets such as CoV2O6,81 CoV3O8,75 and CoNb2O6

82,
where the degree of mixing is much weaker. In these par-
ticular magnets, the spin-orbit split levels remain well-
separated in energy, and therefore can be considered as
jeff = 1

2 magnets. The strong intertwining in CoO repre-
sents a limitation imposed on approaches based on con-
ventional linear spin wave theory, and the reason why a
multi-level spin-orbit exciton model needs to be consid-
ered.

2. Inter-Ion Hamiltonian Ĥ2

As summarized by Eq. 7, the inter-ion Hamiltonian is
defined by the exchange parameters J(ij) between sites
i and j. In contrast to the parameters for the single-ion
Hamiltonian Ĥ1: 10Dq, λ, and ĤMF discussed above,
there does not exist a widely accepted set of experimen-
tally determined exchange constants for CoO83. Given
the complexity of the mixed jeff levels (Fig. 1(c)), we
have previously investigated the pair response in the di-
lute monoxide Mg0.97Co0.03O,55 where chemical dilution
removes both the magnetic order-induced molecular field
and the accompanying structural distortion that are orig-
inally present in CoO84–86. A summary of the exper-
imental results is presented in Fig. 2, taken from Ref.
55. Utilizing probabilistic arguments, it was shown that
the series of well-defined low energy magnetic excitations
(Fig. 2(a)) present in Mg0.97Co0.03O correspond to exci-
tations of Co2+ pairs. These pairs are described by the
effective pair Hamiltonian given by

Ĥpair = αλ̂l1 · Ŝ1 + αλ̂l2 · Ŝ2 + 2J1,2Ŝ1 · Ŝ2, (11)

corresponding to a 144 × 144 matrix in terms of the
two-particle basis of |l1 = 1,ml1 , s1 = 3

2 ,ms1〉 ⊗ |l2 =

1,ml2 , s2 = 3
2 ,ms2〉, where li, mli , si, and msi denote

the eigenvalues of the l̂, l̂z, Ŝ, and Ŝz operators, respec-
tively, for the ith particle. As summarized schematically
in Fig. 2(b), the pair Hamiltonian Ĥpair describes in-
dividual jeff = 1

2 pair excitations as transitions between

triplet (Γ̃ = 1) and singlet (Γ̃ = 0) levels separated by
an energy ∆E = α̃J , where α̃ behaves as an effective
conversion factor between the energy transfer measured
experimentally and the corresponding desired magnetic
exchange constants. The solution to Ĥpair as a function
of exchange energy J1,2 is shown in Fig. 2(c), with the
solid black line and colored points corresponding to the
exact solution to the above Hamiltonian and the mea-
sured energy positions, respectively. For comparison, the
behavior predicted by the projection theorem of angular
momentum is also presented. The deviation of the exact
solution from the linear behavior predicted by the pro-
jection theorem is a consequence of the coupling of the
ground state jeff = 1

2 and higher energy jeff = 3
2 mani-

folds. Since the degree of coupling increases as |J | → |λ|,
the predicted values for exchange constants with larger
magnitudes, specifically J2, are particularly sensitive to
the value of the spin-orbit coupling constant λ. This point
will be addressed below in the context of the analysis of
the single crystal data.

While the energy dependence affords estimates of the
exchange constants, the relative distance R between the
two Co2+ spins that participate in the exchange interac-
tion, and thus the relative coordination shell (Fig. 2(a))
can be determined for each magnetic excitation from
their momentum dependence via the first moment sum
rule75,87,88, as is summarized in Fig. 2. Given the ground
state for antiferromagnetically/ferromagnetically coupled
Co2+ ions is a triplet/singlet, the temperature depen-
dence was used to establish the sign of the exchange con-
stant89. A final summary of the estimates of the exchange
constants for the first four coordination shells of CoO is
presented in Table I below.

C. Mean-Field Theory for Multi-Level Spin-Orbit
Excitons

As discussed above, the modeling of the neutron re-
sponse requires an understanding of both the Hamilto-
nian and its commutator with the spin operators. In the
previous section, we diagonalized the single-ion Hamilto-
nian Ĥ1 such that Ĥ1|n〉 = ωn|n〉. Since all terms of the

inter-ion Hamiltonian Ĥ2 are based on the components of
the spin operator Ŝ, these operators can be rotated onto
the basis states of the single-ion Hamiltonian by use of
the ladder operators that were previously defined in Eq. 9
with such a coordinate rotation being given by

Ŝ(±,z) =
∑
mn

Ŝ(±,z)mnC
†
mCn. (12)

By writing the full Hamiltonian Ĥ = Ĥ1 + Ĥ2 in terms
of the ladder operators as defined in Eq. 12, and using
the definition of the inter-level susceptibility Ĝ defined
by

Gαβ(i, j, ω) =
∑
mn

ŜαmnĜ
β(m,n, i, j, ω), (13)
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FIG. 2. (a) Background (pure and nonmagnetic MgO) subtracted powder-averaged neutron-scattering intensity maps of
Mg0.97Co0.03O measured on (top) MARI at 5 K with an Ei=30 meV, (middle) MARI at 5 K with an Ei=10 meV, and
(bottom) IRIS at 11 K with an Ef of 1.84 meV revealing seven low-energy bands of dispersionless magnetic excitations. (b)
Relevant energy scales for the effective pair Hamiltonian. (c) Calculated difference in the ground state manifold’s energy eigen-
states obtained from the diagonalization of the effective pair Hamiltonian (black line). The non-linearity is in constrast with
the behavior predicted by the projection theorem (gray line). (inset) The mechanism for antiferromagnetism (top) and weaker
ferromagnetism (bottom) is a result of a combination of the 90o Co2+−O2−−Co2+ exchange pathway and the orbital degree
of freedom in the t2g channel on each Co2+, in agreement with the predictions of the Goodenough-Kanamori-Anderson rules.
Yellow arrows denote local t2g spin configurations and teal arrows denote total spin configurations on each Co2+.

where the indices α, β are either +, −, or z, the second
term on the RHS of the equation-of-motion of the Green’s
function (Eq. 4) reduces to three sets of commutators,
termed diagonal, transverse, and longitudinal, with each
involving spin operators rewritten in terms of ladder op-
erators, as discussed in Section III of Supplementary In-
formation60. Buyers et al.,27 demonstrated that by com-
bining the random phase decoupling method90–93 (Section
IV of the Supplementary Information60) with the defini-

tions of both the single-site response function

gαβ(E) =
∑
n

{
Sα0nSβn0

E + i∆− En0
− Sαn0Sβ0n

E + i∆ + En0

}
,

(14)
and the Fourier transform of the exchange interaction
J(Q)

J(Q) =
∑
i6=j

Jije
iQ·dij , (15)

the full neutron response Fourier transformed into mo-
mentum Q-space can be written as a set of coupled linear
equations given by
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Gαβ(Q, E) = gαβ(E) + gα+(E)J(Q)G−β(Q, E) + gα−(E)J(Q)G+β(Q, ω) + 2gαz(E)J(Q)Gzβ(Q, E), (16)

where ω has been relabeled as E = ~ω. Here, we have
employed the T → 0 K single-site response function since
the energy transfers under consideration in the current
investigation (≥ 20 meV) are much larger than the sam-
ple temperature (∼ 0.5 meV). The denominator of gαβ

consists of Eno = ~ωn − ~ω0 corresponding to the en-
ergy associated with a transition from the ground state
|0〉 to the |n〉 eigenstate of the single-ion Hamiltonian Ĥ1,
while the presence of the positive infinitesimal ∆ is to en-
sure analyticality, and was set to 50% of the experimental
resolution width (HWHM) on MERLIN94 that was cal-
culated by PyChop95. Coupling between the single-site
response functions, and thus the dispersion of the total
response functions Gαβ is defined by J(Q) which is pa-
rameterized by both Jij and dij denoting the exchange
constant and displacement vector, respectively, between
sites i and j. As a first approximation, our calculations
have considered the simplest case where the exchange in-
teraction is spatially isotropic. We note that in general
this is not case, owing to the anisotropy of the orbital
configuration of Co2+.

By considering all possible combinations of indices α, β
in Eq. 16 and noting that the non-zero single-site response
functions for Co2+ in such a highly symmetric environ-
ment are: g+−, g−+, and gzz, only three non-zero Green’s
functions are obtained:

G+−(Q, E) = g+−(E) + g+−(E)J(Q)G+−(Q, E)

G−+(Q, E) = g−+(E) + g−+(E)J(Q)G−+(Q, E)

Gzz(Q, E) = gzz(E) + 2gzz(E)J(Q)Gzz(Q, E), (17)

with both G++ and G−− being both zero, as required by
definition of the retarded Green’s function.

The simplest model for the long-range antiferromag-
netic order in CoO is a type-II collinear antiferromagnetic

magnetic structure28. Corresponding to (111) ferromag-
netic sheets stacked antiferromagnetically along the [111]
direction, this type of magnetic structure has been ob-
served in CoO under pressure, despite the suppression of
the structural distortion96. Such a model implies that
CoO can be reduced to two unique magnetic sublattices;
thus, the site indices i and j assume labels of either 1 or
2, and Eq. 17 becomes four coupled linear equations

G+−
11 (Q, E) = g+−

1 (E) + g+−
1 (E)Js(Q)G+−

11 (Q, E)

+ g+−
1 (E)Jd(Q)G+−

21 (Q, E)

G+−
21 (Q, E) = g+−

2 (E)Js(Q)G+−
21 (Q, E)

+ g+−
2 (E)Jd(Q)G+−

11 (Q, E)

G+−
12 (Q, E) = g+−

1 (E)Js(Q)G+−
12 (Q, E)

+ g+−
1 (E)Jd(Q)G+−

22 (Q, E)

G+−
22 (Q, E) = g+−

2 (E) + g+−
2 (E)Js(Q)G+−

22 (Q, E)

+ g+−
2 (E)Jd(Q)G+−

12 (Q, E), (18)

and

Gzz11(Q, E) = gzz1 (E) + 2gzz1 (E)Js(Q)Gzz11(Q, E)

+ 2gzz1 (E)Jd(Q)Gzz21(Q, E)

Gzz21(Q, E) = 2gzz2 (E)Js(Q)Gzz21(Q, E)

+ 2gzz2 (E)Jd(Q)Gzz11(Q, E)

Gzz12(Q, E) = 2gzz1 (E)Js(Q)Gzz12(Q, E)

+ 2gzz1 (E)Jd(Q)Gzz22(Q, E)

Gzz22(Q, E) = gzz2 (E) + 2gzz2 (E)Js(Q)Gzz22(Q, E)

+ 2gzz2 (E)Jd(Q)Gzz12(Q, E), (19)

with Js and Jd denoting J(Q) on the same (i = j) and
different (i 6= j) sublattices, respectively. Solving these
four coupled equations yields

G+−(Q, E) ≡
∑
ij

G+−
ij (Q, E) =

g+−
1 (E) + g+−

2 (E) + 2g+−
1 (E)g+−

2 (E)[Jd(Q)− Js(Q)]

[1− g+−
1 (E)Js(Q)] · [1− g+−

2 (E)Js(Q)]− g+−
1 (E)g+−

2 (E)[Jd(Q)]2
,

Gzz(Q, E) ≡
∑
ij

Gzzij (Q, E) =
gzz1 (E) + gzz2 (E) + 4gzz1 (E)gzz2 (E)[Jd(Q)− Js(Q)]

[1− 2gzz1 (E)Js(Q)] · [1− 2gzz2 (E)Js(Q)]− 4gzz1 (E)gzz2 (E)[Jd(Q)]2
,

where G−+(Q, E) has the same form as G+−(Q, E) with
indices + ←→ −. The equations above are a function
of the single-site response function gαβ and the Fourier
transform of the exchange interaction J(Q).

In contrast to the single-site response function, J(Q)
does explicitly depend on the particular magnetic sub-
lattice under consideration, stemming from the presence
of the position indices i and j in its definition given by
Eq. 15. The Co2+ sites in the d- and s-sublattices for a

particular coordination shell m was determined by first
selecting a reference Co2+ cation, thus defining a refer-
ence (111) plane as illustrated in Fig. 3. By definition
of the type-II antiferromagnetic structure, Co2+ cations
located on odd integer number of (111) planes away from
the reference plane are defined as belonging to the d sub-
lattice, while Co2+ cations located in the same or an even
integer number of (111) planes away are on the s sublat-
tice.
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The program VESTA97 was used to determine the dis- placement vectors to calculate Js,d from Eq. 15 giving:

Js(Q) = (20)

2J1{cos(π(H −K)) + cos(π(K − L)) + cos(π(L−H))}+ ... (m = 1)

2J3 {cos (π (2H −K − L)) + cos (π (2H +K + L)) + cos (π (H − 2K + L)) + ... (m = 3)

cos (π (−H − 2K − L)) + cos (π (H −K + 2L)) + cos (π (−H −K + 2L))}+ ...

2J4 {cos(2π(H − L)) + cos(2π(H −K)) + cos(π(L−K)) + ... (m = 4)

cos(π(H + L)) + cos(π(H +K)) + cos(π(K + L))}

and

Jd(Q) = (21)

2J1{cos(π(H +K)) + cos(π(K + L)) + cos(π(L+H))}+ ... (m = 1)

2J2 {cos(2πH) + cos(2πK) + cos(2πL)}+ ... (m = 2)

2J3 {cos (π (2H −K + L)) + cos (π (2H +K − L)) + cos (π (−H − 2K + L)) + ... (m = 3)

cos (π (H − 2K − L)) + cos (π (−H +K + 2L)) + cos (π (H −K + 2L))} ,

where the contributions from each coordination shell m
have been labeled explicitly.

a) m=1 b) m=2

c) m=3 d) m=4

s
d

s

d

FIG. 3. Isometric view of all Co2+ cations located in the (a)
first (m = 1), (b) second (m = 2), (c) third (m = 3), and
(d) fourth (m = 4) coordination shells of the CoO rocksalt
structure. For the purposes of reference, all (111) planes are
labeled as either s and d planes with respect to the reference
Co2+ (central black site). All displacement vectors dm,ij are
listed in Tab. SI in the Supplementary Information60 and used
to calculate Js(Q) and Jd(Q) discussed in the text.

By employing the definitions of the single-site response
function gαβ (Eq. 14), and the Fourier transform of the
exchange interaction Js,d(Q) (Eqs. 20 and 21), the total

response function G(Q, E) given by

G(Q, E) ≡
∑
αβ

Gαβ(Q, E) =

G+−(Q, E) +G−+(Q, E) +Gzz(Q, E),

(22)

can be calculated numerically. In the T → 0 K limit,
the imaginary part of G(Q, E) is proportional to the dy-
namical structure factor (Eq. 2), and thus Eq. 1 may be
reduced to

S(Q, E) ∝∼ −f
2(Q)=G(Q, E),

demonstrating that the imaginary component of the to-
tal response function given by Eq. 22, with the inclusion
of the magnetic form factor which here has been approx-
imated by the isotropic magnetic form factor f(Q), is
directly proportional to the neutron magnetic cross sec-
tion.

D. Parameters: Initial Values & Orbital
Configurations

Having presented our model, we now discuss the pa-
rameterization of the spin-orbit excitations in CoO. Since
our model approximates CoO as a tetragonally distorted
type-II antiferromagnet, the single-site response gαβ , it-
self being a function of the single-ion Hamiltonian Ĥ1

(Eq. 6), is defined by three parameters: λ, Γ, and HMF .
The spin-orbit coupling parameter λ was taken to be
−16 meV, corresponding to its value reported by Cow-
ley et al.54. An initial estimate for the mean molecular
field HMF was determined by first extracting the value
for

∑
i>j

zijJij from the reported98–100 Curie-Weiss tem-

perature θCW = −330 K (−28.4 meV) via its mean field
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definition

θCW = − 2

3ζ
S(S + 1)

∑
i>j

zijJij , (23)

where ζ is a scale factor of 1.9 calculated by Kanamori98

accounting for mixing between the 4F and 4P free-ion
states. Inserting the value of

∑
i>j

zijJij into the defini-

tion of HMF given by Eq. 5, yields an initial estimate of
64.8 meV. An initial estimate of the tetragonal distortion
parameter Γ=−8.76 meV was determined by scaling the
value of −1.49 meV that was reported for KCoF3

101 by
an empirical factor of 0.0116/0.00197=5.89 correspond-
ing to the ratio of their respective tetragonal distortions
δa/a.

To define J(Q), we have taken the values for
the exchange constants for the dilute monoxide
Mg0.97Co0.03O55 as estimates for pure undiluted CoO
since these exchange constants correspond to a Curie-
Weiss temperature (Eq. 23) in close agreement with the
value reported for CoO. However, our investigation on
Mg0.97Co0.03O also revealed that each coordination shell
possessed the possibility for both antiferromagnetic and
ferromagnetic coupling, with the exception of the second
nearest neighbor which is fixed to be antiferromagnetic
by the 180◦ Co2+-O2−-Co2+ superexchange pathway. As
illustrated in Fig. 2(c,inset), such dual behavior is a di-
rect consequence of the t2g degeneracy of the high spin
d7 configuration of Co2+, and thus a particular choice of
J , be it antiferromagnetic or ferromagnetic, corresponds
to a specific local orbital configuration. By incorporating
this dual behavior for coordination shells 1, 3, and 4, we
must consider all 23=8 sets of exchange constants of the
form xAxx, where x can be either antiferromagnetic (A)
or ferromagnetic (F). Furthermore, since our model incor-
porates the effects of a tetragonal (uniaxial) distortion,
we must also distinguish the involvement of a distorted or
undistorted bonding configuration for each of the 8 xAxx
orbital configurations. Thus, with these 2 additional de-
grees of freedom, our model must consider 16 different
orbital configurations of the form xAxxγ, where the in-
dex γ =1 or 2, distinguishing the presence or absence of
distorted bonding configurations.

Each of these 16 xAxxγ combinations may be inter-
preted as a unique orbital configuration, physically cor-
responding to a unique type of “domain” in the bulk CoO
single crystal, each of which is subject to a different mean
molecular field HMF . In contrast, since all cations under
consideration are assumed to be Co2+ in octahedral coor-
dination subject to a cooperative Jahn-Teller tetragonal
distortion, λ, Γ, and the individual Jn values (where n de-
notes a particular type of coupling in a coordination shell
m) are fixed to be equal for each of the 16 xAxxγ orbital
configurations. By noting that our neutron spectroscopic
measurements were performed with a large experimental
beam that irradiated a macroscopic number of domains in
the single crystal of CoO, our model considers the mean
contribution from all 16 equally weighted xxAxγ orbital
configurations. The initial parameters considered in the
model and their initial values are summarized in Tab. I.

TABLE I. Initial values (in meV) for the parameters of the
spin-orbit exciton model.

Parameter Initial Value Reference

λ −16 54

Γ −8.76 101,102

J1F −0.918

55

J1AF 1.000

J2 3.09

J3F −0.182

J3AF 0.262

J4F −0.0504

J4AF 0.0759

HMF 64.8 98,99,100

III. EXPERIMENT

Having discussed both the underlying theory of Co2+

magnetism and the corresponding physical parameters
that constitute our spin-orbit exciton model, we will now
address the experimental results from neutron scatter-
ing experiments on a single crystal of CoO. This section
begins with a description of the experimental techniques,
followed by a summary of the neutron spectroscopic data.
We conclude this section with a description of how our
model was used to interpret the low-energy fluctuations
of CoO deep within the Néel regime.

A. Experimental Details

Sample Preparation: Polycrystalline samples of CoO
were synthesized by annealing high purity Co3O4

(> 99.99%) under flowing Ar at 1200oC for 36 h with
intermittent grinding until laboratory x-ray diffraction
confirmed the absence of the Co3O4 precursor. The phase
pure CoO powder was compressed into cylindrical rods
using a hydraulic press and subsequently annealed under
flowing Ar at 1275oC for 24 h in a horizontal annealing
furnace. Crystal growth was performed using the floating
zone technique with a four-mirror optical floating zone
halogen furnace (CSI system Inc.), yielding a 10 g single
crystal of CoO (l = 50 mm, φ = 8 mm). The feed and seed
rods were counter-rotated at 35 rpm with a vertical trans-
lation of 2 to 4 mm hr−1 in a pure Ar atmosphere. The ini-
tial polycrystalline seed rod was replaced for subsequent
runs by single crystal seeds from earlier growths. Pre-
vious54 optical and scanning electron microscopy, x-ray
diffraction and DC susceptibility measurements on the
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single crystal confirmed the presence of a single growth
domain with a mosaic spread of approximately 0.1o and
the absence of both multiple magnetic or strain domains
on the crystal surface and Co3O4 impurities, respectively.

Neutron Inelastic Scattering: Neutron inelastic scat-
tering measurements were performed on the MERLIN
direct geometry chopper spectrometer94 at the ISIS neu-
tron spallation source (Didcot, U.K.). The t0 chopper was
spun at 50 Hz in parallel with the “sloppy” Fermi chop-
per package to fix the incident energy with the energy
transfer defined as E = Ei − Ef . To access a large dy-
namic range, three fixed incident energies Ei of 110 meV,
75 meV, and 45 meV were selected with Fermi chopper
frequencies of 350, 300, and 250 Hz, providing a resolu-
tion at the elastic line (E=0) of 7.3, 4.8, and 2.7 meV,
respectively. A 5 g portion of the CoO single crystal was
mounted in a top loading closed cycle refrigerator such
that the [110] and [001] crystallographic axes lay within
the horizontal plane. A tomographic reconstruction in
momentum-space was accomplished by rotating the crys-
tal about the [010] axis over 120o in 0.5o steps.

The four dimensional (Q, E) experimental data at each
angle Ψ and Ei was collected at 5 K for an accumulated
charge of 30 µA · hr on the spallation target. The raw ex-
perimental data was normalized by accumulated proton
charge, corrected for detector-efficiency using a vanadium
reference sample, and reduced by the Mantid data analy-
sis software.103,104 Visualization and manipulation of re-
duced experimental data including rebinning and projec-
tions were performed using the HORACE software pack-
age distributed by ISIS105.

B. Experimental Data

We begin by first presenting a summary of the exper-
imental data from single crystal neutron spectroscopic
measurements allowing for a direct comparison with pre-
vious work on CoO to establish consistency. The experi-
mental data from the MERLIN chopper spectrometer at
5 K is presented in Fig. 4 in the form of (Q, E) slices
along both (1.5 ± 0.1, 1.5 ± 0.1, L) (Figs. 4(a,c)) and
(2.0±0.1, 2.0±0.1, L) (Fig. 4(b)) capturing both the mag-
netic zone center and boundary, where both are compared
to previously published work in the form of Q-integrated
cuts presented in Figs. 4(d) and (e), respectively. As il-
lustrated in Fig. 4(a), a (Q, E) slice with an incident
energy Ei=110 meV exhibits a band of excitations ex-
tending from ∼ 20 meV up to ∼ 60 meV energy transfer,
corresponding to a similar range in energy transfer re-
ported by previous THz107 and Raman108 spectroscopic
measurements. These excitations decrease in intensity
with increasing L, as is expected for the Co2+ magnetic
form factor, thus indicating these excitations are pos-
sibly magnetic. A higher resolution slice with an Ei=
45 meV (Fig. 4(c)) reveals that the band of excitations
corresponds to a fine structure consisting of a series of
modes that are unevenly spaced in energy, in agreement
with previous triple-axis,53,109 time-of-flight data,110 and
Raman spectroscopy,111 with the exception of a broader
peak reported for triple-axis measurements at ∼ 40 meV.
However, it is important to note that the previously re-
ported triple-axis measurements employed final energies
Ef=14.6 meV and 30.5 meV, both of which potentially

FIG. 4. (Q, E) slices of CoO measured on MERLIN at 5 K
with an Ei of (a) 110 meV, (b) 75 meV, and (c) 45 meV. All
(Q, E) slices have been folded along [001]. A comparison of
Q-integrated cuts of (c) and (b) with previous measurements
in the literature at the (d) magnetic zone centers, and (e)
magnetic zone boundaries, respectively. Solid lines in (e) in-
dicate the location of excitations previously determined by IR
spectroscopy106. Horizontal bars indicate instrumental reso-
lution.

produce spurious signals near 40 meV as a result of weak
elastic scattering corresponding to Ei → 4 Ef (λf/2) and
4 Ei (λi/2) → 9 Ef (λf/3)112. This weak elastic pro-
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FIG. 5. Comparison of (Q, E) slices and corresponding Q-integrated cuts for CoO measured on MERLIN at 5 K and calculated
with a mean-field multi-level spin-orbit exciton model employing the refined parameters listed in Tabs. III and II for an Ei of
(a,d,g) 45 meV, (b,e,h) 110 meV, and (c,f,i) 75 meV. Horizontal bars in Q-integrated cuts indicate experimental resolution. All
(Q, E) slices have been folded along [001]. Individual contributions for each xAxxγ orbital configuration to the Q-integrated
cuts presented in (g,h) are illustrated in Fig. S1.

cess may have contributed to the extra scattering inten- sity that was observed in the previously reported triple-
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axis data, yet is absent in our current time-of-flight data.
We also note the presence of nearly dispersionless optical
phonon branches near this energy may also contribute to
the overall neutron cross section113,114. We will later dis-
cuss how this fine structure near the magnetic zone center
can be understood in terms of the spin-orbit excitations.

Slices and Q-integrated cuts through the magnetic zone
boundary presented in Figs. 4(b) and (e) shows additional
complexity present in the neutron response. At low en-
ergy transfers below ∼20 meV, strong acoustic phonons
can be seen in Fig. 4(b) to disperse from the even in-
teger positions in momentum transfers. The phonon na-
ture of these excitations is confirmed by the fact that the
cross section grows with increasing momentum transfer
L, in contrast to the magnetic cross section that is sub-
ject to the Co2+ form factor. In addition to the acoustic
phonons, a flat band is observed at E ∼ 20 meV. This
band also exhibits higher intensity at large momentum
transfers, indicating lattice fluctuations as the origin.
However, it should be noted that a peak in the aluminum
phonon density of states exists near this energy trans-
fer, thus suggesting that this particular band likely corre-
sponds to scattering from the sample can and walls of the
cryostat. At higher energy transfers, two distinct bands
of excitations are present over a large range of energy
transfers spanning from ∼30 to ∼70 meV. The intensity
of these bands weaken with momentum transfer L; how-
ever, as illustrated in Fig. 4(e), these excitations overlap
with lattice vibrational modes previously identified by in-
frared spectroscopy106. We will later discuss the origin of
these excitations in terms of magneto-vibrational scat-
tering115 by comparing the dispersion of these two high
energy bands at the magnetic zone boundary to those of
phonons measured at large momentum transfers.

C. Comparison between Experimental Data and
the Spin-Orbit Exciton Calculation

Having summarized our experimental data, we now
present a direct comparison to our calculated parame-
terization based on the Green’s function approach that
has been discussed above. Here, we first present the fi-
nal model used to describe the experimental data. This
is followed by a discussion concerning how such a model
and its refined parameters were obtained.

As illustrated in Fig. 5, by allowing the value of mean
molecular field HMF to refine independently for each of
the equally weighted 16 xAxxγ domains, each possess-
ing identical refined values of λ, J , and Γ, our mean-field
multi-level spin-orbit exciton model successfully repro-
duces both the fine structure at the magnetic zone cen-
ter and the broad excitations at the (1.5, 1.5,−1) zone
boundary, while capturing the steeply dispersive columns
of scattering observed at higher energy transfers (Fig. 6).
The refined values of the mean molecular field HMF are
listed in Tab. II for the 16 xAxxγ orbital configurations,
each with refined values of λ, Γ, and Jm,ξ summarized in
Tab. III.

The need for all 16 xAxxγ domains is illustrated in
Figs. 7(e) and (f), where despite the success of the spin-
orbit exciton model in reproducing the bandwidth of the
excitations between ∼20 meV up to ∼60 meV with the

FIG. 6. Comparison of (a) measured (Ei = 110 meV, 5 K)
and (b) calculated (Q, E) slices at high energy transfers il-
lustrating the individual contributions of the G−+ and Gzz

components to the total neutron response. The (Q, E) slice
presented in (a) has been folded along [001].

TABLE II. Refined values (in meV) of the mean molecu-
lar field parameter HMF for all 16 xAxxγ orbital configura-
tions considered in a mean-field multi-level spin-orbit exciton
model, each with refined values of λ, Γ, and Jm,ξ listed in
Tab. III. Numbers in parentheses indicate statistical errors.

Orbital Configuration Refined Value

AAAA1 62.4(2)

AAAA2 46.2(1)

AAAF1 55.3(2)

AAAF2 53.9(1)

AAFA1 46.2(1)

AAFA2 49.9(1)

AAFF1 56.2(2)

AAFF2 56.0(2)

FAAA1 47.3(1)

FAAA2 47.9(1)

FAAF1 58.9(3)

FAAF2 58.8(2)

FAFA1 61.6(3)

FAFA2 60.9(3)

FAFF1 48.9(1)

FAFF2 59.5(2)

Average 54.4(4)

initial parameters listed in Tab. I, the use of a single
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FIG. 7. A comparison of the calculated (Q, E) slices along (1.5, 1.5, L) for (a) G+−, (b) G−+, (c) Gzz, and (d) G++ components
of (e) the total response function G and (f) the corresponding slice measured on MERLIN at T=5 K with an Ei=110 meV,
with (g,h) the same comparison for an Ei=45 meV. The calculated model presented here only includes the AAAA orbital
configuration. The model’s parameters’ values were fixed to those initial values listed in Tab. I. The (Q, E) slices presented
in (f) and (h) have been folded along [001]. The intensity modulation observed in the calculated response for high resolution
measurements presented in (g) is an artifact of the steep disperson of the excitation, manifesting itself as singularities in gαβ

and creating numerical difficulties with sampling the G+− mode.

TABLE III. Summary of the initial values, parameter spaces,
and refined values for the parameters of the mean-field multi-
level spin-orbit exciton model. All values are reported in meV
and numbers in parentheses indicate statistical errors.

Parameter Initial Value Range Refined Value

λ −16 [−19,−13] −19.00(1)

Γ −8.76 [−8.76,−6.16] −6.16(1)

J1F −0.918 [−1.134,−0.730] −0.780(1)

J1AF 1.000 [0.798,1.24] 0.848(1)

J2 3.09 [2.29,4.55] 2.43(1)

J3F −0.182 [−0.220,−0.145] −0.154(1)

J3AF 0.262 [0.209,0.316] 0.223(1)

J4F −0.0504 [−0.0581,−0.0402] −0.0428(1)

J4AF 0.0759 [0.0606,0.0874] 0.0645(1)

HMF 64.8 [0,100] Tab. II

xAxxγ orbital configuration fails to reproduce the low
energy fine structure at the zone center and the steeply
dispersive columns of high energy scattering at the zone
boundary, instead predicting the presence of a single
dominant highly dispersive G−+ mode (Figs. 7(b) and
(g)). While both G++ and G−− modes exhibit negligible
intensity (Fig. 7(d)), a direct consequence of the defini-
tion of Gαβ given by Eq. 16 above, the spin-orbit exciton
model does predict two additional gapped modes corre-
sponding to the longitudinal Gzz mode and the transverse
G+− mode. As summarized in Figs. 7(a,c), it is clear that
both the weakly dispersive G+− and Gzz modes cannot
account for the missing spectral weight in the fine struc-
ture, as both modes are significantly weaker in intensity
relative to the dominant G+− mode, while contributing
solely at higher energy transfers (&40 meV). As illus-

trated in Figs. 6 and 8, while the longitudinal Gzz corre-
sponds to a band of scattering that is broad in both mo-
mentum and energy while being located above the dom-
inant G−+ component, the transverse G+− corresponds
to a flat band of scattering centered about ∼40 meV.

In addition to the necessity for 16 xAxxγ domains,
the discrepancy between experiment and the calculated
dispersion for each of the Gαβ components that were pre-
sented in Fig. 7 confirmed the need for the optimization
of the spin-orbit exciton model’s parameters. A summary
of the influences of each of the model’s parameters for a
fixed orbital configuration: J via λ, HMF , and Γ on the
calculated spectra is presented in Fig. 9. Calculations
are shown by false colormaps and compared against con-
stant momentum cuts at the Q=(1.5, 1.5,−1.0) magnetic
zone boundary and Q=(1.5, 1.5,−0.5) zone center. For
illustrative purposes, two different orbital configurations
AAAA and AAAF are shown being denoted by solid and
dashed lines, respectively.

As was previously noted in the discussion of the inter-
ion Hamiltonian Ĥ2, the conversion factor α̃ (Fig. 2) be-
tween the energy transfers measured by neutron spec-
troscopy and the magnitude of the corresponding mag-
netic exchange constants were determined by diagonaliz-
ing the pair Hamiltonian Ĥpair (Eq. 11). Since deviations
away from the linear dependence predicted by the pro-
jection theorem occurs when the value of |J | → |λ|, the
value of larger magnetic exchange constants, such as the
strong 180◦ antiferromagnetic superexchange J2, is par-
ticularly sensitive to |λ|. As illustrated in Fig. 9(a), the
strong sensitivity of |J2| on the value of |λ| is of particu-
lar concern for CoO since the experimentally determined
value of λ = −16(3) meV possesses a significant relative
error of almost 20%54, corresponding to a large range of
possible exchange values.

The influence of the large relative error for λ is sum-
marized in Fig. 9(b), illustrating that an increase of |λ|
by 20% to −19 meV from its initial value of −16 meV for
a fixed value of a given molecular field HMF results in a
significant shift to higher energy transfers for the dom-
inant G−+ component at both the magnetic zone cen-
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FIG. 8. A comparison of (Q, E) slices (a) measured at 5 K on
MERLIN and (b) calculated using spin-orbit exciton model
for an Ei=110 meV. (c) Comparison between (a) and (b) in a
corresponding Q-integrated cut. The success of the spin-orbit
exciton model to reproduce the G+− component is empha-
sized. (Q, E) slices presented in (a) and (b) have been folded
along [001].

ter and boundary. This increase in energy transfer is
much more prominent for the G−+ component compared
to the less intense G+−, with the greatest increase for
both components occuring at the magnetic zone center.
Similar behavior in the calculated response is observed for
a change in the mean molecular field HMF , as illustrated
in Fig. 9(c), with shifts in energy transfers significantly
larger compared to the same relative change in the value
of |λ|. In contrast with the three parameters presented so
far, the influence of the tetragonal distortion parameter
Γ is most pronounced on the less intense weakly disper-
sive G+− mode. As illustrated in Fig. 9(d), Γ provides
a mechanism to shift the energy transfers of the G+−

mode without inducing a comparable shift for the domi-
nant G−+ mode for a fixed set of values for HMF and J
via a fixed value for λ.

With such a large number of domains under consid-
eration, constraints on the parameter space for J via λ,
Γ, and HMF were required to ensure convergence for a
least squares optimization. As summarized in Tab. III,
the model presented in Fig. 5 allowed λ to vary from −13
to −19 meV, corresponding to the experimental error as-
sociated with its reported value54, while the value of Γ
varied from −8.76 to −6.16 meV, corresponding to the
range of its values reported in the literature54. The ex-
change constants Jm,ξ for each coordination shell m = 1
. . . 4, and type ξ=A and F were allowed to vary ±20%
from their starting values obtained from the excitation
energies derived from Mg0.97Co0.03O55 with a Hamilto-
nian Ĥpair employing the value of λ under consideration.
Such a deviation of the exchange constants was rational-
ized by noting that the estimates of the exchange con-
stants listed in Tab. I are based on the superexchange
pathways present in Mg0.97Co0.03O. Due to the preva-

lence of the non-magnetic Mg2+ in the dilute monoxide,
these pathways and their superexchange constants most
likely differ compared to those present in pure CoO. As
a first approximation, the relative deviation of all mag-
netic exchange constants J from their respective values
in Mg0.97Co0.03O were set to be equal for all coordina-
tion shells m and type ξ. As previously discussed in Sec-
tion II D, the values of λ, J , and Γ were constrained to be
equal for each of the 16 domains, while no such restric-
tion was applied to the mean molecular field HMF which
was itself allowed to vary independently for each domain
from a value of 0 to an arbitrarily large upper limit. In
our model, this limit was set to 100 meV, corresponding
to ∼1.5 times the value of the initial value of 64.8 meV.

Among all the spin-orbit exciton model’s parameters,
the expansion of the parameter space for the exchange
constants Jm,ξ proved to be of particular importance for
the model’s success in reproducing both the fine structure
at the magnetic zone center and the broad excitations
at the (1.5, 1.5,−1) zone boundary simultaneously. As
summarized in Section VI of the Supplementary Informa-
tion60, the restriction of the exchange constants Jm,ξ to
be equal to their respective values originally reported for
Mg0.97Co0.03O55 for a given value of λ, resulted in failure
of the spin-orbit exciton model to reproduce both broad
excitations at the (1.5, 1.5,−1) zone boundary (Fig. S2).
As summarized by Tab. SIII, such a restriction placed
on the values of exchange constants resulted in the value
of λ being refined to its most negative permissible value.
Such behavior is a reflection of the model’s attempts to
minimize the average value for HMF in order to capture
the intensity at lower energy transfers at the (1.5, 1.5, L)
zone boundary. As illustrated in Fig. S3, the clear failure
of the model, even by expanding the parameter space of
λ to include all values down to −23 meV, confirmed the
inability of the model to reproduce the data at the zone
boundary while employing the exact exchange constants
measured in Mg0.97Co0.03O.

D. Magneto-Vibrational Scattering and the
Magnetic Zone Boundary

Despite the success of the spin-orbit exciton parame-
terization of the experimental data along (1.5, 1.5, L), the
model still fails at the (2, 2, L) zone boundary, suggesting
the presence of additional physics that is beyond our lo-
calized model. The presence of such prominent magnetic
scattering near (2, 2, L) is particularly unusual due to the
predictions from both our spin-orbit exciton model and
linear spin-wave theory for nearly zero intensity for mag-
netic fluctuations at these points in reciprocal space for
an antiferromagnetic structure.

By comparing the scattering along (2, 2, L) to phonon
branches near different nuclear zone boundaries, we note
that there is a distinct overlap in dispersion. As is sum-
marized in Fig. 10(a), a strong and steeply dispersing
optical phonon mode near Q = (5.5, 3.5, 4.5) exhibits an
identical dispersion to that of the mode centered about
(2, 2, 0), a mode that is not accounted for by our local-
ized model. The phonon nature of the gapped mode in
Fig. 10(a) is confirmed by the fact that the intensity
increases with Q. A similar observation is illustrated
in Fig. 10(c) for energy transfers greater than 60 meV,
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FIG. 9. (a) Influence of the spin-orbit exchange constant on the splitting of the jeff = 1
2

manifold as a function of |J | for the pair

Hamiltonian Ĥpair (Eq. 11). Co2+ pair excitations previously measured on MARI are shown explicitly with the corresponding
value of J2 (inset) particularly influenced by the non-linearity at high energy transfers. Calculated (Q, E) slices for Ei =110
and 45 meV with corresponding Q-integrated cuts at the zone boundary and center, respectively, illustrating the influences of
(b) the spin-orbit coupling constant λ, (c) the mean molecular field HMF , and (d) the tetragonal distortion Γ parameters. Solid
and dashed lines denote AAAA and AAAF orbital configurations, respectively. The prominent G−+ and much weaker G+−

have been labeled explicitly for reference. Unless otherwise stated, the values of λ, HMF , Γ, and magnetic exchange constants
J were set to their initial values described in the main text and listed in Tab. I.

where a gapped phonon mode, identified by both its Q
dependence and previously reported first principles cal-
culations113, exhibits a dispersion that is identical to the
magnetic scattering around (2, 2, 0).

The apparent similarity between the dispersion of

phonons at high Q and the magnetic scattering that was
originally unaccounted for in our model may suggest that
our data at the zone boundaries includes a magneto-
vibrational contribution to the neutron cross section.
Corresponding to an indirect energy exchange between
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FIG. 10. A comparison between (a,c) the phonon scattering at large momentum transfers centered about the nuclear zone
boundaries and (b) the modes located near the magnetic zone boundary along the (2, 2, 0) direction that are unaccounted by
our spin-orbit exciton model. The overlap of the energy transfers range between the (b) low-Q scattering near the (2, 2, 0)
magnetic zone boundary and both gapped optical phonon modes centered near the (a) (5.5, 3.5, 4.5) and (c) (1, 1, 6) nuclear
zone boundaries with energy transfers above ∼30 meV and ∼60 meV, respectively, are emphasized with dashed lines. All three
(Q, E) slices have been folded along [001] and have been renormalized to share a common relative intensity scale.

the neutron and a vibrating nucleus via the electro-
magnetic interaction between the neutron and the un-
paired electrons of the nucleus, the magneto-vibrational
neutron cross section115 is identical to the more com-
monly employed direct one-phonon cross section employ-
ing the nuclear force, with the exception that the nuclear
scattering length b is replaced by the magnetic scattering
length given by

bmag =
e2γ

mc2
f(Q)|µ|| sinα|,

where α is the angle between the momentum transfer
Q and the ordered magnetic moment direction µ. The
presence of the isotropic magnetic form factor f(Q) guar-
antees that the cross section will ultimately decay with
momentum transfer, regardless of the underlying phonon
origin of the scattering. This particular cross section re-
quires an ordered magnetic structure and has been used
previously to characterize the dynamic magnetic form
factor116. Similar cross sections have been reported in
the rare earth magnetic pyrochlores117 and doped man-
ganites118. We note that in the case of CoO, the magnetic
ions are strongly correlated and coupled in all three di-
mensions, implying that that the correlations are main-
tained at large energy transfers in the range of 30-60 meV
where prominent phonon modes exist. Based on the com-
parison presented above, we suggest that both the exci-
tations along (2, 2, L), and other excitations that were
unaccounted for by our model such as the weak magnetic
scattering at ∼40 meV at the (1.5, 1.5, L) zone boundary
all originate from phonon modes, rather than the under-
lying magnetic Hamiltonian Ĥ.

While we have cast this discussion in terms of the
magneto-vibrational cross section, which itself does not
provide any new information on the underlying Hamilto-
nian, these excitations may be indicative of a coupling
between the lattice and magnetic degrees of freedom.
Such magneto-elastic coupling in the underlying Hamil-
tonian has been investigated recently in CeAuAl3

119.
It is particularly compelling to consider such a claim
given that these modes are located near the expected en-
ergy scale for the single-ion spin-orbit transitions from
|jeff = 1

2 〉 → |jeff = 3
2 〉. We will not investigate this

coupling further given the need for first principles calcu-
lations to reconcile past reported phonon data and the
modes identified in our current study.

E. The High-Energy Response and the Co2+ Form
Factor

We have demonstrated that the experimental data at
low energy transfers can be succesfully parameterized in
terms of spin-orbit excitons with crystal field and ex-
change parameters based on our previous work reported
on MgO substituted with Co2+. In Section III C, such
a mean-field multi-level spin-orbit exciton model was
shown to successfully reproduce the data in pure CoO
near the zone center for energy transfers below 40 meV,
while the failure of the model near the magnetic zone
boundaries up to energy transfers of ∼60 meV was at-
tributed in Section III D to either magneto-vibrational
scattering or a coupling to underlying phonon excita-
tions that were identified at large momentum transfers.
In this final subsection, we will address the magnetic ex-
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FIG. 11. (a) Energy-integrated (E = [70, 105] meV) slice
measured on MERLIN at 5 K with an Ei of 110 meV. (b)
(Q, E) slice folded along [001] measured on MERLIN at 5 K
with an Ei of 75 meV. Q-integrated (ξ,ξ,L) cuts measured
on MERLIN at 5 K with an Ei of (c) 110 meV, (d) 75 meV,
and (e) 45 meV. Solid and dashed lines in Q-integrated cuts
correspond to the Co2+ magnetic form factor f2(Q) that in-
cludes and excludes the intensity at (1.5,1.5,±0.5), respec-
tively. Both (Q, E) slices presented in (a) and (b) have been
folded along [001]. Arrows in panels (a), (b), and (c) indicate
fluctuations exhibiting potential itinerant-like behavior. For
the purposes of comparison, the specific region in (Q, E) space
(blue-green) identified in (c) as possibly containing itinerant-
like fluctuations has been labeled explicitly in Fig. 12(b).

citations at large energy transfers above ∼ 65 meV, where
no phonon scattering is expected, exceeding the dynamic
range predicted by first principle calculations113 and mea-
sured by both our time-of-flight experiment and previous
experiments53,114,120.

In Fig. 11 we present a comparison between the scat-
tering for high energy transfers ([70, 105] meV) with
the lower energy magnetic fluctuations that were dis-
cussed above in terms of our spin-orbit exciton param-
eterization. As summarized in Fig. 11(a), excitations

FIG. 12. Comparison of (a) (Q, E) slice measured on MER-
LIN with Ei = 110 meV and the corresponding (b) calculated
kinematically permissable (Q, E) region for the 2-magnon
continuum. The specific region in (Q, E) space that was pre-
viously identified in Fig. 11(c) being labeled explicitly. The
(Q, E) slice presented in (a) has been folded along [001].

located at low momentum transfers extend up to high
energies. Previously identified in Fig. 6 as being mag-
netic in origin, it appeared that these excitations were
successfully reproduced by the spin-orbit exciton model.
These “columns” of scattering were interpreted as a result
of the overlap at the magnetic zone boundary of multi-
ple G−+ components from different local orbital arrange-
ments that were required to capture the fine structure of
the strongly dispersing fluctuations (Fig. 11(b)) centered
about the zone centers and found at lower energy trans-
fers. While the analysis presented so far suggest that the
Q-dependence for all magnetic excitations appear to fol-
low the Co2+ form factor, the energy-integrated slice in
Fig. 11(a) demonstrates this is not the case for high en-
ergy transfers, where the intensity decays more rapidly
than f(Q). Such an observation can be confirmed by
comparing momentum cuts of the magnetic fluctuations
at small momentum transfers with the magnetic form fac-
tor for Co2+. In contrast with the lowest energy transfers
([20-40] meV, Fig. 11(e)) where the magnetic fluctuations
follow the form factor, deviations from such localized
magnetic behavior begin to appear at (1.5, 1.5,±0.5) for
intermediate energy transfers ([40,70] meV, Fig. 11(d)),
with the deviations being particularly prominent around
(1.5, 1.5, 0) at the highest energy transfers ([70,105] meV,
Fig. 11(e)). The rapid decay of intensity with momentum
transfer maybe indicative of a real space object that is ex-
tended spatially, and not due to localized magnetism.

We now speculate as to the possible origin for such de-
localized magnetism. In the case of the highest energy
transfers in CoO, where the relative deviation from the
form factor is greatest, the scattering is steeply “disper-
sive” in energy, indicative of a large underlying energy
scale. These fluctuations are highly reminiscent of the
magnetic response found in itinerant magnets such as
CeRhIn5

121, the cuprates16,17, and also iron-based sys-
tems122,123. In the case of CeRhIn5, the high-energy
steeply dispersive excitations were found to be longitu-
dinally polarized and occupied a region in (Q, E) phase
space where two magnon processes were kinematically
allowed. Termed the “1+2” model, multi-magnon de-
cay processes were used to provide a heuristic descrip-
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tion of the data in the case of CeRhIn5. Motivated by
the qualitative similarities in the excitation spectrum be-
tween CeRhIn5 and CoO, we investigated the possibility
that the steeply dispersing excitations observed in CoO
overlap a similarly allowed region of (Q, E) phase space.
The phase space permitted for such a decay of the low
energy magnetic fluctuations was calculated using a sim-
ple model based on energy and momentum conservation
that is given by124–126

G(Q, E) =
∑

Q1,Q2

δ(Q−Q1 −Q2)δ(E − EQ1
− EQ2

),

where EQ1,2
are the energies of transverse excitations at a

given momentum transfer. As shown in Fig. 12, the kine-
matically allowed region overlaps in both momentum and
energy with the steeply dispersing excitations at the high-
est energy transfers; a region where the spin-orbit exciton
model predicts the presence of a longitudinally polarized
excitations (i.e. Gzz mode), as was previously illustrated
in Fig. 6(b). Employing the observed overlap that is sum-
marized in Fig. 12, we speculate that the spectral weight
for these steeply dispersive high energy excitations that
are localized in momentum draws from this longitudinally
polarized mode, analogous to what was observed in pre-
viously investigated itinerant magnets. Magnetism spa-
tially extending beyond the Co2+ site has been suggested
theoretically with some moment expected to be presented
on the oxygen atom32. Given the extended nature of the
magnetism in such a scenario, the magnetism would be
expected to decay faster in momentum transfer than the
isotropic Co2+ form factor. An intermediate example has
been reported in the case of Sr2CuO3

127 which found ex-
cellent agreement between the magnetic form factor and
a model including strong covalent bonding and hybridiza-
tion of the 3d orbitals. It could be that the higher energy
excitations are more sensitive to such a situation in CoO.

IV. CONCLUDING REMARKS

We have presented a neutron spectroscopic study of
the magnetic fluctuations in the Mott insulator CoO. We

have parameterized the low energy magnetic excitations
near the magnetic zone center in terms of a mean-field
multi-level spin-orbit exciton model incorporating multi-
ple structural domains owing to multiple local orbital ar-
rangements, as well as a prominent tetragonal Jahn-Teller
distortion. Dispersive excitations at the zone boundaries
mimicking magnetic scattering at low Q that were orig-
inally unaccounted for by the spin-orbit exciton model
were found to exhibit similar dispersions as phonons mea-
sured at larger momentum transfers, suggesting that the
model’s failures at the zone boundaries may be attributed
to magneto-vibrational scattering or possibly coupling to
lattice degrees of freedom. Finally, we report a discrep-
ancy between the Q-dependence of excitations at high
energy transfers and the behavior predicted by the Co2+

form factor. Despite the strong insulating nature of CoO,
we speculate that such a discrepancy corresponds to a
breakdown of spin-orbit excitons that may be accompa-
nied by a crossover from localized to spatially-extended
magnetism, reminisicent of an itinerant-like response or
strong covalency.
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