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A determinant formalism in combination with ab initio calculations was proposed recently and
has paved a new way for simulating and interpreting x-ray excitation spectra in condensed-phase
systems. The new method systematically takes into account many-electron effects in the Mahan-
Noziéres-De-Dominicis (MND) theory, including core-level excitonic effects, the Fermi-edge singu-
larity, shakeup excitations, and wavefunction overlap effects such as the orthogonality catastrophe,
all within a universal framework using many-electron configurations. A heuristic search algorithm
was introduced to search for the configurations that are important for defining the x-ray spectral
lineshape, instead of enumerating them in a brute-force way. The algorithm has proven to be effi-
cient for calculating O K edges of transition metal oxides, which converge at the second excitation
order (denoted as f (n) with n = 2), i.e., the final-state configurations with two e-h pairs (with one
hole being the core hole). However, it remains unknown how the determinant x-ray spectra converge
for general cases and at which excitation order n should one stop the determinant calculation. Even
with the heuristic algorithm, the number of many-electron configurations still grows exponentially
with the excitation order n. In this work, we prove two theorems that can indicate the order of
magnitude of the contribution of the f (n) configurations, so that one can estimate their contribution
very quickly without actually calculating their amplitudes. The two theorems are based on singular-
value decomposition (SVD) analysis, a method that is widely used to quantify entanglement between
two quantum many-body systems. We examine the K edges of several metallic systems with the
determinant formalism up to f (5) to illustrate the usefulness of the theorems.

I. INTRODUCTION

X-ray spectroscopy has become increasingly important
for providing insights into many problems in materials
characterization at microscopic scale [1–7], especially in
recent times when this area is propelled by the devel-
opment of light sources enabled by free-electron lasers
[8–10]. We consider resonant x-ray excitations, where
a core electron of a specific type of atom is promoted
into orbitals localized on or near that atomic site, re-
vealing a wealth of information of local chemical envi-
ronment and electronic structure. The near-edge part of
an x-ray absorption spectrum, i.e., a few eVs above on-
set, is of particular interest, indicating element-specific
details of band-edge electronic structure relevant to in-
triguing physics and chemical processes [3]. The inter-
pretation of x-ray spectra, however, is often a nontrivial
task that requires accurate first-principles modeling of
both atomic and electronic structure of interest and their
associated spectra [11–13]. While the structural proper-
ties of a wide range of materials can be mostly captured
by density-functional theory (DFT) [14–18], predicting
x-ray excited-state spectra in a reliable and efficient man-
ner presents a greater theoretical challenge.

There has been a broad spectrum of theoretical ap-
proaches for simulating x-ray excitation spectra. At one
extreme, exact diagonalization [19–26] has been applied
to rigorously solve the many-electron Hamiltonian. This
method represents the most accurate solutions and is
most amendable for localized x-ray excitations that oc-
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cur within a few atomic orbitals, due to the exponen-
tial growth of the many-electron Hilbert space. Wan-
nier down-folding is typically required for reducing the
size of the Hamiltonian [21, 23] and the Coulomb in-
teraction is usually simplified as an on-site Hubbard U
term. Similar methodology is also employed in the quan-
tum chemistry community within the configuration in-
teraction [27, 28] and other post-Hartree-Fock methods
[29, 30], in which realistic Coulomb interactions and su-
perposition of many-electron configurations are consid-
ered explicitly in the calculation. Likewise, increasing
the size of the excited-state calculation is hindered by the
exponential barrier associated with the size of the Hilbert
space, although placing restrictions on the active orbital
space can mitigate the problem to some extent [31–33].
Due to its rigor, this class of methods can be used for
systems with strong electron correlation, but due to its
computational inefficiency, it is limited to specific cases
such as small molecules [31, 33] or clusters [26] and 3d
metal L edges (dominated by localized atomic multiplet
effects) [21, 25] so far.

At the other extreme, excited-state spectra of con-
densed phases can be routinely obtained using ab ini-
tio methods based on DFT and many-body perturbation
theory (MBPT), where electron correlation is treated
with less rigor but higher efficiency. There are two rep-
resentative methods. One is the Delta-self-consistent-
field (∆SCF) approach [1, 11, 34, 35] that treats the
core hole as an external potential, and maps a many-
electron excited state to an empty orbital. Many-electron
response is taken into account by DFT electronic relax-
ation, and then the transition matrix elements are calcu-
lated using Fermi’s Golden rule. In previous formalisms,
however, only one-body orbitals are employed for final
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states, which does not account for proper time order-
ing of the many-electron processes in x-ray excitations
[1, 2], leading to possible failures in predicting the in-
tensity of an absorption edge. The other method is the
core-level Bethe-Salpeter Equation (BSE) [36–38] within
MBPT, that utilizes the DFT ground state as a zero-
order approximation and incorporates many-electron cor-
relations in a perturbative manner. A subset of Feyn-
man diagrams generated by the direct and exchange ker-
nels are included to account for e-h interactions (exci-
tonic effects). and hence the correct time-ordering is re-
tained in this approach. Formulations akin to the BSE
are also adopted in linear-response of time-dependent
DFT (TDDFT) [39–43], in which exchange-correlation
kernels substitute for e-h interaction kernel, or in the
corresponding real-time propagation approaches [41, 42].
There are many successful application of the ∆SCF core-
hole approach [11, 34, 35, 44, 45] and the core-level BSE
[1, 38, 46] in extended systems, and even in molecules
[34] where the Coulomb interaction is not well screened.

A. Motivations and Advantages of the
Determinant Formalism

Following the philosophy of the post DFT methods, we
recently proposed a determinant formalism [1, 2] for sim-
ulating x-ray excitation spectra based on the one-body
core-hole approach. In essence, we use an single determi-
nant comprised of Kohn-Sham (KS) orbitals of the un-
excited system to approximate the initial state, and a
single determinant comprised of KS orbitals of the core-
excited system to approximate each x-ray excited state.
Typically, there is a basis-set transformation of basis set
between these two sets of KS orbitals. Transition am-
plitudes between these determinants, when represented
in a common orbital basis also take the form of deter-
minants of subsets of the orbital transformation matrix.
This approach currently describes all states as single de-
terminants. It does not involve configuration interactions
among multiple many-electron configurations.

The determinant formalism has three main advantages:
First, it provides an exact solution to all the many-
electron effects considered within the Mahan-Noziéres-
De Dominicis (MND) model [47–50], which is beyond the
scope of e-h attraction in the BSE. These effects include
the power-law edge singularity as considered by Mahan
using Feynman diagrams [50], and the many-body wave-
function overlap effect considered by Anderson in the or-
thogonality catastrophe [51]. In a less dramatic manner,
the latter often manifests as shakeup effects [52–54], but
not edge-rounding effects. Shake-up effects refer to multi-
electron excitations evident at higher absorption energies
which are not explicitly represented in the single electron-
hole pair projection of the BSE.

Secondly, the determinant formalism adopts many-
electron configurations in the calculation, and hence pro-
vides a conceptually simple picture for understanding

x-ray excited states. In the x-ray final-state system, a
many-body state is simply a single determinant (single
reference) of the occupied KS orbitals. Each excited state
is now mapped to its composite orbitals. We denote the
group of singles as f (1), which comprises a core hole and
an electron; the group of doubles as f (2), which com-
prises an additional valence e-h pair; and so forth. The
n in f (n) can be understood as the order of excitations.
This enables a straightforward assignment of absorption
features to excited states, making the interpretation of the
spectrum simple.

Thirdly, an alternative solution for solving the MND
Model using DFT orbitals as input was introduced in
Ref. [55–58], and good agreement has been achieved
in some carbon systems and metals. In this method,
a time-dependent matrix integral equation needs to be
solved and matrix inversion is required for each point on
the discretized time axis. Then a Fourier transformation
is performed to obtain the spectrum. The determinant
approach we proposed only requires a one-shot matrix
inversion and no real-time evolution is involved. It is
physically more intuitive and computationally less com-
plex.

Finally, although many-electron configurations are em-
ployed for condensed-phase systems with hundreds to
thousands of electrons in a supercell, the determinant
calculation is not at all intractable. We have developed a
heuristic search algorithm for finding the many-electron
configurations that are important for determining the x-
ray spectra [2]. For transition metal oxides (TMOs), it is
found the x-ray absorption spectra (XAS) can be well de-
fined by just 105 configurations up to the f (2) order (not
their superposition and no diagonalization of many-body
Hamiltonian is needed), which are inexpensive calcula-
tions given the current computational capability.

It is, however, unknown yet how expensive the determi-
nant calculations are in other systems apart from TMOs.
It remains unclear if f (n) configurations with n > 2 are
important for shaping the x-ray excitation spectra. Even
with the heuristic search algorithm [2] that truncates the
number of many-electron configurations, the number of
meaningful f (n) configurations still tends to diverge expo-
nentially with respect to the shakeup order n. If one can
estimate the spectral contributions from the f (n) con-
figurations before actually calculating them, it will be
of great benefit for saving computational resources. In
this work, we propose a useful criterion for estimating
the contributions of f (n), which helps one to decide at
what n one should stop the determinant calculation. It
is based on a singular-value decomposition (SVD) anal-
ysis of the ζ-matrix, the auxiliary matrix used to obtain
the determinant transition amplitudes. An SVD analysis
of the ζ-matrix reflects how the one-body basis set is ro-
tated due to the perturbation of the core hole, and how
the final-state occupied manifold is entangled with the
initial state (typically the many-electron ground state).
Besides TMOs, we have chosen several metallic systems
such as Li and Cu metal and performed exhaustive cal-
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culations up to n = 5 to test the convergence criterion in
this work.

B. Review of the Determinant Formalism

The central formula for calculating the x-ray absorp-
tion amplitudes from the ground-state (initial state) |Ψi〉
to a specific final state |Ψf 〉 is [1, 2]

〈Ψf |O|Ψi〉 =
∑
c

(Afc )∗〈ψc|o|ψh〉 (1)

in which the transition amplitude also takes a determi-
nantal form

Afc = det


ξf1,1 ξf1,2 · · · ξf1,N ξf1,c
ξf2,1 ξf2,2 · · · ξf2,N ξf2,c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N ξfN+1,c

 (2)

and ξij = 〈ψj |ψ̃i〉, where |ψ̃i〉’s are final-state orbitals,
|ψj〉’s initial-state orbitals, and N the total number of
valence electrons (excluding the core level) in the initial
state. Therefore, the x-ray excited state has N + 1 va-
lence electrons due to excitation of the core level. An
illustration of the initial and final state is shown in Fig.
1 (a). In the calculation, both initial and final states are
taken as supercells except that the core-excited atom in
the final state is described using a modified pseudopoten-
tial. The perturbation from the core-excited atom leads
to a rotation of orbital basis set from {|ψj〉} to {|ψ̃i〉}.

Alternatively, Afc can be regarded as a single
‘‘Slater determinant’’ of a set of final-state or-
bitals (ψ̃f1 , ψ̃f2 , · · · , ψ̃fN+1

), expanded over the N + 1
initial-state orbitals (ψ1, ψ2, · · · , ψN , ψc) (rather than
(r1, r2, · · · , rN+1)). The first N of these orbitals are the
lowest N occupied orbitals, and the last one, ψc, iterates
over all the empty orbitals. The numerical evidence on
the completeness of the initial-state basis set has been
provided in previous work [2].

The first step we use to simplify the calculation is to
move the summation over c into the determinant expres-
sion:

Af ≡ 〈Ψi|O|Ψf 〉 = detAf

Af =


ξf1,1 ξf1,2 · · · ξf1,N

∑
c ξf1,cw

∗
c

ξf2,1 ξf2,2 · · · ξf2,N
∑
c ξf2,cw

∗
c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N

∑
c ξfN+1,cw

∗
c


(3)

There are an enormous number of combinations of
(f1, f2, · · · , fN+1), representing possible final-state con-
figurations, but it is only meaningful to visit a small
subset of this space. The determinant amplitude Af

is a significant number only when most of the in-
dices (f1, f2, · · · , fN+1) of the occupied orbitals over-
lap significantly with the lowest-energy configuration

(1, 2, · · · , N + 1), because in most realistic materials, the
core hole is well screened and the orthogonality catastro-
phe does not occur. Therefore, (f1, f2, · · · , fN+1) may
only differ from (1, 2, · · · , N + 1) by a few indices.

To simplify the notation, we may denote (f1 = 1, f2 =
2, · · · , fN = N, fN+1 = c) as a single, or f (1) config-
uration, (f1 = 1, f2 = 2, · · · , fv1−1 = v1 − 1, fv1 =
v1 + 1, · · · , fN−1 = N, fN = c, fN+1 = c1) as a dou-
ble, or f (2) configuration, and so forth. The concepts of
f (n) are illustrated in Fig. 1 (b).

There is a one-to-one correspondence between the ex-
cited states in the BSE and the f (1) configuration in the
determinant approach. In the core-level BSE, the ex-
cited states are labeled by the orbitals in the system with
a core hole. Correspondingly, the f (1) configurations in
the determinant approach are also labeled by orbitals in
the final-state system. However, the interaction between
the electrons and the core hole are treated differently
in the two approaches. In the BSE, screened Coulomb
interactions obtained via random phase approximation,
whereas in the determinant approach, electron-core-hole
interactions are accounted for using exchange-correlation
functionals of proper flavor.

Each line of Af can be denoted as:

ai =
[
ξi,1 · · · ξi,N

∑
c ξi,cw

∗
c

]
(4)

Next we can introduce the ζ-matrix to calculate all the
Af ’s in an iterative manner. The ζ-matrix is the linear
transformation from ai’s of the occupied orbitals (i ≤ N
plus aN+1) to the ai’s of the empty orbitals (i > N)

aN+1

aN+2

...
aM

 =


0 0 · · · 1

ζN+2,1 ζN+2,2 · · · ζN+2,N+1

...
...

...
ζM,1 ζM,2 · · · ζM,N+1




a1
a2
...

aN+1


(5)

Rewriting the above matrix multiplication in a compact
form, we have Anew = ζAref, where (ζ)ij = ζN+i,j . Thus
the ζ-matrix can be obtained from ζ = Anew(Aref)−1.

With the auxiliary ζ matrix, we can quickly calculate
the determinants for many excited-state configurations
without repeatedly using the O(N3) determinant algo-
rithm. Instead, an O(1) algorithm can be used. Once
the determinant for the ground state, Aref, is obtained,
the determinant of each excited state can be computed
by multiplying Aref by a pre-factor. The pre-factor is a
small determinant composed of the matrix elements of
the ζ matrix. For example, the amplitude of a single
(f (1)), double (f (2)), and triple (f (3)) configuration can
be obtained respectively as

Ac = ζc,NA
ref

Ac;c1,v1 = det

[
ζc,v1 ζc,N
ζc1,v1 ζc1,N

]
Aref

Ac;c1,v1;c2,v2 = det

 ζc,v2 ζc,v1 ζc,N
ζc1,v2 ζc1,v1 ζc1,N
ζc2,v2 ζc2,v1 ζc2,N

Aref

(6)
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FIG. 1. (a) Graphical depicts of the x-ray initial-state and final-state system. Both of them are supercells. The final-state
system contains an core hole (h†) fixed to the excited atom, which is modeled by the corresponding core-hole pseudopotential.
The supercell size should be larger than 1 nm so that the spurious interactions among core-hole images in periodic supercells
are truncated. (b) Illustrations of x-ray excited states at different excitation order f (n), using a system with N = 3 valence
electrons and M = 8 orbitals (core level excluded). Note that these free-fermion configurations are defined in the final-state

picture, not the initial-state one. f (1) configurations can be uniquely labelled by the orbital c, f (2) by three orbitals c, c1, and
v1, and f (3) by five orbitals c, c1, c2, v1, and v2.

These are the essential formulae to obtain the amplitudes
for the excited-state configuration with the O(1) updat-
ing algorithm. A f (n) configuration corresponds to a n×n
sub-determinant of the ζ matrix.

Directly enumerating all such sub-determinants is a
computationally expensive task. Also, it may not be nec-
essary to do so because the ζ matrix could be a sparse
matrix. In previous work [2], we have proposed a heuris-
tic search algorithm for quickly finding significant sub-
determinants of a sparse matrix. Our general search al-
gorithm is not merely specific to the ζ matrix for x-ray
spectroscopic problems.

What was overlooked in the previous work, however, is
that the ζ matrix for x-ray excitations does have struc-
tures. It can be seen that the ζ matrices for SiO2, TiO2,
CrO2 all display a vertical (horizontal) stripe pattern
(Fig. 8 (d) of Ref. [2]). This stripe pattern can also be
seen in other chosen examples, which are discussed later
in this work. These stripe patterns imply a further sim-
plification of the ζ matrix that it can be approximately
expressed as the Kronecker product of two vectors:

ζij ∼ aibj (7)

If ζij ∼ aibj strictly holds, then all the n × n sub-
determinants for n > 1 will be exactly zero and only the
f (1) amplitudes are non-vanishing. It is the deviation
of ζij from aibj that determines the size of higher-order

terms f (n) (n > 1). If one can expand ζij into just a few
terms, then it is highly probable that the size of higher-
order terms can be quickly estimated. In this regard, a
singular-value decomposition (SVD) of the ζ matrix is
most relevant for this problem. SVD has been widely
used to analyze the entanglement structure between two
quantum many-body systems [60–62].

In the following discussion, we first provide and prove
two theorems that will give upper bounds on the size of
the f (n) terms, for a specific n, using SVD analysis for

the ζ matrix. The bounds will enable one to determine
the contribution of the f (n) terms to the x-ray excita-
tion spectrum, without explicitly calculating these terms.
This will save a substantial amount of computational cost
and help one obtain a meaningful x-ray excitation spec-
trum faster. Then we apply the theorems to several small
band-gap and metallic systems, in which higher-order
terms f (n) (n > 1) are expected to contribute to the
spectrum significantly. It is, however, found that in none
of the chosen systems, the contribution from f (n) (n > 2)
can significantly alter the spectral lineshapes (more pre-
cisely, the peak intensity ratios). In other words, the
spectra have already taken shape at the order of n = 2.

II. RESULTS AND DISCUSSION

A. Two theorems about sub-determinants

Theorem 1. Let D be the determinant of an n×n sub-
matrix that spans over rows i1, i2, · · · , in and columns
j1, j2, · · · , jn of an N × M matrix ζ. Suppose the
singular-value decomposition (SVD) of ζ is

ζij =
∑
k

skaki b
k
j (8)

where {sk} are the singular values of ζ, and aki (bkj ) is a
normalized vector for a given k. Then the determinant
D can be expanded as the summation

D =
∑

k1<k2<···<kn

sk1sk2 · · · sknDa
[kµ]

Db
[kµ] (9)

in which Da
[kµ]

(Db
[kµ]

) is the determinant of the sub-

matrix that spans over rows i1, i2, · · · , in and columns
k1, k2, · · · , kn of the matrix aki (bkj ).
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Proof. Without loss of generality, we may assume i1 =
j1 = 1, i2 = j2 = 2, · · · , in = jn = n. According to the
definition of determinant, D can be expanded using the
Levi-Civita symbol:

D =

n∑
l1l2···ln=1

εl1l2···lnζ1l1ζ2l2 · · · ζnln (10)

Inserting the SVD expression of the matrix element ζij
as in Eq. [4] (examples of ζ can be found in Fig. 4),

D =

n∑
l1l2···ln=1

εl1l2···ln
(∑
k1

sk1ak11 b
k1
l1

)
· · ·
(∑
kn

sknaknn bknln
)

=

n∑
l1l2···ln=1

εl1l2···ln

×
[ ∑
k1k2···kn

sk1sk2 · · · sknak11 b
k1
l1
· · · aknn bknln

]
=

∑
k1k2···kn

sk1sk2 · · · sknak11 · · · aknn

×
[ n∑
l1l2···ln=1

εl1l2···lnb
k1
l1
· · · bknln

]
(11)

Note that the inner summation with respect to lν for a
specific {kµ} (µ, ν = 1, 2, · · · , n) gives rise to a determi-
nant, which can be denoted as Db

[kµ]
:

Db
[kµ]
≡

n∑
l1l2···ln=1

εl1l2···lnb
k1
l1
· · · bknln (12)

This determinant corresponds to the sub-matrix bkl
formed by row 1, 2, · · · , n and column k1, k2, · · · , kn.

In the outer summation of Eq. (11), each index kµ can
range from 1 to the number of singular values. Db

[kµ]
is

non-zero only when k1, k2, · · · , kn are not equal to each
other, thus placing constraints on values of kµ in the
outer summation.

Next, we may consider the case where the n values
of kµ are taken from 1, 2, · · · , n, without loss of gener-
ality. Note that there is no ordering presumed in the
outer summation of kµ, therefore summing over all kµ’s
will generate n! permutations of 1, 2, · · · , n. For these
n! permutations, the corresponding Db

[kµ]
will have the

same absolute value, and its ± sign depends on whether
the permutation is odd or even, due to the nature of de-
terminant. If we enforce ordering k1 < k2 < · · · < kn,
we may use the Levi-Civita symbol to represent the sign
due to permutation.

D =
∑

k1k2···kn

sk1sk2 · · · sknak11 · · · aknn Db
[kµ]

=
∑

k1<k2<···<kn

sk1sk2 · · · skn

×
∑

l1l2···ln

al11 · · · alnn εl1l2···lnDb
[kµ]

(13)

where the tuple l1l2 · · · ln iterate over all permutation of
k1 < k2 < · · · < kn. Therefore,

D =
∑

k1<k2<···<kn

sk1sk2 · · · sknDa
[kµ]

Db
[kµ] (14)

Theorem 2. The absolute value of the determinant of
an n × n sub-matrix of ζ is bound by the product of its
largest n singular values provided by SVD

|Dn×n| ≤
∑

k1<k2<···<kn

sk1sk2 · · · skn (15)

where the singular values satisfy s1 ≥ s2 ≥ · · · ≥ sn > 0.

Proof. We may start by proving the absolute value of the
determinant Da

[kµ]
(Db

[kµ]
) is bound by 1. Without loss of

generality, we may again assume i1 = 1, i2 = 2, · · · , in =
n and k1 = 1, k2 = 2, · · · , kn = n. According to its
definition:

Da
[kµ]

=

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a11 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ (16)

Each row of the above determinant is a vector ak1×n =

(ak1 , a
k
2 , · · · , akn), which is a truncation of a full 1 × N

vector ak = (ai1, a
i
2, · · · , aiN ). N is the first dimension of

ζ and n ≤ N . Since the matrix aki is obtained from SVD
of ζ, each of its row vector is normalized to 1: |ak| = 1,
and therefore:

|ak1×n| ≤ 1 (17)

The geometric meaning of the determinant Da
[kµ]

is the

volume of a parallelepiped spanned by n vectors ak,
where k = 1, 2, · · · , n. Since the length of each of its edge
|ak1×n| ≤ 1, then the volume of the parallelepiped will be

no larger than 1, and thus |Da
[kµ]
| ≤ 1 (|Db

[kµ]
| ≤ 1).

Using the conclusion of theorem 1,

|Dn×n| ≤
∑

k1<k2<···<kn

∣∣sk1sk2 · · · sknDa
[kµ]

Db
[kµ]

∣∣
≤

∑
k1<k2<···<kn

sk1sk2 · · · skn
(18)

Note that all the singular values of ζ are non-negative.

B. An analysis of ζ-matrices with singular-value
decomposition

We analyze several representative examples here to il-
lustrate the usefulness of the two theorems for ζ matri-
ces: a 1D single-atom chain at half filling, the C K edge
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of graphite, the Cu K edge copper, the Li K edge of
lithium metal, and the O K edge of rutile TiO2, CrO2,
RuO3, and LiCoO2. The crystal structures of RuO3,
and LiCoO2 are shown in Fig. 2. Both systems are lay-
ered structures that will allow lithium insertion/removal,
and are being studied as cathode prototypes of recharge-
able batteries. The chosen systems are gapless except for
TiO2 and LiCoO2, which have a DFT-PBE band gap of
2.1 and 1.8 eV (with a Hubbard U value of 3.3 eV on the
Co atom) respectively.

FIG. 2. layered structures (side view) of RuO3 (a) and
LiCoO2 (b). The unit cells are outlined by the thin black
lines.

The tight-binding model for the 1D chain reads:

H = −t
N∑
j=1

(
c†j+1cj + c†jcj+1

)
(19)

where a periodic boundary condition is employed and
each site has double occupancy. The above model is con-
sidered as the initial-state HamiltonianHi. The core-hole
potential is assumed to act on a single site (the site at

j = 0): Vc = ∆V c†0c0, thus the final-state Hamiltonian is
Hf = Hi+Vc. It can be solved that the 1p wavefunctions
for Hi are:

|kσ〉 =
1√
N

N∑
j=0

eikj |jσ〉 (20)

where k = 0, 1
N , · · · ,

N−1
N and σ =↑, ↓. We can define the

1p XAS matrix element as:

〈kσ|j = 0, σ〉 =
1√
N

(21)

which serves to mimic 〈ψc|o|ψh〉 as in Eq. (1). Because
we havent introduced any actual real-space orbital in the
1D tight binding model, we use the projection onto the
excited site as the 1p transition amplitude.

In the actual calculation, we choose the number of sites
N = 200, the number of electrons Ne = 200 (half-filled),
t = 1, a perturbation potential of ∆V = −100 at the
excited site to simulate the core hole effect (set to 100 for
exaggeration). We find the determinant spectrum barely
changes after ∆V < −100.

First, we plot the ζ matrices for the XAS (Li, C, O,
and Cu K edges) of six chosen systems in order to exem-
plify the aforementioned stripe pattern. Once we have

FIG. 3. Heat-map plot of log10|ζij | of the XAS ζ matrices
of several chosen systems for illustrating the cross-stripe pat-
tern. If not plot in logarithm scale, the ζ matrices will appear
to be sparse. The rows correspond to empty orbitals and the
columns to occupied orbitals. The number of occupied or-
bitals in the 1D Chain, Li, TiO2, Cu, Graphite, and CrO2

(the spin-up channel) supercell are 100, 64, 288, 352, 392 and
336 respectively, which determines the number of columns.

completed the ∆SCF calculation for both the initial and
final state, the ζ matrices can be calculated using Eq.
[5]. Several ζ matrices are shown in Fig. 3. Although
the chosen systems are vastly different in terms of crys-
tal symmetry and bonding nature, it can be seen that all
the plotted ζ matrices display a cross-strip pattern that
runs both vertically and horizontally. This cross-strip
pattern suggestes that the ζ matrix for x-ray excitations
can be universally expressed in terms of the Kronecker
product of two vectors: ζij ∼ aibj , with a few small resid-
ual terms. Thus it becomes natural to introduce an SVD
analysis to the ζ matrix, and apply the two theorems
proved above to determine the spectral convergence with
respect to shakeup order.

The twenty most significant singular values of the ζ
matrices of the chosen systems are shown in Fig. 4 (the
singular values are plotted logarithmically). The first 5
largest singular values (denoted as si) are also tabulated
in Table. I. It can immediately be seen for all the ζ
matrices that only a few singular values are larger than 1,
especially for graphite, TiO2, LiCoO2 and the insulating
(spin-down) channel of CrO2 with only 1 si > 1.0. The
latter three are systems with a large band gap. The other
systems only have two singular values larger than 1. Note
that in Li, s3 = 0.977 and s4 = 0.653, which can be
rounded to 1. In all the cases, si < 0.1 for i > 10, which
are orders of magnitude smaller than s1. This means
only a few singular values si are relevant for the analysis
of shakeup orders.

With these numerical results and the properties of
{si}, we can revisit the two theorems and discuss the
contributions from different shake-up order f (n) to the
x-ray spectra. Because the vast majority of si are small,
we could take the product of the leading si to form an
analysis of order of approximation. As indicated in the
Theorem 1, the n × n sub-determinants corresponding
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FIG. 4. 20 most significant singular values of the ζ matrices. The singular values are positive definite and scaled logarithmically.
The horizontal line at S = 1 is used to divide values larger than 1 and smaller than 1. For CrO2, two series of singular values
for spin-wise ζ matrices are plotted.

System s1 s2 s3 s4 s5 s1s2 s1s2s3 s1s2s3s4 s1s2s3s4s5

1D Chain 9.9683 1.0287 0.2810 0.0592 0.0094 10.2545 2.8820 0.1707 0.0016 η3 = 0.28

Li 478.8850 1.9354 0.9774 0.6528 0.4657 926.8103 905.8236 591.2829 275.3625 η5 = 0.30

TiO2 7092.6499 0.5008 0.4417 0.3118 0.2006 3552.0365 1569.0875 489.1961 98.1572 η3 = 0.22

RuO3 267.8267 1.5267 0.5323 0.3790 0.2721 408.8852 217.6645 82.4916 22.4428 η4 = 0.21

Graphite 7.8617 0.5691 0.3137 0.2325 0.1913 4.4744 1.4035 0.3264 0.0624 η3 = 0.18

Cu 1076.8833 1.7903 0.4386 0.4087 0.3919. 1927.8910 845.5359 345.5765 135.4185 η3 = 0.44

CrO2↑ 37.0903 1.5178 0.6071 0.4586 0.3631 56.2962 34.1768 15.6735 5.6917 η4 = 0.28

CrO2↓ 310.3019 0.3667 0.3556 0.3157 0.1634 113.7812 40.4625 12.7736 2.0867 η2 = 0.37

LiCoO2 113.3031 0.5227 0.4932 0.3257 0.2632 59.2231 29.2065 9.5120 2.5036 η3 = 0.26

TABLE I. The largest five singular values of the zeta matrices of the studies systems, and their cumulative products.

to the f (n) terms are associated with the coefficients
sk1sk2 · · · skn . We may thus take the largest n singu-
lar values s1 and calculate their product to estimate the

contribution of f (n):

f (1) :s1

f (2) :s1s2

f (3) :s1s2s3

· · ·

(22)
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The cumulative product s1s2 · · · sn of some leading-order
singular values are also shown in Table. I. For Li, RuO3,
Cu, CrO2↑, s1s2 is significantly larger than s1 because
s2 > 1.5. This suggests the contribution of the f (2) terms
is of the same order of magnitude of f (1). An extreme
case is Li in which even s1s2s3s4 ≈ 591 is larger than
s1 ≈ 479. This requires one to go beyond f (1) in the
XAS determinant calculation for these systems.

C. XAS calculated by the determinant formalism

To test how good this empirical estimate is, we perform
determinant calculations for XAS of the chosen systems,
at least at the order of f (2). The obtained spectra de-
composed by different shake-up orders are shown in Fig.
5 (odd rows). We find it is indeed true that the contri-
bution from the f (2) terms is as significant as f (1) in Li,
RuO3, Cu, CrO2↑ (as studied in Ref. [1, 2]). In every
case, the contribution from f (2) constitutes more than
40% of the entire computed spectrum. In particular for
Li, a trend of convergence is only seen after including the
f (4) terms. The contributions from f (1), f (2), f (3), f (4),
and f (5) to the full spectrum (f (1)+f (2)+f (3)+f (4)+f (5))
are 29.7%, 51.3%, 14.8%, 3.7%, and 0.5%. This is con-
sistent with the fact that s1s2 ≈ 927, s1s2s3 ≈ 906, and
s1s2s3s4 ≈ 591 are comparable to s1 ≈ 479 in this sys-
tem. But note that the contribution f (n) is not entirely
proportional to the cumulative product s1s2 · · · sn. It is
observed that f (n) decays more quickly than s1s2 · · · sn
as n increases. This is because we haven’t taken into
account the decomposed determinants Da

[kµ]
and Db

[kµ]

in this empirical estimate, and |Da
[kµ]
|, |Db

[kµ]
| < 1 holds

strictly as proved in Theorem 2.
In other investigated systems such as graphite,

LiCoO2, TiO2, and CrO2↓, the contribution from the
f (2) terms is noticeably less significant, constituting less
than 30% of the full spectrum. Their corresponding sec-
ond largest singular values s2 < 0.6, suggesting that
s1s2 < s1 and hence f (2) would not be as important as
the f (1) terms. One severe deviation from this estimate
would be the tight-binding 1D chain. The corresponding
s1s2 ≈ 10.25, which is comparable to s1 ≈ 9.97. How-
ever, the f (2) contribution is tiny, about 6.1% of the full
(f (1) + f (2)) spectrum. Again, this is because the de-
composed determinants Da

[kµ]
and Db

[kµ]
are missing. In

this regard, it would be better to view the cumulative
product s1s2 · · · sn as the upper bound of the f (n) contri-
bution. In other words, if s1s2 · · · sn is significantly small
compared to the leading order terms (s1 and s1s2), then
it is already safe to neglect the f (n) terms.

To define the smallness of the cumulative
product, we may introduce the ratio ηn such
that: ηn max

m
{s1s2 · · · sm} = s1s2 · · · sn, where

max
m
{s1s2 · · · sm} is the maximum of the cumula-

tive product. According to the examples studied in
this work, we find one could safely neglect the f (n)

configurations with ηn < 0.5.

Although we have gone beyond f (2) configurations in
the determinant calculation, we still find the spectra for
all the cases studied in this work can be well defined by
just the configurations up to f (2). This applies even to
Li, in which up to f (5) configurations are included. The
f (2) configurations slightly increase intensities of the two
absorption humps at 61 and 64 eV compared to the ab-
sorption peak at 56 eV. And the spectra beyond f (2)

(summed from f (1) to f (n) for n = 3, 4, 5) can basically
be reproduced by scaling up the f (1) + f (2) spectrum
using an energy-independent factor.

Here, we take a closer examination of the intensity
contribution from f (2) configurations (as shown by black
dotted curves in Fig. 5). The f (2) contributions in the
1D chain, graphite, and LiCoO2 (the first row of Fig.
5) are different from the ones as in Li, RuO3, and Cu
(the third row of Fig. 5). In the former group, the f (2)

contribution does not have as many absorption features
compared to f (1). In particular, the f (2) contribution
does not have a well-defined peak at the absorption edge
as manifests in f (1). In the latter group, the f (2) con-
tribution mimics the f (1) contribution in that they have
similar absorption structures (peaks). All the absorption
peaks that appear in f (1) also appear in f (2), including
the peaks at the absorption onset. A primary reason for
the f (2) contribution mimicking the f (1) one in Li, RuO3,
and Cu is due to low-energy e-h pair production in these
metallic systems. There are many orbitals of similar en-
ergies near the Fermi level in the final-state system (the
supercell that contains an impurity for modeling core-
excited states). More speficially, there are more than
12 orbitals within an energy window of 0.3 eV at the
Γ-point of the supercell, as found by the ∆SCF calcu-
lations. Some of these orbitals are occupied and some
are not. The majority of the f (2) configurations in these
systems can be understood as a transition from the core
level to one empty final-state orbital c, coupled with a
low-energy e-h pair (as labeled by c1 and v1), whose ex-
citation energy is negligibly small. Therefore the spectral
contribution from f (2) mimics the one from f (1), which
is only defined by empty final-state orbitals, in a one-
body manner. This partially explains why the one-body
final-state method can often reproduce the XAS of many
metallic systems adequately, even though the physics of
MND theory is completely missing.

The f (2) contributions in the 1D chain, graphite, and
LiCoO2 are more complex to analyze, which involves not
just low-energy e-h pairs near the Fermi level / band gap.
In graphite, for instance, many f (2) configurations that
contribute modestly to XAS are composed of a core-level
transition to c which is coupled to an e-h pair with c1 be-
ing a low-lying empty orbital (π∗), and v1 going over the
continuum of occupied orbitals that span more than 8 eV
(π and σ continuum). So the transition energy should be
added from the two e-h pairs: E = (εc−εh)+(εc1−εv1),
in which both εc−εh and εc1−εv1 can vary across a wide
energy range. This explains why the f (2) spectral con-
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FIG. 5. (color online) Odd rows: Comparison of the determinant spectra at different shake-up orders. Even rows: comparison
of the determinant spectra, with the initial- and final-state spectra, and with available experimental spectra. A high-order
determinant spectrum is not plotted if it appears to overlap on the determinant spectrum at one lower order (for example, the

Li spectrum up to f (5) appear to overlap with the one up to f (4)). The determinant spectra are scaled for comparing to the
initial- and final-state spectra, according to the absorption peak at around 293 eV for graphite, 536 eV for LiCoO2, 64 eV for
Li, 4 eV for RuO3, and 9005 eV for Cu, respectively. The experimental spectra are digitized from Ref. [63] (graphite), [64]
(LiCoO2), [65] (Li), and [66] (Cu). The double-peak structure of the σ∗ peak near 292.5 eV in graphite could be due to lattice
vibrational effects, according to a recent work [59].
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tribution in graphite is smeared out without well-defined
peaks. Similar analysis applies to the f (2) continuum
between 530 and 534 eV in LiCoO2, which involves tran-
sitions from the core level and some valence orbitals v1
(mainly O 2p) around 4 eV below the valence band max-
imum (VBM) to two low-lying empty orbitals c and c1.
This f (2) continuum fills out the energy gap between 530
and 534 eV, and explains why there is no spectral gap
between near-edge peaks ( < 6 eV from onset) and the
high-energy humps (> 6 eV from onset) in the O K edge
of TMOs, although there is no single-body orbital within
this gap. Such is true for the energy gap near 6 eV in
RuO3.

It should be noted that configuration interaction is ab-
sent from the above analysis of f (2) configurations. In-
teraction within f (2) may introduce excitonic effects be-
tween c1 and v1 and plasmon excitations. So far there
is no electron-plasmon (plasmaron) coupling present in
the determinant approach. Configuration interaction be-
tween f (1) and f (2) may remix the spectral contribu-
tion from the two sets of configurations and modify the
shakeup effects. So far the ratio of the intensities of the
near-edge peaks to the high-energy humps in TMOs is
still too high in the determinant calculation up to f (2),
as compared with experiments. Introducing configura-
tion interaction may resolve this problem, which is be-
yond the scope of this work.

D. Initial-state, final-state, and the determinant
XAS

Lastly, we rationalize the determinant calculation by
comparing the determinant spectra with the initial- and
final-state spectra (even rows in Fig. 5).

For the 1D tight-binding chain, the MND effects man-
ifest as an asymmetric, power-law singularity that di-
verges at the absorption edge. Note that this singularity
has already been reproduced at the f (1) level. Thanks
to the final-state orbitals in the determinant formalism,
one does not need to go over many orders of Feynman di-
agrams expanded in the initial-state orbitals to produce
the edge singularity. The determinant spectrum does not
resemble the one-body final-state spectrum, which looks
like a ”half dome”, making the inclusion of MND effects
essential to the spectral calculation. The singularity at 2
eV is the van Hove singularity due to the 1D band edge.

Similar MND effects also manifest in the XAS (polar-
ization vector is 45 deg off-plane) of graphite. After the
correction of the determinant approach, the first-peak
(around 286 eV, due to π∗) intensity is significantly mag-
nified compared with the final-state XAS. The corrected
intensity ratio of the first peak to the second (around
293 eV) is 1.25 (0.65 in the final-state spectrum), which
is in good agreement with 1.35 in a previous experi-
ment [63]. The spectral plateau between 288 and 292
eV (due to the constant joint DOS in 2D systems) is
also tilted upward at the low-energy end, due to the

MND effects. Such MND effects in graphite were also
obtained from first-principles using a more complex ap-
proach based on Green’s function, which involves energy
and time integral, and Fourier transformation [55, 56, 58].
Here, the determinant approach provides equivalent spec-
tra by only a one-shot matrix inversion and a heuristic
search of computationally accessible configuration space.
It should be noted that both the determinant spectrum
in this work and the MND spectrum in Ref. [58] cannot
reproduce the splitting of the σ∗ peak at 292.5 eV, which
could instead be explained by lattice vibrational effects
as in a recent work [59].

Significant intensity correction of the peak at onset is
also observed in LiCoO2, Li, and RuO3. In LiCoO2, the
intensity ratio of the peak at 528 eV to the peak at 532 eV
as found by the determinant approach is 2 : 1, which is
in good agreement with a previous measurement [64]. In
the same work, the intensity ratio by the one-body final-
state approach with GGA + U is 1 : 1, which is consistent
with our calculation. In RuO3, the intensity ratios of two
near-edge peaks are reversed after correction, which was
also reported in our previous work on 3d TMOs [1, 2].

The LiK edge calculated from the determinant formal-
ism (at the level of f (4)) for Li metal is in good agreement
with a previous experiment [65]. Thermal vibration of
the lattice could further modify the spectrum [44], and
may broaden the peaks at 61 and 63 eV, making it in
closer agreement with the experiment. However, ther-
mal effects will not be discussed in this work, because we
focus on the convergence with respect to shakeup orders.

The core-hole attraction effect is most significant in
the 1D Chain, graphite, and Li, although they are gap-
less systems. After the inclusion of the core hole, the
initial-state spectra dramatically redshift. However, the
core-hole effect only causes the initial-state spectra to
redshift rigidly in LiCoO2, RuO3, and Cu. The redshifts
of the lowest-energy peaks in LiCoO2 and RuO3 are 1.28
and 0.34 eV respectively, which are not negligibly small,
although the core hole is at the O site where the near-
edge orbitals are mainly composed of TM d orbitals. This
explains why initial-state spectra are sometimes good ap-
proximation to XAS for OK edges in TMOs, as discussed
in Ref. [3].

III. CONCLUSIONS

In summary, we have introduced two theorems for reg-
ulating the convergence of the determinant calculation,
using a SVD analysis over the auxiliary ζ-matrix. The
convergence with respect to the excitation order n de-
pends on the number of the significant singular values of
the ζ matrix. We show that the cumulative product of
the singular values s1s2 · · · sn can be used as an effective
estimate for the f (n) contribution. It is found empirically
that it is safe to neglect the f (n) contribution and higher-
order when s1s2 · · · sn < 0.5 max

m
{s1s2 · · · sm}. However,

satisfactory determinant spectra have been achieved at
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the order of f (2) for all the examined cases (in this work
and the TMOs as in Ref. [2]).
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Appendix A: Computational Details

The single-body energies and orbitals for both the
initial- and final-state systems are obtained with DFT

∆ SCF calculations, as described in Ref. [1, 2]. PBE
functionals are used for the DFT calculations. Modified
pseudopotentials (by changing 1s2 to 1s1) are generated
for simulating the core-hole potential of K edges. We use
exactly the same set of pseudopotentials for all the atoms
in initial-state and final-state calculations, except for the
core-excited atom. Supercell dimensions are chosen to be
approximately 10Å that is sufficient to minimize spuri-
ous periodic interactions among the core-hole impurities.
The ∆ SCF calculations for TMOs are performed using
the DFT+U theory [15] with the U value adopted from
Ref. [17]. A 5 × 5 × 5 k-grid is used to sample the BZ
of the supercell, which is essential for high-energy scat-
tering states and metallic systems. The DFT part of the
calculations is performed using a local repository of the
ShirleyXAS code, which is available at the David Pren-
dergast’s group at the Molecular Foundry.

The determinant calculations are performed using an
open source software package, MBXASPY, which is avail-
able at https://github.com/yufengliang/mbxaspy.
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