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We compute dynamic spin susceptibilities in the two-dimensional Hubbard model using the
method of Dual Fermions and provide comparison to lattice Monte Carlo and cluster dynamical
mean field theory. We examine the energy dispersion identified by peaks in Imχ(ω, q) which define
spin modes and compare the exchange scale and magnon dispersion to neutron experiments on the
parent La2CuO4 cuprate. We present the evolution of the spin excitations as a function of Hubbard
interaction strengths and doping and explore the particle-hole asymmetry of the spin excitations.
We also study the correlation lengths and the spin excitation dispersion peak structure and find a
‘Y’-shaped dispersion similar to neutron results on doped HgBa2CuO4+δ.

I. INTRODUCTION

The interplay between charge, spin and superconduct-
ing fluctuations in the cuprate high-temperature super-
conductors has been experimentally documented with
nuclear magnetic resonance (NMR)1, inelastic neutron
scattering (INS)2–5, resonant ultrasound spectroscopy
(RUS)6,7, thermal probes8,9, resonant inelastic X-ray
scattering (RIXS)10,11, as well as Raman12 and optical
spectroscopies.13 All together, they paint a picture of a
complex phase diagram comprised of many competing
states where antiferromagnetic spin fluctuations play a
crucial role.

Providing a theoretical description of even the normal
high-temperature state of the cuprates has proven to be a
formidable challenge. Much has been understood on the
level of single particle properties including the pseudo-
gap in cluster DMFT studies of the Hubbard model14–29

and its interplay with superconductivity.30–41 However,
making a direct connection to many experimental mea-
surements requires the knowledge of two-particle suscep-
tibilities in addition to single-particle quantities. Among
these, magnetic excitation effects have been a central fo-
cus.

The theoretical understanding of magnetic excitations
remains an ongoing challenge.29,39,42 In the case of the
insulating high-Tc parent compounds, experimental data
has primarily been fit using a linear spin-wave theory
in the Heisenberg limit at zero temperature.2,43 This
has allowed for a qualitative description of the excita-
tions in terms of spin models and the determination of
the strength of the exchange J/t. However, spin mod-
els do not describe itinerant fermion systems, such as
the doped compounds. In addition, the Heisenberg pa-
rameters determined via spin model fits lie outside the
regime where spin-models are a valid low-energy approx-
imation of the Hubbard model. What is known to date

about the magnetic excitations of the Hubbard model
and how they connect to experimental measurements on
the cuprates44–46 comes from numerical studies of finite
size systems. These methods accurately resolve short-
range correlations but are limited in their temperature,
doping, and momentum resolution and their ability to
resolve long-ranged low-energy spin excitations.

In this paper we address this deficiency. We perform
calculations on the Hubbard model in two dimensions
using the technique of Dual Fermions,47 which is an ap-
proximate extension of the non-perturbative dynamical
mean field theory48 and is believed to be accurate at
high temperature.49 The method’s primary advantage is
that it can recover continuous momentum dependence,
and therefore that it does not suffer from the finite sys-
tem size effects that limit determinantal lattice quantum
Monte Carlo or cluster dynamical mean field theory re-
sults. In addition, the computational time is not sub-
stantially greater than that of single-site dynamical mean
field theory, allowing us to probe the entire phase dia-
gram with reasonable computational expense. We vali-
date our results by comparing to cluster dynamical mean
field theory in the dynamical cluster approximation vari-
ant and lattice Monte Carlo in areas of parameter space
that are accessible to those methods. We show that for a
certain interaction strength, the dispersion of spin-waves
closely resembles that observed experimentally at high
temperatures (300K) in La2CuO4.2 We further examine
the effects of both electron and hole doping, providing a
complete picture of the particle-hole asymmetry of spin
excitations in the model.

The remainder of this paper proceeds as follows. In
Section II we discuss the Dual Fermion method and pro-
vide comparisons to other methods. Section III contains
our main results from the Dual Fermion method while
section IV concludes.
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II. METHODS

We study the single orbital Hubbard model in two di-
mensions on a square lattice.50,51 The Hamiltonian is

H =
∑
k,σ

(εk − µ) c†kσckσ + U
∑
i

ni↑ni↓, (1)

where µ is the chemical potential, k is momentum,
i labels sites in real-space, U is the onsite Coulumb
interaction, and the dispersion is given by εk =
−2t [cos(kx) + cos(ky)] − 4t′ cos(kx) cos(ky), in which t
and t′ are the nearest and next-nearest neighbor hopping
integrals.

A. Dual Fermions

We solve Eq. 1 in the Dual Fermion approximation47

using the open source Dual Fermion code of Ref. 52. This
method treats all local correlations in a non-perturbative
manner and perturbatively includes non-local correla-
tions. In our implementation, self-consistent ladder dia-
grams for the non-local (‘dual’) self energy are summed
in the charge and spin channels.53 This method is ac-
curate at high temperature,51 at weak coupling and for
very strong interactions, but uncontrolled, in the sense
that contributions from higher order vertices and non-
ladder diagrams are not included.49 Results must there-
fore be carefully benchmarked against other techniques,
both for single- and for two-particle properties. To this
end, in this section we present high temperature results
from dynamical cluster approximation49,51,54 and from
determinantal quantum Monte Carlo.55

The Dual Fermion approximation is based on the solu-
tion of a quantum impurity model, which we solve with a
continuous-time auxiliary field impurity solver56,57 with
submatrix updates58. This algorithm is the method of
choice for susceptibilities and vertex functions of single-
orbital impurity problems at an interaction strength of
U . 12.26

The quantity of interest is the spin susceptibility
χ(q, ω) on the real frequency axis, defined as the ana-
lytic continuation of the Matsubara suceptibility

χm(q, iνn) =

∫ β

0

dτeiνnτ 〈Sq(τ)S−q(0)〉, (2)

where Sq(τ) = 1
2

∑
i e
iqri(ni↑(τ) − ni↓(τ)). First, we nu-

merically compute spin susceptibilities on the Matsubara
axis as a function of transfer momentum q and bosonic
Matsubara frequency iνn = 2πinT . Representative sim-
ulation data obtained for a half-filled system at inter-
mediate interaction U/t = 8, temperature T/t = 0.2,
and next-nearest neighbor hopping strength t′/t = −0.3
are shown in the inset of Fig. 1. Different curves de-
note susceptibilities at the momentum points indicated
along a path from X(π, 0) to M(π, π) in the Brillouin
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Figure 1. Dual Fermion results for the imaginary part of
the Mabsubara axis susceptibility Imχ(ω, q) as a function of
real frequency ω for U/t = 8.0 at T/t = 0.2 with t′/t =
−0.3 at several q vectors between the M and X points. Inset:
Real part of the Matsubara axis susceptibility Reχ(iνn, q) as a
function of bosonic Matsubara frequency νn for the momenta
q indicated. Error bars much smaller than symbol size.

zone. Symmetry properties imply that only the real part
of the susceptibility, Reχ(iνn, q), is non-zero. Conver-
sion of iνn to the real frequency, ω, is needed to obtain
the frequency- and momentum-dependent susceptibility
Imχ(ω, q). This process relies on numerical methods of
analytical continuation. Those results can be seen in the
main panel of Fig. 1. Imχ(ω, q) shows a single peak in-
dicated by arrows. Its amplitude is largest at q = (π, π)
and quickly decays away from this point, while its peak
position moves to higher frequencies. In the spirit of
other works that examine spin structure factors and sus-
ceptibilities we define the frequency for this peak at each
q-vector to be the spin-wave dispersion, ωs(q).

44,45

Analytic continuation of bosonic spectral functions,
here based on the ALPS59 open source maximum en-
tropy code60 with a Gaussian default model, is required
to obtain the spin-wave dispersion. The analytic contin-
uation is numerically ill posed, in the sense that many
bosonic spectral functions will yield the same bosonic
Matsubara response within error bars. We believe contin-
uation uncertainties to be larger than any finite size error
or stochastic uncertainty. These uncertainties are inde-
pendent of the approximation error of the self-consistent
ladder Dual Fermion method, which we analyze in detail
below. As analytical continuation uncertainties are diffi-
cult to assess, we present continued data without ‘error
bars’.

B. Comparison to the dynamical cluster
approximation

We first consider the accuracy of the Dual Fermion
method for single-particle quantities. Fig. 2 compares
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Figure 2. Data from 64-site dynamical cluster approximation
(dashed) and Dual Fermion (solid) for the imaginary part of
the self energy ImΣ(k, iωn) at nodal (grey) and antinodal (red)
points for U/t = 4, T/t = 0.2, t′/t = 0, and half filling.

results for the single-particle self-energy to dynamical
cluster approximation calculations on an 8 × 8 cluster
for the nodal (k = (π/2, π/2)) and antinodal (k = (π, 0))
points. The Dual Fermion result provides the majority of
the momentum dependent contribution and is, at these
temperatures and interaction strengths, comparable to
the dynamical cluster approximation at a small fraction
of the computational expense.

In Fig. 3 we compare the local spin susceptibility on
the Matsubara axis for the lowest and first Matsubara fre-
quencies obtained from Dual Fermions to those obtained
in 8-site dynamical cluster approximation clusters.29

Since the dynamical cluster approximation is limited
in k-space resolution and computationally limited to
small clusters when computing two-particle observables
we compare only the local susceptibility χloc. We see
agreement at high temperature where the spin suscepti-
bility is expected to be unstructured and the dynamical
cluster approximation result is close to the dynamical
mean field result upon which the Dual Fermion treat-
ment is built.

As temperature is lowered, the lowest Matsubara fre-
quency for Dual Fermions is consistently larger than dy-
namical cluster approximation data until around T/t =
0.2, below which it declines at T/t = 0.18 and 0.19. At
even lower T/t the self-consistent ladder summation fails
to converge. For this reason we consider T = 0.2t to be
the lowest accessible temperature at n = 1, U/t = 6, and
present results at this T in section III.

C. Comparison to lattice Monte Carlo

At high temperature, we can compare the dynamical
spin susceptibility χ(q, ω) on the real frequency axis ob-
tained from Dual Fermions to those obtained from lat-
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Figure 3. Data from 8-site dynamical cluster approximation
(black) and Dual Fermions (red) for the local susceptibility
at the lowest and first bosonic Matsubara frequencies, top
and bottom frames respectively. Data is for U/t = 6, t′/t =
−0.1 at µ = 0. These calculations are for fixed µ, not fixed
density and some particle-hole asymmetry may be responsible
for some variation in density with temperature between the
two methods.

tice Monte Carlo calculations with periodic boundary
conditions. In Fig. 4 we plot the peak energy ωs(q)
of Imχ(q, ω) determined as in Fig. 1 as a function of
momentum for various charge densities. The momenta,
along high symmetry cuts in the Brillouin zone, start
from (π/2, π/2) and move diagonally to the M -point at
(π, π), via X = (π, 0) and (π/2, π/2) to Γ and back to X.
Here, the parameters are set as U/t = 8, T/t = 1/3, and
t′ = −0.3. Dual Fermion calculations are evaluated on
a 16 × 16 grid (solid symbols), and lattice Monte Carlo
calculations are performed on the 8×8 cluster (open sym-
bols). Both of these calculations are converged in their
k-space discretization. At the lowest density (n = 0.6),
Dual Fermion results are consistent with lattice Monte
Carlo results. As we increase the density towards half-
filling the spin excitation energy from Dual Fermion cal-
culations are systematically lower than those from lattice
Monte Carlo, but the momentum dependence is the same.
To illustrate this, we show in magenta on each panel the
lattice Monte Carlo curve rescaled by the factor r needed
to match ωDFs at q = (π/2, π/2) and quote the value of
r in each case. After rescaling, we see that the overall
structure of ωs(q) is remarkably similar and that the ap-
proximate Dual Fermion method is qualitatively correct
within a single prefactor for each of the parameters ex-
amined, except near the Γ point, as we comment on in
section II D.
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Figure 4. Dual Fermions (closed symbols) and lattice Monte
Carlo (open symbols) results of the peak energy of the spin
susceptibility, ωs(q)/t, extracted from Imχ(ω, q) for high sym-
metry cuts in (qx, qy). Also shown (dotted lines) are lattice
Monte Carlo results scaled by the factor r given in each frame.
U/t = 8, T/t = 1/3, and t′/t = −0.3 illustrated for different
doping 〈n〉.

Continuing to increase charge density to n = 1.15,
the spin dispersion around the Γ point becomes iden-
tical, while the spin excitation at other momenta in Dual
Fermion calculations has lower energy. We perform a
similar analysis in Fig. 5 at fixed density, n = 1, for
variation in U/t. We find that for small values of U/t
again the lattice Monte Carlo and Dual Fermions are
quantitatively in agreement while for other values they
have a distinct energy scale with the Dual Fermion result
again systematically lower than the lattice Monte Carlo
result but with the same momentum dependence. The
agreement in both highly doped and weak coupling cases
but disagreement for larger interactions near half filling
suggests that the method works best where the physics
is close to that of the underlying DMFT approximation
but may not be able to correctly represent momentum-
dependent phenomena such as the pseudogap.

To further analyze these conclusions, we plot the nor-
malized magnetic susceptibility on the imaginary time
axis, Reχ(q, τ), for both calculations in Fig. 6. These
data do not suffer from continuation errors. Panel (a)
shows Reχ(q, τ) at n = 0.6 and q = X. It is found that
Reχ(q, τ) for both calculations are the same, resulting in
the same ωs(q)/t in Fig. 4 after analytic continuation.
Panel (b) shows Reχ(q, τ) at n = 1.0 and q = X where
the two methods deviate. To assess the finite lattice size
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Figure 5. Dual Fermions and lattice Monte Carlo results of
the peak energy of the spin susceptibility, ωs(q)/t, extracted
from Imχ(ω, q) for high symmetry cuts in (qx, qy). The pa-
rameters are T/t = 1/3, and t′ = −0.3 for 〈n〉 = 1 illustrated
for variation in interaction strength. The scaling of lattice
Monte Carlo to Dual Fermion data invokes a ratio, r, quoted
in each frame.

effects in lattice Monte Carlo, we show results for two
cluster sizes (4× 4 and 8× 8).

Figs. 4 - 5 together indicate that, at the high temper-
ature tested here, the Dual Fermion and lattice Monte
Carlo are qualitatively the same. They differ quantita-
tively by a momentum independent prefactor that de-
pends on both doping and interaction strength, r ≡
r(U, µ). As doped results from the dynamical cluster ap-
proximation or lattice Monte Carlo are difficult to obtain
at lower temperature because of the fermion sign prob-
lem, we leave the temperature dependence of r for future
study. We continue under the assumption that the ωs(q)
from Dual Fermions is correct up to an overall doping-,
temperature-, and interaction dependent prefactor. This
holds for all momenta except for the area near the Γ
point, which we address next.

D. Discrepancy at Γ point

Figure 4 shows that ωs(q = Γ) at n = 1 does not touch
to zero in Dual Fermion calculations. However, since the
spin operator commutes with the Hamiltonian, the spin
susceptibility on the real frequency at the Γ point should
be uniformly zero, i.e. χ(q = Γ, ω) = 0 for all values
of ω. On the Matsubara axis, this condition enforcing a
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spin excitation at zero frequency is that χ(q = Γ, iΩ0) is
a constant while χ(q = Γ, iΩn) = 0 as n 6= 0. To under-
stand why Dual Fermion results violate this condition, we
plot spin susceptilibilty χ(q,Ωn) and its dressed bubble
(GG) and vertex terms in Fig. 7. The spin suscepti-
bility equals the sum of the GG and the vertex terms.
The right panel of Fig. 7 shows that vertex contribu-
tion does not exactly cancel the bubble contribution at
iΩn for n 6= 0. Other methods of restoration exist.61,62

The magnitude of this violation is temperature depen-
dent. As temperature increases, the value of the first
Matsubara frequency decreases, see Fig. 8, and at high
temperature (T/t = 0.5) becomes essentially uniformly
zero, satisfying the expectation that χ(q = Γ, ω) = 0 for
ω = 0.

The violation of this cancellation is induced by the ap-
proximate nature of the Dual Fermion procedure, which
is based on a vertex function expansion of an auxiliary
Anderson impurity coupled to a bath,47 a problem for
which spin is not conserved. While the exact summation
of all contributions to all orders49 would restore this sym-
metry, the perturbative ladder Dual Fermion vertex only
partially cancels the GG bubble contribution. We ex-
pect ωs(0, 0) to decrease in energy as the system becomes
metallic. This is reflected in both our high temperature
and doped data.
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Figure 7. Reχ(iΩn, q) for q = (π, π) (left) and q = (0, 0)
(right) at U/t = 8, T/t = 0.2, t′/t = −0.3, and n = 1. The
total susceptibility (black) is decomposed into contributions
from the dressed polarization bubble, GG, shown in blue and
the vertex contributions shown in red.
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the same as in Fig. 7

III. RESULTS

We present Dual Fermion results for the dynamical
spin susceptibility of the single band Hubbard model ob-
tained in the intermediate interaction strength regime
where both weak coupling perturbative methods and
strong coupling expansions fail. We have shown that
the Dual Fermion results are qualitatively correct at high
temperatures and note that our calculations have the ad-
vantage of a fine-grained momentum resolution of up to
64× 64 = 4096 points in the Brillouin zone.
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A. Spin-wave dispersion at half filling

Fig. 9 shows the momentum dependence of the spin
wave dispersion ωs(q) from the Dual Fermion method of
the half-filled system along high symmetry paths in the
first Brillouin zone (see inset), for interaction strengths
ranging from U/t = 3 to U/t = 8. Results are obtained
at temperature T/t = 0.2 and next-nearest neighbor hop-
ping t′/t = −0.3. At weak interaction U/t = 3 (orange
circles), the spin mode, ωs(q), at M and X points is at
higher energy than other interaction strengths. Increas-
ing the interaction towards U/t = 8 results in a decrease
in ωs(q) at these two points. This reduction in energy is
accompanied by an increase in amplitude of the suscep-
tibility, indicating strong low-energy spin fluctuations.

We compare our numerical data to the experimental
spin susceptibilities obtained on LaCuO4

2 (black points,
right axis, see also Ref. 63) in the upper panel of Fig. 10.
Also shown is a linear spin-wave fit with parameters de-
termined by Coldea et al. 2 Our simulations were ob-
tained for U/t = 7.6 and t′/t = −0.3. Ref. 2 fitted
the linear spin-wave results by a set of nearest and fur-
ther Heisenberg exchange constants, J, J ′, J ′′ as well as
a substantial ring exchange Jc, and found J = 138meV,
J ′ = J ′′ = 2meV and Jc = 40meV.

From a comparison between the overall shape of the
spin excitation dispersion in experiment, Fig. 10, and
calculation, and in particular from the behavior between
M , X, and (π/2, π/2), we can conclude that an appro-
priate Hubbard interaction strength for modeling the
data should be between U = 7t and U = 8t. Specif-
ically, the weak momentum dependence observed along
the M -X-(π/2, π/2) lines is inconsistent with an interac-
tion strength much less than U = 7t.

The lower panel of Fig. 10 shows calculated and ex-
perimental data for the imaginary part of the suscepti-
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Figure 10. Top: Dual Fermion simulation results of ωs(q)/t
for U/t = 7.6 at T/t = 0.2 with t′/t = −0.3 at 〈n〉 = 1.
Dashed line and filled grey circles are linear spin-wave fit and
experimental data from Coldea et al.2. Left (theory) and
right (experiment) axes differ by a prefactor of 2.36. Bottom:
Dual Fermion results for Imχ(ωs(q)) and experimental curves
rescaled to the Hubbard model. Right hand axis is scale of
original neutron data from Coldea et al. 2 .

bility at its maximum point ωs(q). Spin excitations in
both calculation and experiment are dominated by the
strong low-energy excitation near (π, π) and proportional
to each other.

An obvious point of disagreement between our data
for ωs(q) and the experimental results is the overall mag-
itude of the spin-wave dispersion. For generally accepted
values of U/t ∼ 7− 8, and using a value of t ∼ 0.35eV ,64

we find that ωs(q = (π/2, π/2)) = 0.4t = 142meV . This
value is a factor of 2.36 below the experimental value.
Since we expect the Dual Fermion method to be correct
only up to a prefactor (see Fig. 4 where 1/r ≈ 2 at the
higher T/t = 1/3) this scaling factor is consistent.

B. Doping dependence of the spin-wave dispersion

The spin-wave dispersion is highly doping dependent
(Fig. 11), and data shows a pronounced difference be-
tween electron and hole doping, with the spin wave en-
ergy increasing much faster for electron than for hole dop-
ing, except very near the M point. The interpretation of
Dual Fermion data is complicated by the fact that the
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U/t = 5 (lower panel) at T/t = 0.2 and t′/t = −0.3.

rescaling prefactor is strongly doping and interaction de-
pendent (Fig. 4). Also, the temperature dependence of
the rescaling factors is unknown (data is only available
down to T/t = 1/3). We show our results without rescal-
ing r, but we expect the general conclusions we draw here
to be robust based on r at higher temperature. At both
intermediate (U/t = 5) and strong (U/t = 8) interaction
strength, ωs(q) near (π, π) quickly increases with doping.
At the X point, hole doping reduces ωs and electron dop-
ing increases ωs at intermediate interaction, whereas for
strong coupling electron doping leads to a sharp increase
and only a moderate increase and eventual saturation
for hole doping. No change is visible upon hole doping at
(π/2, π/2), whereas electron doping increases ωs(q) by a
factor of at least two.

Fig. 12 shows a detailed dependence of the spin-wave
dispersion on doping, plotted as a function of occupation,
n, for U/t = 8 (left panel) and U/t = 5 (right panel). In
particular a strong difference between electron (n > 1)
and hole (n < 1) doping is visible in the data at (3π/4, 0)
and (π, 0), which shows no doping dependence on the
hole-doped side but a rather strong momentum depen-
dence on the electron-doped side. The data shown here
are not rescaled to lattice Monte Carlo data. This re-
sult is qualitatively consistent with determinant quantum
Monte Carlo calculations at higher temperature,44 and
with LSCO data from Dean et al. 65 (see also Ref. 44).
At q = (π, π) both electron and hole doping increase ωs
shown in blue squares, which rises to higher energy for

 0

 0.5
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 1.5

 2

 2.5

 3

 0.6  0.8  1  1.2  1.4

U/t = 8, T/t = 0.2

ω
(q

)/
t

n
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q = (3π/4, 0)

 0.6  0.8  1  1.2  1.4

U/t = 5, T/t = 0.2

  

n

Figure 12. Spin-wave dispersion ωs(q) for interaction
strengths U/t = 8 and U/t = 5 at fixed q values and
T/t = 0.2. Also shown is experimental RIXS data on LSCO
from Dean et al. 65 .
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)
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Figure 13. Amplitude of Imχ(ωs, q) for fixed q as a function
of density for U/t = 8, 5 and 3, at t′/t = −0.3 and T/t = 0.2.

doping in each direction.

Finally, as interaction strength decreases from U/t = 8
to 5 we see that q = (π, π) maintains a minimal value
near n = 1 but the mode energy increases; and that
q = (π, 0) and (3π/4, 0) continues to show little change
in hole doping and increases upon electron doping.

Fig. 13 shows the amplitude of Imχ(ω, q) for fixed
q as a function of density for U/t = 8, 5, and 3. The
amplitudes of Imχ(ω, q) at (3π/4, 0), (π, 0), and (π, π)
are suppressed by both hole and electron dopings. For
q = (π/2, π/2), the amplitude of Imχ(ω, q) is enhanced
by initial hole doping and then suppressed by doping
more holes; on the electron doping side, the amplitude of
Imχ(ω, q) is suppressed monotonically by electron doping
at q = (π/2, π/2).
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C. Spin excitation dispersion near M point

The left panel of Fig. 14 shows a simulated spin excita-
tion dispersion near (π, π) for momenta q = (π−δ, π) and
interaction strengths U/t = 8 at half filling (black) and
n = 0.95 (red). At low frequencies, the dispersion peaks
are located at δ = 0. At higher frequencies, the disper-
sions become incommensurate and begin to disperse at a
characteristic frequency ωc, creating a ‘Y’-shape. As the
system is hole doped from n = 1 to n = 0.95, ωc increases
substantially.

Data are consistent with a resolution effect, where a
single peak at the (π, π) point (for ω = 0) with a con-
stant width disperses linearly away from (π, π) for higher
frequencies. Uncertainties of the analytical continuation
procedure and the dual fermion approximation make it
difficult to rule out alternative explanations.

For comparison, the right panel of Fig. 14 shows ex-
perimental data reproduced from Ref. 66. A t =
460 meV67,68 allows us to establish the right hand axis
of the left hand frame in Fig. 14. We can see that
ωc = 40 meV for n = 1 is smaller than the experimen-
tal observation of ωc = 60 meV while n = 0.95 is much
larger with ωc = 150 meV.
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0.2

0.4

ω
/t
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n=1

-0.4-0.2 0 0.2 0.4
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y
 (
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eV
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Chan et al - HGUD71

0

60

120

180

240
n=0.905

ω
c

ω
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ω
c

Figure 14. Left: Peaks in the spin excitation dispersion cuts
of Imχ at fixed frequency for U/t = 8, t′/t = −0.3, T/t = 0.2
for densities n = 1, 0.94 and 0.86. Right: Data from Chan
et al. 66 , their Fig. 4(a), showing data for HGUD71 (n =
0.905). The x-axis δ in both frames denotes the deviation
from (π, π) in reciprocal lattice units.

To further examine the spin excitation spectrum
around the (π, π) region, we extract the correlation
length ξ by fitting the peak structure along the (π, δ)
direction, see Fig. 15, at T/t = 0.2 as a function of dop-
ing for U/t = 8, 5, and 3. We observe that a reduction in
interaction strength or doping in either direction causes
a sharp decrease of the correlation length, which in turn

0
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Figure 15. Left: Simulation results for Imχ(ω, q) at U/t = 8,
t′/t = −0.3 and T/t = 0.2 at n = 1 (top row) and n = 0.95
(bottom row) for fixed frequencies in the qx and qy plane.
Right: Doping dependence of the antiferromagnetic correla-
tion length, ξ, for several interaction strengths U , obtained
from a fit of χ along the direction (qx, qy) = (qx, π) with the
function f(qx, ξ) = A/((qx − π)2 + ξ−2).69,70

results in a broadening of the spin structures at low en-
ergies. ξ is marginally larger on the electron doped side
(a result of the broken particle-hole symmetry) and this
difference increases with the interaction strength U/t.

IV. CONCLUSIONS

In summary, we have presented results from the Dual
Fermion approximation for the spin excitation spectrum
in the Hubbard model. The results show striking quali-
tative similarities with experiments in cuprate materials.
The Dual Fermion results have been crosschecked both
against the dynamical cluster approximation and against
lattice Monte Carlo results at high temperature. Away
from the Γ point, the spectrum is believed to be accu-
rate up to a momentum-independent prefactor and has
a precise momentum resolution. As the prefactor is dop-
ing, interaction, and presumably temperature dependent,
and as control calculations from the dynamical cluster
approximation and lattice Monte Carlo are restricted to
small systems or high temperature, a precise quantitative
comparison between numerics and experimental spin ex-
citations is not possible at this time. In addition, a quan-
titative comparison near the Γ point requires a solution
that respects spin conservation.

Nevertheless, from the overall shape of the spin exci-
tation dispersion and in particular the behavior between
M , X, and (π/2, π/2), we can conclude that an appro-
priate Hubbard interaction strength for modeling exper-
imental data should be between U/t = 7 and U/t = 8.

The existing literature shows that, on the ener-
getic and single-particle level, agreement between model
systems calculations on Hubbard models and experi-
ment is remarkable and is often not just qualitative
but quantitative, despite the difficulty of deriving this
model rigorously from ab-initio Hamiltonians.71,72 Dy-
namical Cluster calculations, for instance, have revealed
pseudogaps19,24,73 caused by short-ranged antiferromag-
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netic correlations19,28 and d-wave superconductivity34,74

with consistent energetic behavior.33

On the two-particle level, similar progress has been
made primarily for quantities that are either local (such
as the NMR probe29), static,39 or contain a slowly vary-
ing matrix element. One important exception is the work
by Jia and collaborators44 on simulations of the resonant
X-ray scattering cross section. These authors presented
χ′′(q, ω) obtained from lattice Monte Carlo calculations
for the Hubbard model with U = 8t and t′/t = −0.3
at the temperature T = t/3 ∼ 1200K, and reported
quantitative agreement with magnetic neutron scatter-
ing measurements. Our lattice Monte Carlo results at
these parameters are in quantitative agreement, as are
our Dual Fermion results (up to a rescaling); our stud-
ies of other U values reinforce the conclusion that the
Hubbard model with U ∼ 7 − 8t is a good description
of cuprate physics. The continuous momentum resolu-
tion of the Dual Fermion technique now shows that, in

addition, many of the momentum and energy dependent
features seen in experiment are also observed in calcula-
tions.
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