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Outstanding problems in the high pressure phase diagram of hydrogen have demonstrated the
need for more accurate ab initio methods for thermodynamic sampling. One promising method
that has been deployed extensively above 100GPa is coupled electron-ion Monte Carlo (CEIMC),
which treats the electronic structure with quantum Monte Carlo (QMC). However, CEIMC predic-
tions of the deuterium principal Hugoniot disagree significantly with experiment, overshooting the
experimentally determined peak compression density by 7% and lower temperature gas gun data
by well over 20%. By deriving an equation relating the predicted Hugoniot density to underlying
equation of state errors, we show that QMC and many-body methods can easily spoil the error
cancellation properties inherent in the Rankine-Hugoniot relation, and very likely suffer from error
addition. By cross validating QMC based on systematically improvable trial functions against post-
Hartree-Fock many-body methods, we find that these methods introduce errors of the right sign
and magnitude to account for much of the observed discrepancy between CEIMC and experiment.
We stress that this is not just a CEIMC problem, but that thermodynamic sampling based on other
many-body methods is likely to experience similar difficulties.

PACS numbers: 67.80.ff,63.20.dk,62.50.-p,64.70.kt

Quantum Monte Carlo methods (QMC)1,2, which work
with the exact Hamiltonian of a physical system, have
been increasingly used to elucidate outstanding experi-
mental controversies in the equations of state of hydro-
gen and its isotopes, especially above 100 GPa3–8. This
is because the approximations underlying density func-
tional theory (DFT), the traditional workhorse for ab ini-
tio computations of material properties at extreme con-
ditions, have been shown to introduce wild variability
into the predicted locations of molecular-to-atomic and
insulator-to-metal phase boundaries, both at high and
low temperatures9–11. Accurate characterization of these
transitions is important, not only for the interpretation
of recent claims regarding the synthesis of solid metallic
hydrogen3, but also for modelling Jovian planets, brown
dwarfs, and inertial confinement fusion implosions12.

Coupled electron-ion Monte Carlo (CEIMC) is one of
the most ambitious and well controlled QMC algorithms
fielded in the study of hydrogen to date13–18. Rather
than use QMC indirectly to validate or construct DFT
functionals19,20, or partially to compute specific contri-
butions to the low temperature free energy21–23, CEIMC
uses QMC to sample the Born-Oppenheimer potential
energy surface directly with either classical or quantum
nuclei13–15. It has been fielded in both the solid24 and
liquid phases14,25,26 of hydrogen and deuterium, yield-
ing qualitative agreement with DFT but with ostensibly
smaller uncontrolled errors.

Unfortunately, CEIMC predictions of the princi-
pal Hugoniot of deuterium differ significantly from
experiment27, as can be seen in Figure 1. The den-
sity at peak compression is roughly 7% larger than the
best experimental data28 and at pressures near the es-
tablished gas-gun data29, the discrepancy widens to over
20%. This is troubling, since many of the systematic er-
rors that could affect CEIMC calculations are expected to

be greatly reduced for the molecular phase. It has been
argued that the discrepancy could originate within the
experiments27, but due to the hard wrought30,31 agree-
ment between gas-gun29, pulsed-power28,32, converging
explosive shock33, and laser platforms34–36, we feel this
discrepancy is more significant than discrepancies else-
where in the phase diagram. Moreover, density func-
tional theory predicts a principal Hugoniot in excellent
agreement with experiment and is surprisingly robust to
the choice of functional37–40.
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FIG. 1. Pressure vs. density compression of the principal
deuterium Hugoniot. Diamonds are the experimental data
from Refs.28,29, filled circles are the published CEIMC data27,
and hollow circles are the corrected CEIMC Hugoniot points
using methods in this paper. PW91 and vdW-DF Hugoniots
from Ref.28 included for comparison.

In this work, by analytically investigating the sensitiv-
ity of the predicted Hugoniot to underlying equation of
state errors, we demonstrate that the Rankine-Hugoniot
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relation41 supports a rich structure for error cancella-
tion. We show that whereas DFT can effectively utilize
this structure to produce an accurate principal Hugoniot,
many-body methods spoil this error cancellation and very
likely suffer from error addition. Using diffusion Monte
Carlo (DMC) based on systematically improvable wave
functions and cross validating against traditional many-
body quantum chemistry methods in periodic boundary
conditions, we can show ab initio that in the absence of
all other sources of error, fixed-node errors entering into
the evaluation of the Rankine-Hugoniot relation have the
right sign and magnitude to account for much of the dis-
crepancy between CEIMC and established gas gun data.
While we primarily focus on CEIMC, we stress that the
issues highlighted in this work are of general concern to
any beyond-DFT method of thermodynamic sampling.

This paper is organized as follows. In Section I, we
present a formula for the dependence of the Hugoniot
curve on the underlying equation of state errors. In Sec-
tion II, we discuss in detail the parameters and problem
specific procedures used in all density functional theory,
quantum chemistry, and quantum Monte Carlo methods.
In Section III, we present the results of our error analysis
for 8 atom cells, and then discuss prospects for generaliz-
ing to the thermodynamic limit with limited calculations
on 128 atom cells. This progression is used to estimate
likely errors in many-body methods near the established
gas gun data, the impact of which is demonstrated by
calculating a D2 principal Hugoniot based on the pub-
lished CEIMC Hugoniot when the demonstrated errors
are taken into account and corrected for. We conclude
Section III by investigating the role of error cancella-
tion in density functional theory calculations. Everything
that the authors deem especially tedious or speculative is
left to the supplemental materials: the derivation of the
error formula, how the principal Hugoniot error correc-
tion was done, the potential (lack of) impact of many-
body finite-size effects on the principal Hugoniot, and

how the conclusions of this paper might change as we
consider thermodynamic conditions near peak compres-
sion.

I. ERROR FORMULA

In order to understand how errors in a computational
method affect the determination of the Hugoniot curve,
we first consider the locus of thermodynamic states (ρ, T )
achieved by planar shock wave compression of a mate-
rial at an initial condition of (ρ0, T0). Because mass, en-
ergy and momentum are conserved across the shock front,
these states satisfy the Rankine-Hugoniot relations:

E(ρ, T )−E(ρ0, T0) =
1

2
(P (ρ, T )+P (ρ0, T0))

(
ρ−10 − ρ−1

)
(1)

where, E(ρ, T ), P (ρ, T ), ρ, T , are energy, pressure, den-
sity, and temperature, respectively, and “0” indicates the
initial state.

Now consider computing the Hugoniot curve using a
perturbed equation of state E∗(ρ, T ), P ∗(ρ, T ). Errors
in observable A are defined as ∆A∗ = A∗(ρ, T )−A(ρ, T )
. The collection of points (ρ∗, T ∗) defining the Hugoniot
of E∗(ρ, T ), P ∗(ρ, T ) will usually be different from those
calculated using Eq. 1. However, we can map points on
the reference Hugoniot to those on the perturbed Hugo-
niot if we know both ∆E∗(ρ, T ) and ∆P ∗(ρ, T ). This
mapping is quite complicated in general, but if we con-
sider solutions of the Rankine-Hugoniot equation along a
specific isotherm given by T , and perturbatively expand
the Rankine-Hugoniot relations in terms of the equation
of state errors, we can solve for ρ∗ to leading order in ∆ρ∗,
∆E∗ and ∆P ∗. While the derivation of this mapping is
not difficult, it is algebraically intensive and so we leave
its derivation to the supplemental information42. The
mapping is:

ρ0
ρ∗

=
ρ0
ρ
−
(

1− ρ0
ρ

)[
∆E∗(ρ, T )−∆E∗(ρ0, T0)

E(ρ, T )− E(ρ0, T0)
− ∆P ∗(ρ, T ) + ∆P ∗(ρ0, T0)

P (ρ, T ) + P (ρ0, T0)

]
C(ρ, T )−1 +O(∆2) (2)

C(ρ, T ) is a numerical factor that depends on both the
equation of state and its errors. The form of C(ρ, T ) is
given and explained in the supplemental information, but
for this discussion, we estimate it to be between 5 and 8
for all densities and temperatures considered.

We see immediately multiple pathways for error can-
cellation: between E and E0, between P and P0, and
between the combination of E−E0 and P +P0. As long
as the errors have the same sign, a theory will experience
“error cancellation”. Conversely, if they have opposite
signs, a theory will experience “error addition”. This is
important, because while an error cancellation scenario
can support very large errors without changing the cal-

culated Hugoniot density ρ∗ significantly, any error made
in an error addition regime will directly change the pre-
dicted ρ∗. The goal of this paper from here on out is to
evaluate ∆E∗ and ∆P ∗ for several major classes of elec-
tronic structure methods, and see how errors arising in
these calculations manifest in Hugoniot estimation.

II. COMPUTATIONAL DETAILS

Now that we have an analytic form for relating the
equation of state errors to a predicted Hugoniot curve
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(ρ∗, T ∗), we investigate how this applies to Hugoniot cal-
culations using DFT and beyond-DFT ab initio methods.
The goal is to attempt to quantify ∆E∗ and ∆P ∗ for var-
ious methods. We do this by first generating ionic snap-
shots that are representative of Hugoniot states of inter-
est, and then computing reference energies and pressures
on these test configurations using both systematically im-
provable QMC and high-level quantum chemistry meth-
ods. The reference ground state energies are found by
“consensus”–showing that QMC and high-level quantum
chemistry methods produce similar ground state energies
despite their vastly different approximations, whereas the
error in other quantities is estimated through detailed
comparisons between methods.

This section will focus on three major areas, the first
being the generation of the test sets used to to mock ther-
modynamic states relevant for the deuterium Hugoniot.
Secondly, we will discuss the practical details associated
with running the DFT, QMC, and quantum chemistry
methods used in this work. Lastly, we motivate and dis-
cusss our use of QMC based “zero-variance” extrapola-
tions used in this work.

A. Test Set Generation and DFT

To generate the test configurations, we performed
quantum molecular dynamics simulations in VASP43–46

using the PBE functional47. We used a plane wave cut-
off of 1200eV and an all-electron PBE PAW pseudopo-
tential. We chose ρ0 = 0.167g/cc at T = 22K as our
reference point and sampled densities ranging between
ρ/ρ0 = 3.000 and ρ/ρ0 = 4.250 at 4000K. While we also
performed a similar sampling between ρ/ρ0 = 3.500 and
ρ/ρ0 = 5.000 at T=10000K, this is relegated to the sup-
plemental information.

We used VASP’s Langevin thermostat with the damp-
ing parameters set to γ = 50ps−1 and a time step of
τ = 0.3fs. At each density, a single configuration was
drawn at random after an equilibration time of 0.9ps.

For the DFT electronic structure, we used a plane
wave cutoff of 1200eV and the all-electron VASP PBE
PAW Pseudopotential. For the 8 atom cells, we used a
Monkhorst-Pack grid of 8x8x8, wheras for the 128 atom
cells, we used a single k-point at the Baldereschi mean
value point of a cubic cell.

B. QMC Trial Wave Function Generation

The QMC workflow used in this work was somewhat
nontrivial, so we take some time in this section to elabo-
rate on the construction of various trial wave functions.
We will also discuss our methods of calculating the QMC
pressure of our configurations, and techniques we used
to mitigate the mixed-estimator bias. Details of the op-
timization and diffusion Monte Carlo runs will be men-
tioned in passing. All QMC calculations were performed

with QMCPACK48.
The most basic trial wave function commonly used in

QMC is the “Slater-Jastrow” wave function, henceforth
designated “SJ”, given by the following:

ΨSJ = e−J det(M↑) det(M↓) (3)

M↑ and M↓ are Slater determinants for the up and

down electrons, and are defined as [M↑(↓)]ij = φj(r
↑(↓)
i ).

The φi(r) functions are single particle orbitals (SPO’s)
taken from the set {φ0, φ1, . . . , φNorbs

}, where Norbs is
the number of SPO’s in our set. J is the symmetric
Jastrow factor, which we will describe in detail later in
this section.

This ansatz can be slightly modified to yield the Slater-
Jastrow backflow wave function, which we will abbreviate
with “BF”. It’s form is identical to the Slater-Jastrow,

but we replace M↑(↓) with [M̃↑(↓)]ij = φj(qi). q↑i is a
“quasiparticle” coordinate, defined as:

q↑i =
∑
I

ηeH(|r↑i − rI |)(r↑i − rI) (4)

+
∑
i 6=j

η↑↑(|r↑i − r↑j |)(r↑i − r↑j ) (5)

+
∑
j

η↑↓(|r↑i − r↓j |)(r↑i − r↓j ) (6)

q↓i is defined analogously. The advantage of backflow
is that by optimizing η(r), we can effectively perturb the
nodal surface in a way that lowers the total VMC and
DMC energy.

Lastly, we have the multi-Slater determinant wave
functions, henceforth abbreviated as “MSD”:

ΨMSD = e−J
NCSF∑
i=0

αkΦk (7)

While the number of possible antisymmetric functions
Φk grows combinatorically with system size, changing the
number of included terms gives us a natural knob that
we can use to systematically improve the quality of the
trial function. Just to remind the reader of our naming
convention, “SJ-PBE” would be a Slater-Jastrow wave
function built from PBE orbitals, “MSD-HF” a multide-
terminant with Hartree-Fock orbitals, and so on.

While we could use ordinary Slater determinants for
Φk, we chose to use configuration state functions (CSF’s),
which are spin and symmetry adapted linear combina-
tions of Slater determinants constructed to be eigenstates
of Ŝ2.

Φk =
∑
i

cik det(M↑i ) det(M↓i ) (8)

The coefficients cik are totally determined from symme-
try. The advantage to using CSF’s is that we can restrict
the trial wave function optimization to only those wave
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functions that preserve spin singlet symmetry, which
should be the symmetry of the ground-state for these
hydrogen systems. This amounts to a 2-3x reduction in
the number of optimization parameters as opposed to if
we used arbitrary linear combinations of determinants.

Now that we have specified the high-level forms for all
trial wave functions used in this work, we take some time
to explicitly walk through the specific forms used and the
particular means of generating our trial wave functions.

For all three ansätze, we used a Jastrow factor with
the following form:

J =
∑
i,I

ueH(|ri − rI |) (9)

+
∑
i<j

u↑↑(|r↑i − r↑j |) + u↓↓(|r↓i − r↓j |) (10)

+
∑
i,j

u↑↓(|r↑ − r↓|) (11)

+
∑
i<j,I

u↑↑H(|r↑i − rI |, |r↑j − rI |, |r↑i − r↑j |) (12)

+
∑
i<j,I

u↓↓H(|r↓i − rI |, |r↓j − rI |, |r↓i − r↓j |) (13)

+
∑
i,j,I

u↑↓H(|r↓i − rI |, |r↑j − rI |, |r↓i − r↑j |) (14)

The first line is a one-body Jastrow, the next two are
spin resolved two-body Jastrows, and the last few lines
are three-body spin-resolved Jastrows. In QMCPACK,
these are represented by short-ranged b-splines, whereas
the 3-body term is represented with polynomials.

We used Quantum Espresso to generate single particle
orbitals in periodic boundary conditions. We used PBE
orbitals47, which were generated using the bare coulomb
potential, the PBE functional, and a planewave cutoff of
120Ry. We also used Hartree-Fock (HF) orbitals with
a planewave cutoff of 500Ry. These cutoffs were chosen
by optimizing the DMC energy and VMC variance as a
function of planewave cutoff. These values roughly min-
imized both.

DMC calculations employing Slater-Jastrow and
Slater-Jastrow backflow wave functions follow the stan-
dard QMC workflow. All Jastrow parameters were si-
multaneously optimized at the VMC level, after which
the backflow terms were optimized if present. Optimiza-
tion was done to minimize the trial wave function energy
using the linear method49. Convergence of the optimiza-
tion procedure was checked by hand, after which longer
VMC and DMC runs were performed. Within DMC, we
used a time step of τ = 0.0025Ha−1 with 1600 walkers
for all wave functions.

For the MSD calculations, the workflow was somewhat
nontrivial. There were two major problems we had to
tackle. The first was how to calculate the cik coefficients
for CSF’s that preserve singlet character even for high
degrees of electronic excitation in periodic boundary con-
ditions. The second problem was how to prescreen the

number of determinants in the full configuration interac-
tion space to something computationally tractable. Both
of these issues are further exasperated by the fact that
there are few quantum chemistry codes that can handle
periodic boundary conditions.

To deal with the first problem, we used GAMESS50,51,
an open boundary condition code, to generate the CSF’s
for our box of hydrogen atoms in open boundary con-
ditions, and then used these CSF’s in periodic bound-
ary conditions. The rationale is that the code uses the
graphical unitary group approach to generate CSF’s to
arbitrarily high levels of excitations. This uses only the
symmetries of the cluster, and nothing about the details
of the electronic structure. The space group of our hydro-
gen molecules in periodic boundary conditions is going
to have the trivial point/space group as a subgroup, so
while not optimal, we should be able to generate CSF’s
in a cluster and have them preserve the basic spin sym-
metries when placed in periodic boundary conditions.

To deal with the prescreening of determinants, we
placed our hydrogen atoms in open periodic boundary
conditions and performed CI calculations in a truncated
space of determinants. Starting with a cc-pCVTZ basis
set and Hartree-Fock orbitals, we built up a restricted
CI space consisting of a CAS(8,8), with single and dou-
ble excitations out of the CAS, up to the 12th orbital
above the occupied orbitals. After performing a CI cal-
culation in this space, the CSF’s were ordered according
to the magnitude of their coefficients. We then took these
CSF’s and used them to define CSF’s in periodic bound-
ary conditions with PBE orbitals. QMC optimizations
were done by first eliminating all CSF’s whose initial
magnitude was less than 0.01. After optimizing these
coefficients simultaneously with the Jastrow factors, we
would then decrease the cutoff threshold and repeat the
procedure. We did this for thresholds of 0.01, 0.005,
0.0025, 0.001, and 0.0005, which amounted to roughly
160, 480, 1080, 2400, 3500 CSF’s respectively. It should
be noted that the number of CSF’s we actively work with
is a tiny sliver of our CAS+second order excitation space,
which is spanned by more than 580,000 CSF’s.

C. QMC Pressures

We computed all pressures using the virial theorem:

P vir =
1

3Ω
(2〈T 〉+ 〈V 〉) (15)

Ω is the simulation cell volume, 〈T 〉 is the expectation
value for the electronic kinetic energy, and 〈V 〉 is the ex-
pectation value for the total potential energy. However,
due to the mixed-estimator problems in QMC, we used
first the identity 〈E〉 = 〈T 〉 + 〈V 〉 to rewrite the virial
pressure as:

P vir =
1

3Ω
(2〈E〉 − 〈V 〉) (16)
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〈E〉 can be sampled in DMC without bias, and since V̂
is diagonal in position space, it can be sampled without
bias using either reptation Monte Carlo or DMC with
forward-walking. In this work, we used the latter. All
observables were recorded at multiple projection times
between 0 and 5Ha−1. To check convergence, we con-
sidered just the ρ/ρ0 = 3.750 8 atom configuration with
SJ-PBE, SJ-HF, BF-PBE, and BF-HF wave functions.
We fit the trace of the potential energy vs. projection
time to an exponential form: V (β) = a + be−cβ . For
PBE orbitals, we fit all data after a 1Ha−1 projection
time, whereas for HF orbitals, we fit everything after a
2.5Ha−1 projection time (due to the presence of a min-
imum in V (β). We found that taking forward walked
estimates at β = 5Ha−1 introduced errors smaller than
the statistical error bar, so the reported numbers are es-
sentially converged.

It should be noted that the pressure obtained from
the virial estimate can be different from numerical dif-
ferentiation of the total energy, the latter of which is
desired. In Table I, we show a comparison between the
virial and finite-difference pressure estimates associated
with several different trial functions at the DMC level for
a single 8 atom test configuration at ρ/ρ0 = 4.0. In this
particular case, we see a disagreement of roughly 1GPa
between the virial and finite-difference estimates for all
considered trial wave functions. Moreover, we observe a
much greater sensitivity to the trial wave function when
using the virial pressure estimates compared to the fi-
nite difference estimates–spreads of 1GPa versus 0.5GPa
respectively. 1GPa is significant on the scales of this
problem, especially so near the gas gun data, so a more
careful study to pin down the pressure errors is needed
for future Hugoniot work.

∆v(a30) ESJ−PBE(v) ESJ−HF EBF−PBE(v) EMSD−HF

-5 -4.4998609(83) -4.4990478(88) -4.501961(13) -4.502758(16)

5 -4.5055793(84) -4.5047996(88) -4.507555(13) -4.508425(17)

PFD(GPa) 16.824(35) 16.922(37) 16.461(54) 16.673(54)

P vir(GPa) 17.438(21) 18.027(20) 17.037(51) 17.78(9)

TABLE I. DMC total energy at two finite volume dis-
placements ∆v of 8 atom ρ/ρ0 = 4.000 test configuration.
ESJ−PBE and EBF−PBE are the total DMC energies of SJ-
PBE and BF-PBE wave functions respectively. The last two
rows are the estimated finite difference pressure in GPa, fol-
lowed by the virial pressure estimate.

D. Quantum Chemistry Methods

We performed calculations in periodic boundary con-
ditions with PySCF52 using Hartree-Fock (HF), second
order Møller-Plesset perturbation theory (MP2)53, re-
stricted coupled-cluster with single and double excita-
tions (CCSD), and restricted CCSD with perturbative
triple excitations (CCSD(T))54.

All reported energies and pressures were extrapolated
to the complete basis set limit (CBS) using known formu-
las. We used cc-pV{D,T,Q,5}Z basis sets55 to perform
the fits. The astute reader will notice that we have not
used basis sets augmented with diffuse functions. While
we did test these, we found that linear dependency and
computational cost issues prevented us from completing
calculations with higher cardinality augmented basis sets,
which negatively affected the quality of these basis set
extrapolations as compared to standard basis sets.

For energies, we used the following standard formulas
for the Hartree-Fock energy EHFX and correlation energy
EcorrX with a basis set cardinality of X.

EHFX = EHFCBS + a(V )e−b(V )X (17)

EcorrX = EcorrCBS +
c(V )

X3
(18)

Here, a(V ), b(V ), and c(V ) are fit coefficients that are
assumed to be volume dependent. EHFCBS and EcorrCBS are
the complete basis set Hartree-Fock and correlation en-
ergies respectively.

Due to noise in the estimates of EHFCBS and EcorrCBS , ob-
taining CBS pressure estimates from finite differences of
CBS energies was not feasible. Instead, we computed
PHFX and P corrX using finite differences for each basis set
X. Taking the volume derivative of Eqs. 17 and 18 under
the assumption that the fit coefficients are differentiable
w.r.t. volume gives us the following pressure extrapola-
tion formulas:

PHFX = PHFCBS + a′(V )e−b(V )X (19)

P corrX = P corrCBS +
c′(V )

X3
(20)

The primes denote volume deriatives of the fit coeffi-
cients appearing in Eqs. 17 and 18.

E. Zero-Variance Extrapolations

The variational theorem of quantum mechanics states:

E[ΨT ] =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

≥ E0 (21)

Here, E[ΨT ] is the variational energy of a wave func-
tion |ΨT 〉, E0 is the exact ground state energy, and equal-
ity in the above expressions holds if |ΨT 〉 is an eigenstate

of Ĥ. Likewise, there is a corrolary for the variance of
the trial function |ΨT 〉, σ2

E [ΨT ]:

σ2
E [ΨT ] =

〈ΨT |Ĥ2|ΨT 〉
〈ΨT |ΨT 〉

− (E[ΨT ])2 ≥ 0 (22)

In other words, the variance of a wave function is greater
than or equal to zero, with equality holding if |ΨT 〉 is an

eigenstate of Ĥ.
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Provided a method obeys the variational theorem (e.g.
Hartree-Fock, VMC and diffusion Monte Carlo, selected
CI), the above expressions provide a well defined heuris-
tic for determining “better” and “worse” approximate
solutions to eigenstates of Ĥ. We will rely heavily on the
variational theorem when trying to diagnose fixed-node
errors in CEIMC style wave functions using QMC with
more expensive trial wave functions.

Under certain circumstances, the scaling of both E[ΨT ]
and σ2

E [ΨT ] with wave function quality allows us to make
the following association56:

E[ΨT ] ∝ σ2
E [ΨT ] (23)

This has been used to great effect for iterative backflow
and homogeneous electron calculations, where perturba-
tive improvements to the wave function allowed extrap-
olations in agreement with released-node calculations.

For VMC trial wave functions, this is rigorous since
we have direct access to the variance and energy for any
trial wave function. However, the energies obtained from
this extrapolation are too crude to be of much use for
systems other than the homogeneous electron gas or ide-
alized fermi systems. It would be nice to perform the
extrapolation using the energy and variance of the fixed-
node wave function, but to date no method exists to
sample the fixed-node variance in a well defined manner.
To circumvent this problem, we make the approximation
that

σ2
EDMC

[ΨT ] ∝ σ2
EV MC

[ΨT ] (24)

Its very easy to construct counter examples where this
approximation breaks down: for example by construct-
ing a progression of “better” wave functions by increasing
the complexity of the Jastrow factor. Here, σ2

EV MC
[ΨT ]

would decrease as we enhanced the quality of the Jastrow
factor, whereas E2

DMC [ΨT ] would stay constant since it
is determined by the nodal surface, which doesn’t change.
However, for multideterminant style wave functions, we
are fixing the form of the Jastrow. Adding determinants
will then simultaneously improve both the nodal surface
and the overall quality of the trial wave function. It is in
this case where we expect that Eq. 24 to be reasonable. If
Eq. 24 holds, we can reasonably extrapolate EDMC [ΨT ]
vs. σ2

EV MC
[ΨT ], provided that the multidterminant en-

ters a region close enough to the exact wave function |Ψ0〉
such that linear extrapolation à la Eq. 23 holds. Note
that we are defining the DMC variance as the variance
of the fixed-node wave function ΦFN over the physical
Hamiltonian Ĥ, and not over the fixed-node Hamilto-
nian, which would of course yield zero variance for the
fixed-node wave function.

So how well does this work in practice? In Figure
2, we show the result of performing a linear extrapola-
tion to zero variance using the SJ-HF and MSD-HF data
points. The MSD energy vs. variance is not totally lin-
ear, and has some curvature. In spite of this, the linear
extrapolation accounts for most of the correlation energy

missed by BF-PBE, and agrees very well with CCSD(T)-
CBS. Figure 6 shows that the extrapolation procedure
consistently within approximately 0.1mHa/atom of the
CCSD(T)-CBS across all tested configurations, indicat-
ing that the excellent agreement indicated in Figure 2
between our MSD extrapolated estimates and CCSD(T)-
CBS is not a fluke.
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σ2 ( ×10−2 Ha2/atom)
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MSD-HF

SJ-PBE

Extrap

FIG. 2. DMC estimate of Ecorr vs. VMC variance for several
classes of wave function. The linear extrapolation to zero
variance is shown for the SJ-HF and MSD-HF wave functions.
While not perfect, it recovers all but 0.1mHa/atom of the
correlation energy missed by BF-PBE.

III. RESULTS

We begin our discussion by first considering estimates
of ∆E∗ and ∆P ∗ for small 8 atom snapshots. The reason
for this is the poor scaling of the quantum chemistry
methods and our multi-Slater trial wave functions with
system size. After this, we will consider limited QMC
calculations performed in 128 atom cells and comment
on the scaling of errors to the thermodynamic limit. As
a result of this discussion, we obtain some likely estimates
for ∆E∗ and ∆P ∗ for the CEIMC calculations, and use
these to produce an ab initio corrected Hugoniot.

We end the discussion by performing a similar anal-
ysis for several major DFT functionals, and provide an
explanation for the observed robustness and accuracy of
the DFT principal deuterium Hugoniot.

A. Small Cell Results

Our primary focus initially will be to attempt to con-
struct wave functions that are “better” than the ones
employed in the CEIMC calculations and to place lower
bounds on the fixed-node energy error, and sensitivity
of the pressure to quality of trial wave function. Inter-
estingly, this can be done entirely within QMC. We will
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cross validate against non-variational quantum chemistry
methods later.

For all tested forms of wave functions, including MSD
wave functions with differing numbers of CSF’s, we plot
both the total energy E[ΨT ] versus variance σ2

E [ΨT ] and

virial pressure vs.
√
σ2
E [ΨT ]. The rationale for the latter

is that observables that do not commute with the Hamil-
tonian incur errors that are leading order in the quality
of the trial wave function. We do not simplify this ex-
pression to make its connection to the variance explicit.

In Figure 3, we demonstrate the energy and variance
reduction associated with our improved MSD-HF wave
functions. While it takes some work, our best MSD wave
function has an energy 0.1-0.2mHa/atom lower than BF-
PBE with 60% lower variance. Additionally, given the
energy of our best MSD-HF wave function is lower than
the CCSD-CBS energy, this implies that we have con-
structed a wave function that is better than the CCSD
exponential ansatz for this particular problem. This is
our main reason for trusting (finite difference) pressure
estimates from QMC more than from the quantum chem-
istry methods, since it appears as though CCSD(T) only
provides slight corrections to CCSD (see Figure 7).

Of course, we see from the right of Figure 3 that despite
how “good” our MSD wave functions are, the pressure
virial is wildly sensitive to small variations in the choice of
trial wave function. Notice how the MSD-HF wave func-
tions initially predict higher virial pressures than SJ-HF,
but then as we go to smaller

√
σ2, it drops precipitously

by almost 0.7GPa.
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FIG. 3. Results for ρ/ρ0 = 3.750 test configuration. (Left) E
vs. σ2 for several trial wave functions. (Right) Pressure virial

vs.
√

(σ2) for same set of wave functions. “Zero-variance”
extrapolations were performed by fitting the MSD-HF and
SJ-HF to a straight line, and reading off the y-intercept.
While this might seem aggressive, it oddly agrees well with
the CCSD(T)-CBS estimates in almost all cases.

Now let’s consider how the different wave functions
perform across our small test set. In Figure 4, we show
that for both SJ and BF type wave function, the use of
HF orbitals drops the variance by roughly 30% at the
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FIG. 4. Small cell VMC variance vs. density for all tested
trial wave functions.

lowest densities, but provides only a modest 20% reduc-
tion in variance at the highest density. Our best MSD
wave function however has roughly 50-60% lower variance
than BF-PBE, and more importantly, has a variance that
is mostly flat with increasing density.
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FIG. 5. Small cell comparison of Ecorr/E
CCSD(T )corr for all

tested methods in %.

In Figure 5, we show the percentage of recovered cor-
relation energy relative to CCSD(T)-CBS, and in Figure
6, we show the difference in energies relative to BF-PBE.
We clearly see that despite the gains in correlation energy
made by BF-PBE over SJ-PBE (up to 0.2mHa/atom),
we’re still not close to the ground-state energy in these
test configurations. In fact, the MSD wave function
can recover about the same amount of energy over BF-
PBE as BF-PBE did over SJ-PBE. This is significant in
practical calculations because often times when one tries
several different nodal surfaces (e.g. comparing Slater-
Jastrow to backflow) and sees only small changes in the
energy, variance, and other properties, this can infor-
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FIG. 6. Small cell comparison of E−EBF−PBE for all tested
methods in mHa/atom.

mally be taken as a sign that we are “close” to the ground
state. In the absence of nodal release or some extrapola-
tion procedure however, this could lead one into a false
sense of security regarding the quality of the calculation.
Fortunately, the zero-variance extrapolation based on the
MSD wave functions gives us a dramatically better esti-
mate of how far off the exact answer we are.

3.00 3.25 3.50 3.75 4.00 4.25
ρ/ρ0
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CCSD-CBS

CCSD(T)-CBS

MP2

FIG. 7. Small cell comparison of P −PBF−PBE for all tested
methods.

Lastly, we look at the spread of virial pressures. The
noise prevents any definitive statements about density
trends, but what should be clear is that every other
trial wave function tested, including ones that have lower
energies and variance than BF-PBE, has higher virial
pressure estimates than BF-PBE. BF-HF indicates that
the pressure is probably 0.5GPa higher than BF-PBE,
wheras MSD-best indicates that its between 0.5GPa and

1GPa. Interestingly the quantum chemistry methods all
seem to predict lower pressures than QMC, although as
we’ve argued, MSD-best are better wave functions than
CCSD-CBS, and BF-PBE is actually better than CCSD
wave functions in the finite-basis sets we’ve considered.
CCSD(T)-CBS seems to track CCSD-CBS very closely.

To summarize, all variants of DMC and CCSD re-
cover smaller and smaller fractions of correlation en-
ergy, starting at roughly 98-99% at ρ/ρ0 and dropping
to between 96-97% for BF-PBE and the best multi-
determinant wave function considered. In practice, this
implies that DMC is overestimating the energy between
0.4mHa/atom and 1mHa/atom at the highest densities.
We see that the MSD zero-variance extrapolation main-
tains excellent agreement with CCSD(T) across the den-
sity range. Interestingly, we note the similarity between
DMC and CCSD, first observed by Trail et al.20 for hy-
drogen clusters in open boundary conditions.

B. Thermodynamic Limit

Since the quantum chemistry methods we tested scaled
like O(N5) to O(N7) with respect to the number of elec-
trons, we could not run them on the 128 atom test sets.
Thus, we have to proceed by analogy–looking to see if
the differences between different trial wave functions ob-
served in the small cells carry up to the large cells.

In Figure 8, we see that the variance per atom of all
tested wave functions in the 128 atom cells drops signif-
icantly from the variance observed in the 8 atom cells.
We also see the variance increases only very slightly as
we increase the density, in contrast with the small cell.
However, the use of Hartree-Fock orbitals continues to
drop the variance of the trial wave function significantly
compared against PBE orbitals.

In Figure 9, despite the noise, we can see that BF-PBE
is recovering only a modest amount of energy over both
SJ-PBE and SJ/BF-HF, between 0.1 and 0.3mHa/atom.
This seems very comparable to the energy gains observed
in the small cells, meaning that unless the amount of
correlation in the system is reduced as we go to the 128
atom cells, BF-PBE is probably recovering only a small
amount of remaining correlation energy, similar to the
small cells. As mentioned before, cc-pVDZ and cc-pVTZ
Hartree-Fock calculations at ρ/ρ0 = 3.75 imply that the
amount of correlation energy BF-DMC is recovering is
larger in the big cell than in the small cell. One can hope
that this is because DMC is more effective in the large cell
and recovers a larger fraction of correlation energy, but
an equally plausible scenario is that DMC is recovering
a similar fraction of correlation energy as in the small
cell–it’s just that there is more correlation energy.

Lastly, we show how the pressures compare between
SJ/BF-PBE and SJ/BF-HF. While there was significant
noise in the small cells, we see the difference between
the virial estimators is definitely exacerbated in the large
cells. For example, while the difference between BF-PBE
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and BF-HF pressure virials was between 0 and 0.6GPa
in the small cells with a fair amount of noise, in the large
cells the difference starts at 1GPa and monotonically in-
creases to 2GPa at ρ/ρ0 = 4.25. This sensitivity of the
pressure virial to choice of orbitals is unexpected, and a
problem that needs to be dealt with in future calculations
in hydrogen at these thermodynamic conditions.
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FIG. 8. VMC variance vs. density for all considered wave
functions for 128 atom cells.
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FIG. 9. E − EBF−PBE vs. density for all considered wave
functions for 128 atom cells.

We consider reasonable but pessimistic estimates of
the fixed-node error stemming from the BF-PBE en-
ergy and pressure virial. CCSD(T) indicates that in
the small cells, BF-PBE is capturing about 96-97% of
the correlation energy. We see in Fig. 6 that this
translates to between 0.8mHa/atom to 1mHa/atom at
the lowest pressure CEIMC Hugoniot point. Moreover,
based on Hartree-Fock calculations in a 128 atom cell
at ρ/ρ0 = 3.750, the absolute magnitude of the cor-
relation energy per atom appears to increase slightly,
from 22-25mHa/atom in the small cells to at least 28.2
mHa/atom. If we assume that DMC is recovering 96% of
correlation energy as we scale up to the thermodynamic
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FIG. 10. P − PBF−PBE vs. density for all tested wave func-
tions for 128 atom cells.

limit, this likely means that BF-PBE is overestimating
the total energy by 1.2mHa/atom. We’ll use this figure
for ∆E.

C. Corrected CEIMC Hugoniot

Based on the above considerations, let us assume that
the fixed-node errors at the CEIMC Hugoniot point
ρ/ρ0 = 3.91 and P = 18GPa are ∆E∗ = 1.2mHa/atom
and ∆P ∗ = −2GPa42. We now investigate how much of
the discrepancy between the CEIMC Hugoniot and ex-
periment could be attributed to these errors. To do this,
we assume the published CEIMC Hugoniot is our refer-
ence, and use Eq. 2 to compute a “corrected” ρ∗ from
∆E∗ and ∆P ∗.

To simplify this analysis, we make two approximations.
First, ∆E∗ and ∆P ∗ are assumed to be independent of
density and temperature. Based on our above results
showing that the fixed-node approximation gets worse as
density is increased and molecular disassociation is ap-
proached, this should be seen as a conservative view of
the impact of fixed-node errors on the deuterium Hugo-
niot; larger δE∗ and δP ∗ values will perturb the actual
Hugoniot even more. Secondly, to compute C(ρ, T ) ap-
pearing in Eq. 2, we use the Kerley equation of state.
We find that the following results are largely insensitive
to the choice of EOS used for this term.

We show in Figure 1 the corrected Hugoniot. We
find that the fixed-node error in the evaluation of the
Rankine-Hugoniot relation can reasonably account for
roughly 60% to 70% of the discrepancy between CEIMC
and experiment at the two lowest pressure CEIMC Hugo-
niot points. This would imply that the current discrep-
ancy between CEIMC and experiment is not caused by
controllable systematic errors or any issues with the un-
derlying CEIMC algorithm, at least at the lowest pres-
sure points.We do see that the assumed form of the fixed-
node errors is not enough to fix the discrepancy between
experiment and theory farther up the Hugoniot (i.e. near
peak compression), but as mentioned previously, this is
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not entirely unexpected given that our errors were esti-
mated at significantly lower temperatures and densities.
We do note that enouragingly, the pressure at which peak
compression occurs is nudged much closer to the experi-
ment.

D. DFT Hugoniot

Up to this point, we have spent quite a bit of time try-
ing to understand why the deuterium Hugoniot seems to
be sensitive to the errors in accurate many-body meth-
ods. This of course invites us to question why DFT ap-
pears to be so accurate for the principal Hugoniot, and
why this accuracy seems very robust to the choice of ap-
proximate exchange-correlation functional.

Using Eq. 2, we can now look at the sensitivity of
the predicted deuterium Hugoniot by estimating ∆E∗

and ∆P ∗ for several electronic structure methods. We
computed ∆E∗ and ∆P ∗ relative to PBE47 for the func-
tionals tested in Ref.28: PW9157, optB86b58, vdW-DF59,
vdW-DF260. Our choice of PBE as a reference is arbi-
trary but inconsequential for studying the impact of er-
ror trends on the Hugoniot. A test set was constructed
by drawing single 128 atom snapshots from equilibrated
DFT based molecular dynamics simulations at different
temperatures and densities, using the PBE functional.
One configuration targets the reference point at T=22K,
whereas the remaining six target the T=4000K isotherm
at densities between ρ/ρ0 = 3.00 − 4.25, so chosen be-
cause it approximates the thermodynamic states near the
highest pressure gas gun data. In Figure 11, we plot ∆P
versus ∆(E − E0) relative to PBE on the PBE Hugo-
niot point at ρ/ρ0 = 3.50. Inspection of Eq. 2 allows us
to write the condition for perfect error cancellation at a
specific Hugoniot point, i.e. where the term in brackets
vanishes:

∆(P + P0) = 2∆(E − E0)/(ρ−10 − ρ−1) (25)

We overlay this line on Figure 11. We see that
while the spread of energies and pressures differ from
PBE by almost 12mHa/atom and 4GPa respectively
among the different functionals, these errors largely can-
cel. Even within a particular choice of functional, the
spread in energy and pressure relative to PBE can be
2-3mHa/atom and 1-2GPa respectively just along the
T=4000K isotherm.

This figure fails to convey other more subtle channels
of error cancellation. Firstly, nontrivial error cancellation
can occur within the E −E0 term, which we estimate to
be on the order of 2mHa/atom for optB86b and PBE.
Secondly, different functionals will produce different con-
figurations over the course of a molecular dynamics simu-
lation, which will impact ensemble estimates ∆(E∗−E∗0 )
and ∆P ∗ and potentially facilitate error cancellation. For
the hollow green square in Fig. 11, we used equilibrated
PBE and vdW-DF molecular dynamics simulations at

at the reference point and the T = 4000K ρ/ρ0 = 3.50
point to estimate the ensemble values of ∆(E∗−E∗0 ) and
∆P ∗. We find this new point is consistent with the den-
sity difference between the vdW-DF and PBE Hugoniot
points42. From this perspective, the much more consis-
tent picture that DFT provides for the deuterium Hugo-
niot, as opposed to the liquid-liquid transition for ex-
ample, owes much to its ability to fully utilize the error
cancellation properties of the Rankine-Hugoniot relation.
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FIG. 11. Plot of energy and pressure differences relative to
PBE for the T=4000K isotherm test set. The error cancella-
tion line (dashed blue) is calculated using the PBE Hugoniot
point at ρ/ρ0 = 3.50. The green arrow indicates the impact
of configurational sampling for a single vdW-DF density.

IV. CONCLUSION

This analysis suggests that many-body methods can
introduce errors into the evaluation of the Rankine-
Hugoniot relation that are non-negligible and should be
corrected, especially if these errors happen to be addi-
tive. To properly correct a many-body Hugoniot and
prove our assertions will require the following modifica-
tions of our methodology. Firstly, we need to treat larger
cells and mitigate electronic finite-size effects, especially
where deuterium is semi-metallic. This is partly so we
can make a more accurate estimate of fixed-node pressure
errors42, but more importantly so that the discrepancy
between CEIMC and experiment at peak compression
can be addressed. Γ-point results for an 8 atom snap-
shot near peak compression (T = 10000K, ρ/ρ0 = 5.00)
suggest that BF-PBE DMC and CCSD-CBS are only re-
covering 91.4% and 95.1% of the correlation energy re-
spectively, which amounts to an +2.4mHa/atom error for
BF-PBE42. While this would go a long way towards ex-
plaining the higher compressions observed in CEIMC,
it’s unclear how much of this error will persist as we
progress to the thermodynamic limit. Secondly a very
careful audit of other sources of errors needs to be done.
Errors in addition to fixed-node, such as finite size ef-
fects, electron thermal effects, configurational sampling,
and others, will all contribute to ∆E∗ and ∆P ∗, but with
potentially differing signs. We believe that it is possi-
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ble to improve our methodology in the ways described
by using DMC based on iterative backflow56, selected
CI based multideterminant61, or even antisymmetrized
geminal product trial wave functions62,63. Furthermore,
cross validation against second quantized QMC methods,
such as FCIQMC64 and AFQMC65, should be extremely
valuable moving forward.

To summarize, because many-body methods are ex-
tremely accurate for the deuterium reference point, the
error in the predicted Hugoniot density is entirely deter-
mined by the absolute errors ∆E∗(ρ, T ) and ∆P ∗(ρ, T ),
a situation which happens comparatively rarely in practi-
cal ab initio calculations. Moreover, it appears as though
these methods experience error addition in a particularly
difficult part of the deuterium phase diagram, which ex-
aggerates errors in the principal Hugoniot in spite of their
ostensibly more accurate descriptions of electronic struc-
ture. In contrast, DFT’s ability to use error cancella-
tion allows for the construction of an accurate principal
Hugoniot, but this does not guarantee similar accuracy
for other observables. There exists noticeable differences
regarding the predicted rate of molecular disassociation
along the Hugoniot and the temperatures of Hugoniot
states28. Moreover, most known functionals underesti-
mate the reshock pressures by a modest but statistically
significant amount relative to experiment28, which is not
surprising given the amount of error cancellation we ob-
serve. These issues demonstrate a need for more beyond-

DFT methods like CEIMC, but this work serves as a
reminder that without a way to quantify and potentially
reduce the size of the approximations intrinsic to many-
body methods, more accurate methods may not always
produce more accurate properties.
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