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Abstract:		
	
Most	 interesting	examples	of	 violations	of	 the	Mott-Ioffe-Regel	 (MIR)	 resistivity	 limit	 are	
found	 in	 materials	 with	 strong	 electronic	 correlations	 that	 are	 not	 well	 understood	 by	
theory.	We	demonstrate	that	first	principles	theory	can	predict	the	experimentally-observed	
frequency	 dependence	 of	 the	 optical	 conductivity	 for	 a	 novel	 class	 of	 metals	 where	 the	
residual	resistivity	 is	near	or	above	the	MIR	 limit,	which	we	define	as	a	"bad	metal".	The	
predicted	optical	conductivity	of	a	NiCoCr	alloy	is	in	good	agreement	with	experiment.	It	is	
demonstrated	that	the	width	of	the	Drude	peak	describing	the	low	frequency	part	of	optical	
conductivity	is	comparable	to	the	Fermi	energy.	The	latter,	together	with	a	mean	free	path	
comparable	to	the	interatomic	distance,	indicates	the	absence	of	well-defined	quasiparticles.	
In	contrast	to	traditional	bad	metals	with	strong	electron-electron	interactions,	both	the	high	
resistivity	and	the	large	width	of	the	Drude	peak	in	these	alloys	results	from	strong	scattering	
on	disordered	atomic	potentials	that	can	be	understood	using	modern	density	functionals.	
	
	
One	Sentence	Summary:	Controlled	chemical	disorder	results	in	bad	metals	predictable	by	
theory. 
 
 
I. INTRODUCTION 

 
 A linear electrical resistivity at low temperatures is often connected to interesting physics. In 
cuprate, iron-based and organic superconductors, heavy fermion materials, and some complex 
4d oxides such as Sr3Ru2O7, it is associated with the proximity to a quantum critical point [1,2]. In 
some of these systems the linear resistivity persists up to high temperatures even when the 



resistivity is well above the Mott-Ioffe-Regel (MIR) limit for a crystalline solid [3,4]. Crystalline 
metals where the resistivity exceeds the MIR limit have been termed "bad metals" [5, 6]. 
Transport in bad metals is governed by the collective diffusion of energy and charge rather than 
by quasiparticle or momentum relaxation [5]. Unfortunately, transport in strongly correlated 
materials is not well understood theoretically due to the difficulty in incorporating the strong 
electron-electron interactions into even the simplest model Hamiltonians such as the Hubbard 
model [7].  
 
Concentrated solid solutions (CSS) with multiple principle elements are a relatively new class of 
crystalline solids, with perhaps high-entropy alloys (HEA) as the most familiar examples (e.g. 
NiFeCoCrMn). In these alloys all elements are distributed randomly on a face-centered-cubic (fcc) 
or body-centered-cubic (bcc) lattice, with each element present in approximately the same 
concentration. In such alloys the configurational entropy at the formation temperature plays an 
essential role in their stabilization [8-11]. Several of these alloys have remarkable mechanical 
properties and resistance to radiation damage [10,12,13]. Large single crystals of many HEA alloys 
have crystalline qualities (e. g. mosaic spread, ion channeling properties) comparable to single 
crystals of a single element [12,14,15]. The disorder in these alloys is controlled in the sense that 
the alloys are homogeneous from the cm to the sub-nm scale and each element sits very close 
to an ideal lattice site for a fcc structure [16].    
 
Previously, we experimentally and theoretically surveyed the resistivity of a large number of Ni 
based CSS alloys [16-18]. An initial theoretical analysis predicted that several of the alloys 
containing Mn or Cr were potentially "bad metals" with residual resistivities near or above the 
MIR limit [16,18]. However, one of these alloys, NiCoCr (sometimes referred to as a medium 
entropy alloy)[13] also exhibited a resistivity linear in temperature down to very low 
temperatures, at least 0.5 K, albeit with a large residual resistivity (Fig. 1). Further study indicated 
that NiCoCr is also near a quantum critical point separating a ferromagnetic and a paramagnetic 
metal, with critical exponents in excellent agreement with BKV theory [15,19]. Although density 
functional theory (DFT) cannot address details of quantum criticality, it can address the large 
residual resistivity of NiCoCr, which dominates the resistivity and the optical conductivity. One 
huge advantage of investigating CSS alloys, such as NiCoCr, rather than a strongly correlated 
material, is that a particular implementation of DFT that is designed to directly calculate the 
configurationally averaged properties of disordered alloys [22-24] has been remarkably 
successful in understanding the electronic and transport properties of CSS alloys [12,16,18]. In 
the present work we examine both theoretically and experimentally whether NiCoCr is a bad 
metal and compare the results to NiCoFe, an alloy with well-defined quasiparticles and normal 
Fermi liquid behavior. We show that the predicted low frequency optical conductivity of NiCoCr 
as a function of energy is in good agreement with the experimental results. 
 



 
Fig 1. (a) Resistivity of NiCoCr below 50 K illustrating the T-linear dependence. Inset shows linear 
behavior persists to ≈ 0.5 K. Note, however that the total resistivity only changes by about 10% 
from 0.1 -300 K because of the large residual resistivity [20]. The large residual resistivity is due 
to the chemical disorder in this alloy and can be calculated using modern density functional 
theory. (b) Comparison of resistivity of NiCoCr with that of NiCoFe. The residual resistivity, r0, for 
NiCoFe is ≈ 5.3 µW cm as compared to ≈ 88 µW cm for NiCoCr. For T<15 K the resistivity of NiCoFe 
is accurately described by r0 + AT2, with A= 5.8 x 10-5(µW cm K-2). The T2 dependence of the 
resistivity of NiCoFe is consistent with the expectations of Fermi liquid theory. The coefficient A 
is about 2 times larger than the value for pure iron [21]. 
 
 
In contrast to traditional metals, the almost conserved momentum operator does not exist in a 
bad metal. It can be shown, however, that momentum decay is characterized by a momentum 
relaxation rate, 𝛤 , which can be estimated from the low frequency response of the optical 
conductivity 𝜎(𝜔) ∼ 1 (−𝑖𝜔 + 𝛤).⁄   In NiCoCr the value of  𝛤 is predicted to be almost 2 eV, an 
energy scale comparable to the width of the d bands, which are of the order of 3 -5 eV. In a 
normal metal, such as Ni, the room temperature value [25] of G is about 0.04 eV.  As was 
demonstrated by Allen [26] who showed the relationship between the memory function and the 
electron self-energy [27], the information from the low frequency optical conductivity allows us 
to estimate the 𝜔 → 0 limit for the imaginary part of electron self-energy averaged over the 
Fermi surface. Thus, the width of the Drude approximant to the infrared optical conductivity 
allows us to make a conclusion about quasiparticle lifetimes and the applicability of the 
quasiparticle approach for the system in general. 
 
II. METHODOLOGY 
 
A. Crystal Growth and Resistivity 
 



Single crystals of NiCoCr and NiCoFe were grown using the floating zone method as described 
previously [28,29]. The crystals used for the optical measurements were oriented and cut from a 
large boule using an electro-discharge machine. The (100) face was mechanically polished. To 
remove the damage created during polishing, the surface was then electropolished with an 85% 
H3PO4 solution using a bias of about 10 V. Small bars from the same crystal were used for 
standard 4-probe resistivity measurements [29]. Four thin Pt wires (0.002”) were spot-welded to 
each sample. The total resistivity of NiCoCr is shown in figure [20].  
 
B.	Optical	Measurements	
	
The	reflectance	has	been	measured	at	room	temperature	at	a	near-normal	angle	of	incidence,	
using	Bruker	IFS	113v	and	Vertex	80v	spectrometers,	over	a	wide	frequency	range	from	the	
terahertz	(~2	meV)	to	the	ultraviolet	(5	eV)	regions	using	an	in	situ	evaporation	technique	
[30].		The	complex	optical	conductivity	is	determined	from	a	Kramers-Kronig	analysis	of	the	
reflectance,	which	requires	extrapolations	in	the	w	®	0,	¥	limits	[31].		At	low	frequency,	a	
metallic	Hagen-Reubens	extrapolation	is	employed,	𝑅(𝜔) = 1 − 𝑎√𝜔,	where	a	is	chosen	to	
match	the	data	at	the	lowest-measured	frequency	point.		Above	highest	measured	frequency	
the	reflectance	of	Cr	[32]	has	been	scaled	to	match	the	data	and	is	used	up	to	~35	eV,	above	
which	 a	 free-electron	 gas	 asymptotic	 reflectance	 extrapolation	𝑅(𝜔) ∝ 1/𝜔5	 is	 assumed	
[33].	
	
C.	Details	of	calculations		
 
In the case of incoherent metals, the Boltzmann equation approach fails due to the absence of 
well-defined quasiparticles [34-36]. On the other hand, the Kubo-Greenwood (KG) approach 
[37,38] to the calculation of the conductivity does not suffer from this problem [39] since it deals 
directly with the current-current correlation function. The expression for optical conductivity at 
zero temperature is defined as follows [40] 

𝜎66(𝜔) =
1

𝑉𝜔𝜋
9 d𝜀Tr〈Im𝐺(𝜀)𝑗6Im𝐺(𝜀 + ℏ𝜔)𝑗6〉
EF

EFGℏH
, (1) 

where 𝑉 is the volume of the system, 𝐸K is Fermi energy, and 𝐺(𝜀) is Green function of the 
system, and 𝑗6 = −𝑖 𝑒 ℏ⁄ M𝑟6, 𝐻PQ is an electric current operator calculated using commutator of 
radius vector, 𝑟6, and Hamiltonian,	𝐻P (see reference [41] for the details). The brackets imply 
configurational average over all possible atomic distributions in the alloy.  Earlier, in a series of 
publication (see for example reference [42] or [43]) it was demonstrated that vertex correction 
[44] contribution to the conductivity calculation can be neglected in case of the transition metals. 
After neglecting vertex corrections Eq. 1 is reduced to 

𝜎66(𝜔) =
1

𝑉𝜔𝜋
9 d𝜀TrIm�̅�(𝜀)𝑗6Im�̅�(𝜀 + ℏ𝜔)𝑗6
EF

EFGℏH
, (2) 

 
where �̅� is configurational averaged Green function. 
This expression allows us to calculate the optical conductivity using the coherent potential 
approximation (CPA) [22,23] together with a multiple scattering formalism [24]. CPA is mean-



field type approximation which restores the translational invariance of an alloy by substitution of 
an effective value for the scattering matrix of each particular atom. The effective scattering t-
matrix is obtained self-consistently from the constraint that preserves the average scattering 
properties of a single impurity in the effective medium. Notably, the effective CPA t-matrix 
corresponds to a complex scattering potential that is absorptive, directly leading to a finite 
residual resistivity.  It has been demonstrated that CPA is the best single site approximation for 
metal alloys. Calculations of the Green function, �̅�, in Eq. (2) of the disordered alloys were 
performed using a version of the KKR-CPA method [45] implemented within DFT [46]. The 
calculations used the experimental lattice parameter for all alloys. To allow for the possibility of 
a ferromagnetic ground state, the exchange-correlation was treated within the local spin density 
approximation (LSDA) to DFT using the Barth–Hedin [47] functional. It was found that the result 
for static conductivity calculated in generalized gradient approximation (GGA) deviates from 
LSDA results by approximately 15% [16]. A 34× 34 ×34 mesh has been used for Brillouin zone 
integration. 
It should be mentioned that the temperature dependence of the optical conductivity could be 
introduced into the calculation in a manner similar to that used for calculating the DC conductivity 
(see [18]). In the case of NiCoCr the temperature dependence comes primarily from electron 
scattering on lattice vibrations. Electron lattice scattering can be incorporated into the 
calculation using an alloy analogy [48,49]. Using this approach the temperature dependent static 
conductivity has been calculated for temperature up to 1200 K.  At higher temperatures a 
supercell approach is required due to large atomic displacements expansion convergence 
problems. The temperature dependence of optical conductivity was not addressed in the current 
paper since the resistivity of this alloy only changes by about 10% upon heating to 300 K, the 
temperature of optical conductivity measurements. 
Also, any type of localization can’t be addressed by a CPA approach. This effect can be captured 
by the typical medium approach [50, 51]. However, this subject is out of scope to current paper.   
 
III. RESULTS AND DISCUSSION 
 
To be consistent with experimental results, the NiCoCr alloy was treated in our calculations as 
nonmagnetic [52], while the NiCoFe alloy is treated as a ferromagnetic alloy with resulting 
averaged magnetic moments equal 0.6, 1.6 and 2.6 𝜇Y for Ni, Co and Fe, respectively. Details 
about the electronic structure of the alloys are discussed in our previous publications 
[12,16,18,53]. The spin-resolved electronic density of states (DOS) are shown in the right insert 
in Fig. 2(a,b) and Fig. 2 (c,d) for the NiCoFe and NiCoCr alloys, respectively. In the figure, the Fermi 
energy is taken as zero energy. For each alloy panel, the top (bottom) panels correspond to the 
DOS of majority (minority)-spin states, respectively. Within each panel, the red (green, blue) lines 
correspond to the Ni (Co, Fe/Cr) local DOS. Similarly, the horizontal dashed red (solid green, 
dotted blue) lines denote the centers of gravity of the Ni (Co, Fe/Cr) spin-resolved d-bands. A Cr 
atom contains five d-electrons and has half-filled d-bands whereas Fe, Co, and Ni have almost 
filled d-bands. As a result, the electronic structure from these two groups behave differently upon 
alloying [12,16,18]. The occupation of d-bands and the resulting position of the Fermi level can 
be approximately obtained by minimization of the band structure energy, 𝐸Z, together with 
additional constraints to preserve atomic charge neutrality. In alloys comprised of elements with 



similar numbers of d-electrons (Fe, Co, Ni) 𝐸Z minimization results in the alignment of majority 
spin d-states. In NiCoFe this leads to almost negligible splitting, Δ\, Δ] between Ni-Fe and Ni-Co 
d-bands centers. This corresponds to weak scattering in the majority spin channel, and a high dc 
conductivity, 𝜎(0), in this channel. The splitting in the minority spin channel can be estimated 
from the relation between exchange splitting and the size of the magnetic moment of each 
element [53]. The splitting [54] is Δ𝐸^ = 𝐸^↑ − 𝐸^↓ = 𝐼 ∙ 𝑚 , where the Stoner parameter 𝐼~1 
𝑒𝑉/𝜇e in 3d transition metals and	𝑚 is magnetic moment of each element in units of 𝜇Y. Since 
the d-band centers of the majority spin states, 𝐸^↑ , is the same for each component,  Δ\~2 eV 
and 	Δ]~1 eV (see Fig. 2). The large difference in the number of d-electrons between Cr and Ni 
or Co does not allow alignment of the d-bands of each component while preserving atomic charge 
neutrality. Together with an absence of spin polarization, this results in a large d-band splitting 
Δ\~2	eV	and		Δ]~0.8	eV in both spin channels with significant electron scattering and, as a 
result, a small 𝜎(0) value.  
 
The strong scattering in d-channels results in significant broadening of the d-‘band’ Bloch spectral 
function (BSF), (see Fig. 2); this being the generalization of the band structure of an ordered 
system to include disorder. Thus, the majority spin BSF in NiCoFe (Fig. 2a), is characterized by 
well-defined bands similar to pure Ni. In the minority spin channel in NiCoFe, and for both spin 
channels in NiCoCr, a large splitting of d-band results in strong d-electron scattering which is seen 
as a large broadening (on the scale of dimension of the Brillouin zone) of the BSF within the d-
band region – and the Fermi energy in particular. In NiCoFe one consequence of the large 
disparity between transport in the majority versus minority spin channels, is that an electrical 
current in NiCoFe is highly spin polarized, a feature of interest for possible spintronic applications. 
By contrast electrons in the NiCoCr alloy cannot be described as a Fermi liquid, i.e. a system with 
long lived weakly interacting quasiparticles. This statement is also confirmed by the properties of 
the low frequency optical conductivity.   
 
 
 



 
Fig 2. Calculated CPA Bloch spectral function (BSF) and partial density of states for NiCoFe (a, b) 
and NiCoCr (c, d) for the majority (a, c) and minority (b, d) spin channels respectively. The splitting 
between the d-electron bands centers of Ni and Fe is denoted by Δ1 and for Ni and Co, as Δ2 in 
the NiCoFe in minority spin channel. For NiCoCr, Δ1 and Δ2 correspond to the splitting of Ni-Cr 
and Ni-Co d-electron resonances, respectively. Since NiCoCr is paramagnetic, there is no 
difference between the majority and minority spin channels. 

 
The calculated optical conductivities for NiCoCr and NiCoFe illustrate dramatically different low 
frequency behavior (Fig. 3a). To analyze this disparate behavior, the calculated 𝜎(𝜔) was fit to 
the Drude model  

𝜎(𝜔) =
𝜎(0)

1 + (ℏ𝜔 𝛤⁄ )] , (2) 

where 𝛤 is the momentum relaxation rate.  For NiCoFe the optical conductivities for the majority 
and minority spin channels, along with the fitted values of G, were calculated separately. For 
NiCoFe  𝛤 equals 0.009 eV and 0.94 eV for the majority and minority spin channels, respectively. 
Since NiCoCr is a paramagnet there is no difference between the majority and minority spin 
channels and the predicted value of G is 1.9 eV. The 𝛤 values for both alloys are also shown in 
Fig. 3a.  The measured optical conductivities for NiCoCr and NiCoFe at 300 K are shown in Fig 3b 
and the agreement with the theoretical prediction is remarkable. The experimental values for 
G are 0.03 eV for NiCoFe and 1.3 eV for NiCoCr. The somewhat larger experimental value of G for 
NiCoFe as compared to the prediction by theory is due in part to the temperature of the 
measurement since the calculations assume T=0, and to the effect of the minority spin 
conductivity which is ignored in fitting the experimental data. Also the resistivity of the NiCoFe 
alloy changes by a factor of 3 (5.3 - 16.3 µW cm) from T=0 to 300 K, which nicely accounts for the 
difference between the experimental and theoretical results at very low frequencies.  However, 
both theory and experiment find very large G values ≈ 1-2 eV ≈ EF for NiCoCr.  
 
 



 
Fig 3. Theoretical prediction of optical conductivity for NiCoCr (solid blue) and NiCoFe (solid red). 
Both NiCoCr and NiCoFe are single crystal alloys with electropolished surfaces. A Drude fit to the 
theoretical conductivity was calculated for each spin channel separately and the sum is shown by 
the dashed red line. Since NiCoCr is nonmagnetic there is no difference between two spin 
channels (b) Experimental optical conductivity. The dashed red and blue lines are Drude fits to 
the experimental data. Also see figure in Ref. [56]. 

In addition, theoretical calculations predict that the zero temperature electron mean free path 
in NiCoCr equals 4 Å [18], which is very close to the lattice parameter, 3.559 Å, i.e. there are no 
well-defined quasiparticles. This result also suggests that for NiCoCr  the resistivity is already 
close to the MIR limit at T=0.  
 
IV. CONCLUSIONS 
 
The combination of first principles theory and experiment clearly demonstrate that NiCoCr is a 
bad metal. Although the theory is a mean-field implementation of density functional theory, it 
captures many of the features of NiCoCr and similar alloys. It correctly predicts the optical 
conductivity and the residual resistivity [16] of these alloys to within about 25%. Not surprisingly, 
other features of NiCoCr are not captured by a mean field theory, such as the linear resistivity 
(r - r0) at very low temperatures and scaling details of the magnetic response. These features 
are associated with the proximity of NiCoCr to a quantum critical point [15]. However, the total 
resistivity of NiCoCr at all temperatures is dominated by the residual resistivity, which can be 
treated by first principles.  It is worth noting that the shape of the Drude peak for NiCoCr only 
weakly depends on whether the ground state is assumed to be magnetically ordered (Fig S4). 
 
Whilst bad metals are normally associated with strong electron-electron correlations, the 
forgoing results and analysis strongly suggest that the controlled disorder present in NiCoCr and 
related high entropy alloys containing Mn or Cr appears to represent another path to a bad metal. 
Furthermore, one that can be predicted within the context of modern DFT electronic structure 
theory. In these highly crystalline alloys strong electron scattering on disordered atomic 



potentials is the source of the large residual resistivity. Another beautiful example of the effects 
of controlled disorder was recently reported for a graphene bilayer where one layer was twisted 
by a small angle (≈ 0.1°) with respect to the other layer. The system behaved almost identically 
to a Mott insulator like La2CuO4, including the response to doping [57] despite the absence of 
strong electron correlations. The graphene results and the results reported here suggest that 
certain types of controlled disorder are more tractable by theory and may be an interesting new 
route to produce behavior normally only seen in strongly correlated materials.  
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