aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unitary circuits of finite depth and infinite width from
quantum channels
Sarang Gopalakrishnan and Austen Lamacraft
Phys. Rev. B 100, 064309 — Published 29 August 2019
DOI: 10.1103/PhysRevB.100.064309


http://dx.doi.org/10.1103/PhysRevB.100.064309

Unitary circuits of finite depth and infinite width from quantum channels

Sarang Gopalakrishnan
Department of Physics and Astronomy, CUNY College of Staten Island, Staten Island NY 10314 USA and
Physics Program and Initiative for Theoretical Sciences,
The Graduate Center, CUNY, New York NY 10016 USA

Austen Lamacraft
TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 O0HE, UK
(Dated: August 19, 2019)

We introduce an approach to compute the spectra of reduced density matrices for local quantum
unitary circuits of finite depth and infinite width. Suppose the time-evolved state under the circuit
is a matrix-product state with bond dimension D; then the reduced density matrix of a half-infinite
system has the same spectrum as an appropriate D X D matrix acting on an ancilla space. We
show that reduced density matrices at different spatial cuts are related by quantum channels acting
on the ancilla space. This quantum channel approach allows for efficient numerical evaluation of
the entanglement spectrum and Rényi entropies and their spatial fluctuations at finite times in an
infinite system. We benchmark our numerical method on random unitary circuits, where many
analytic results are available, and also show how our approach analytically recovers the behaviour
of the kicked Ising model at the self-dual point. We study various properties of the spectra of the
reduced density matrices and their spatial fluctuations in both the random and translation-invariant

cases.

I. INTRODUCTION

The dynamics of isolated quantum systems under
generic unitary dynamics is one of the basic problems
in many-body physics [I]; despite considerable recent
work, many aspects of this problem are not fully un-
derstood. An isolated system, evolving under chaotic
dynamics from an initial product state, becomes increas-
ingly entangled over time. At sufficiently late times,
any finite-size subsystem of an infinite system is well de-
scribed by a thermal reduced density matrix, provided
the system obeys the eigenstate thermalization hypothe-
sis (ETH) [2H4]; this approach to a thermal local density
matrix is called “thermalization.” There is considerable
numerical evidence that generic many-body systems obey
ETH [5].

We are concerned with the dynamics of the reduced
density matrix before the system has fully thermalized.
To quantify the thermalization timescale more precisely,
recall that the Rényi entropies of a subsystem A are de-
fined in terms of the reduced density matrix p4 of A as

1

—-n

S§(t) = = logtr [pa(t)"], (1)
where n is called the Rényi index. The Rényi entropies
fully characterize the spectrum of py.

The general consensus [6H10] is that — unless a system
experiences many-body localization [II] — the entropies
initially obey SXL) (t) ~ vpt, increasing linearly with time
with a growth rate v, that depends on the Rényi index
n. (However, recent results suggest that for n > 1 the
growth is sub-linear for generic initial states in the pres-
ence of conservation laws [12] 13].) The implication for
the spectrum of the reduced density matrix is as follows.
Parameterizing the eigenvalues of p4 in terms of an “en-

tanglement energy” as A; = e~ [I4},[15], and introducing
the “density of states” o(e), we have

L g [ [ g(e)e”e] @

S¢ =

—-nNn

The behaviour S§(t) ~ v,t is then consistent with a
density o(¢) having the large deviation form

o(€) ~ expltm(e/t)], 3)

for some function 7 (n). In the saddle point approxima-
tion we find

(n) _
Uy = SA _ 7T(77n) Mn (4)
t 1—n

where 7, is determined by n = 7/ (n,,). The growth rates
v, are seen to be related to the function p(n) describing
the density of states of the entanglement spectrum by
Legendre transformation. Note that the numerator in
Eq. vanishes at n = 1 due to the normalization of the
density matrix, yielding a finite growth rate v; for the von

Neumann entropy 5’1(41). Rényi entropies with smaller n
grow faster; the reduced density matrix for a subsystem
becomes thermal when the slowest Rényi entropy, the
so-called “min-entropy” S, = min;(¢;) (i.e., the largest
entanglement eigenvalue) has saturated.

As well as the rates v,,, the time evolution is character-
ized by the butterfly velocity vg at which local perturba-
tions spread [8HI0, [T6HI8]. Although the various veloci-
ties are generically separate, they coincide in exactly solv-
able models (such as random circuits in the limit of large
local Hilbert space dimension or Clifford gates [8-10] and
the self-dual kicked Ising model [I9] 20]), so the entangle-
ment spectrum evolves in a trivial way. Away from these



FIG. 1. A depth d = 4 unitary circuit of the type considered
in this work.

non-generic limits, little is known analytically about the
entanglement spectrum. A few Rényi entropies can be
explicitly computed by mapping the circuit dynamics
to random classical partition functions [9 10, 18] but
these mappings do not yield the full entanglement spec-
trum. The picture that emerges from numerical studies
is, however, that the entanglement spectrum has non-
trivial structure in generic systems, such as a bandwidth
that widens linearly in time; this feature is absent in the
exactly solvable limits [2I]. However, this structure is
not fully understood at present.

In the present work we develop and apply a numeri-
cal transfer-matrix approach to compute the structure of
the entanglement spectrum for spatially infinite systems
at early times. This approach allows us to access some
aspects of entanglement for larger subsystems than were
studied in previous work: for instance, we are able to
compute the spatial fluctuations of entanglement in sys-
tems of 10,000 sites. Our approach works formally with
infinite systems; we assume that the system of interest
has been initialized in a product state and then subjected
to a finite-depth quantum circuit (i.e., evolution for a fi-
nite time) consisting of on-site or nearest-neighbor quan-
tum gates (see Fig. . We compute the spectrum of the
reduced density matrix of a bipartition into two semi-
infinite regions at an arbitrary point. After applying a
quantum circuit of finite depth ¢, the reduced density
matrix has rank ¢‘~'. We will see that the spectrum of
the reduced density matrix can be interpreted as that of
a ¢! x ¢~ matrix R acting on an ancilla space. In ad-
dition, reduced density matrices across adjacent cuts are
related by quantum channels that are straightforward to
construct given the circuit. These quantum channels act
as transfer matrices for the entanglement spectrum [22].

The quantum-channel perspective is helpful for a num-
ber of reasons. First, using this method one can compute
the largest few eigenvalues of the entanglement spectrum
for circuits that are too deep to permit direct simula-
tion. Second, as the transfer matrix acts on formally
infinite systems, spatial fluctuations of entanglement can
be directly studied. Third, standard methods from quan-
tum optics such as the stochastic unraveling of quantum
channels [23] can be applied to simulate the dynamics
of entanglement on larger scales than direct simulation

permits. Finally, for translation-invariant initial-states
evolving under translation-invariant circuits, one can it-
erate the quantum channel until it converges, and thus
extract the entanglement spectrum, free of finite-size ef-
fects, without incurring the computational overhead of
time-evolving a large system.

These are the issues we explore in the present work.
Our main results are as follows. First, we provide al-
gorithms based on quantum channels for computing the
entanglement spectrum and its low-energy tail, as well
as for computing some Rényi entropies, by propagating
the quantum channel in an ancilla space. For the ex-
actly solvable model of Ref. [20] we analytically demon-
strate that the entanglement spectrum is trivial, using
the properties of the associated quantum channel. We
compute the behavior of the “low-energy” (large Schmidt
rank) tail of the entanglement spectrum for random uni-
tary circuits, random circuits with a conservation law,
and translation-invariant integrable circuits, acting on
various initial states. We compute the distributions of
the purity and of the min-entropy; for random circuits
we find that both the second Rényi entropy and the
min-entropy follow Gaussian distributions at the acces-
sible circuit depths (the purity, therefore, follows a log-
normal distribution). For circuits with conservation laws
or translation-invariant circuits, the nature of this low-
entanglement-energy tail is sensitive to the fluctuations
in the initial state. We compute the spatial correlations
of entanglement, and find that their correlation length
grows sub-linearly in time. However, the correlation
lengths are short at the accessible times and we are not
able to identify a definite exponent.

This paper is organized as follows. In Sec. [[I| we briefly
review concepts such as unitary circuits, matrix-product
states, and quantum channels, as they apply to the algo-
rithms introduced here. In Sec. [[IIl we describe how to
construct quantum channels for unitary circuits, and es-
timate the complexity of various exact and approximate
methods for extracting the entanglement spectrum (or
some of its moments). In Sec. we explicitly compute
the transfer matrix for the self-dual kicked Ising model,
and confirm that all the Rényi entropies coincide in this
model, as they are known to [19,20]. In Sec. we present
results for the entanglement spectrum, the distributions
of purity and min-entropy, and the growth of spatial cor-
relations in the entanglement, in random unitary circuits
and some variants of these. Finally Sec. [V] summarizes
our results and discusses future directions.

II. BACKGROUND
A. Quantum circuits

In this work we consider systems that evolve under
the application of discrete local unitary gates tiled in the
pattern shown in Fig. [ Our approach applies both to
Floquet systems in which the gates are applied periodi-



cally in time, and to random circuits where each gate is
drawn independently and randomly. As with the TEBD
algorithm [24], it can be extended to continuous time
evolution under strictly local Hamiltonians by discretiz-
ing the time evolution, e.g., through a Suzuki-Trotter
decomposition.

B. Matrix Product States

In this section we introduce some background material
on matrix product states (MPS’s), which will form an es-
sential part of the following development. More detailed
expositions may be found in Refs.[25H27].

We consider a quantum system described by N iden-
tical subsystems with finite Hilbert space dimension q.
The (pure) quantum states of the system are therefore
defined by vectors in the Hilbert space

N times

——
Hy=Cl®..-@CT. (5)
A basis of orthonormal product states has the form
|s1:nv) = [81), ®[s2) - @ [sn)y s (6)

where |s), s = 1,...¢ is an orthonormal basis for CY,
and we have introduced the sequence notation s;.y =
S1,82,...8Nn. By taking components of a vector |¥) € H

\1’81:1\7 = <511N|\I’> ) (7)

|¥) can be regarded as a rank-N tensor with components
L4

S1:N*

An MPS is a tensor of the form

¥, = ADAD ALY, ®)

S1:N

J

Psiin,sy., = E \Ilsl:nsn+1:N\IjS/1:nSn+l:N =

Sn4+1:N

where for simplicity we denote AY) by j and AU by j.

3

where Agl), .. .AgN) € CPixDi+1 are matrices, and the
numbers D; j = 1,...N + 1 are known as the bond di-
mensions, with D; = Dyy; = 1. Thus the product

Eq. has the form ‘row vector, product of matrices,
column vector’, and yields a complex number for each
sequence S; : SN.

An arbitrary vector |¥) may be approximated by an
MPS with an error that decreases as D = max; D; in-
creases. We will see that the state arising from applying
a unitary circuit to a product state is exactly given by an
MPS with D = ¢q¢~!, where d is the depth of the circuit.

A graphical notation for MPS proves to be extremely
convenient, and is discussed extensively in Ref. [26]. In
this notation tensors — such as the matrices or vectors
AU) — are represented as boxes, with the number of lines
or edges entering a box indicating the number of indices
the object bears. An edge joining two vertices indicates
the (pairwise) contraction of an index. Thus the MPS in

Eq. is denoted

S1:N

SN
Here, A® has three lines attached because the collec-
tion of matrices Af) € CP*P may be regarded as rank-3
tensor A?) € CP*Px4 The vertical leg represents the
indices s; that live in the ‘physical space’ while the hor-
izontal lines represent indices in the ‘bond space’ (which
we shall also refer to as the ‘ancilla space’).

The squared norm of a vector |¥) may be calculated by
contracting all physical indices between ¥, . and ¥y, ..
This has the graphical representation:

(W|w) =

More generally, the reduced density matrix for the left-
most n subsystems that arises from a pure state by trac-
ing over the remaining subsystems is denoted

(10)

The above expressions may also be written




where the hermitian matrices RY) € CPi+1%DPi+1 are de-
fined by

RUTD =" AU RU AT j=n+1,...N, (12)
and R = 1.

1. Canonical Forms

The MPS representation of |¥) has a redundancy
sometimes referred to as ‘gauge freedom’. For a set X

j=1,... N —1 of invertible matrices, the transformation
AW 5 AW x -
AV — Xj_lAgﬂXj—l, j=2...N—1
AN — Xy AN, (13)
leaves W, , unchanged. Further conditions may be im-

posed to reduce this redundancy [25]. We will be con-
cerned with matrices in left canonical form, satisfying
the condition

> APTAD =1, (14)

Note that Dy = ¢ is necessary for A1) to be placed in
left canonical form, but this places no restriction on the
state.

Analogously, matrices in right canonical form satisfy

> ADAPT = 1p, (16)

(requiring Dy = q).

One benefit of the canonical forms is that they may be
contracted “automatically”. For example, in terms of an
MPS in right canonical form the reduced density matrix
Ps1n.s,, i Eq. (10) takes the form

rn

’
Psiin,sh., r

(18)

A second benefit — which is more relevant for us — is
that the spectrum of the reduced density matrix py,,, o

coincides with the spectrum of R(™ for an MPS in left
canonical form. This may be seen by introducing the
spectral representation

R(n) - Z )\aro/rj;n (19)

in terms of the eigenvalues )\, and eigenvectors r, of
R, Upon substitution into Eq. this yields a spec-

tral representation for py,,, «

pslmsln_Z)\ il 2
in terms of vectors in H,, that are orthonormal by the
left canonical condition [25].

(20)

A more direct way of seeing that the spectra of R(™)
and pa coincide, for MPS’s in left canonical form, is
shown in Fig. 2] The moments of the spectrum are
given by traces over matrix products of the form p%;
one can use the left canonical property (|14 . ) to ehmlnate
the “boxes” pairwise and arrive at the result trph =
tr[(R(™)*]. Since all moments coincide, pa and R("
must have the same spectrum.

ooy &
£oos ¢
pA @

FIG. 2. Left: the reduced density matrix pa can be expressed
as a matrix product operator involving matrices in left canon-
ical form (squares), and a matrix R that comes from the com-
plement, A. Rényi entropies are proportional to tr p%; when
the MPS is in left canonical form, tr p’; = tr R". Right: ap-
plication of this idea to a unitary circuit. The matrix-product
state |1(t)) is constructed by cutting diagonally through the
circuit (solid lines); the leftover gates in the shaded region
form the matrix R.




C. Quantum Channels

The above formalism has a natural interpretation in
terms of quantum channels, or completely positive trace
preserving (CPTP) maps [25]. In this interpretation the
matrices RY) are regarded as a sequence of density ma-
trices that represent mixed states in the bond space. The
definition of RY) given in Eq. guarantees that the
maps from one RY) to the next are completely posi-
tive (Choi’s theorem), while the left canonical condition
Eq. ensures that they are trace preserving. There-
fore, contracting a physical leg (i.e., moving the entan-
glement cut in real space) amounts to applying a CPTP

map to the ancilla. In this context the Ag] ) are known as
Kraus operators.

From now on we assume without loss of generality that
all D; = D, which may be achieved by padding the ma-

trices with zeros. Square matrices Agj ) e ¢DxD satisfy-
ing the left canonical condition may be parameterized in
terms of unitary matrices U; € U(¢D) as

AU = (s] (alp U; 10}, D) - (21)

Physically, this corresponds to the amplitude for the fol-
lowing process: prepare the physical subsystem j in a
fixed state [0),, and then act on the state |0), [b) , of the
subsystem j and ancilla with a unitary, arriving in state
|s), 1) p- While any CPTP map may be presented in this
form [28], we will see that this is precisely how quantum
channels arise in the case of unitary circuits.

III. QUANTUM CHANNELS FROM UNITARY
CIRCUITS

This section is organized as follows. We first discuss
how to slice up a unitary circuit into an MPS where all
matrices are in left canonical form. This immediately
gives us a quantum channel that propagates the ancilla-
space density matrix R in the spatial direction. We
then discuss two controlled but approximate ways of im-
plementing the quantum channel for larger subsystems:
first, an approach for computing the entanglement spec-
trum based on approximating the ancilla-space density
matrix R as a lower-rank object; and second, an approach
for computing the purity, specifically, by a stochastic un-
raveling of the quantum channel (i.e., by sampling “quan-
tum trajectories” in ancilla space [23]).

A. From unitary circuits to canonical-form MPS’s

We now introduce the main idea behind our approach.
A planar unitary circuit that starts from a product state
may be presented as an MPS by slicing it into strips in an
arbitrary way. Each slice j is associated with ¢? matrices
Ag{%sZ indexed by two physical indices. The dimension

of the ancilla is D = ¢?~!.For a general decomposition
of a circuit, the resulting matrices AY),, will not be in
the appropriate canonical form, so the spectra of R()
and pa will not coincide. An MPS in left canonical form
is obtained for slices along the south-west to north-east
diagonal

S1 S2

©)) _
A81,52;01;37b1:3 - (22)
A graphical proof is straightforward, since
(Dt AG) _
> (A9LARL), | = (23)
51,82
The unitarity of the constituent blocks
by by by b
—1 = = b, b Oby b (24)
b1 by b1 by
guarantees that the left canonical condition
>0 ADLAY,, = 1p (25)

51,52

is satisfied. Choosing the south-east to north-west diag-
onal gives an MPS in right canonical form.

B. Applying the quantum channel

We have shown that a unitary circuit may be repre-
sented as an MPS in left canonical form. This observa-



tion may be used to efficiently compute the ancilla den-
sity matrices R\, whose spectrum coincides with that of
the reduced density matrix p, ; s . We start with an ar-
bitrary ancilla density matrix Ry, and apply the channel
until convergence. In practice we find that convergence
is fast, and the ensemble converges to its stationary form
after ~ t iterations, where ¢ is the depth of the circuit.
This rate does not seem to depend appreciably on the
initial conditions. The convergence of the channel is re-
lated to edge effects of the entanglement spectrum as one
approaches a boundary. At time ¢, regions in the interior
of the system, for which L > ¢, will not see the edges
by causality, so their entanglement spectra should not
have edge effects. Beyond this point, we do not have a
detailed understanding of the convergence properties of
these quantum channels; developing this is an interesting
topic for future work.

Recall that the RU) are defined by

ROV = 37 AW, RO ADE

51,52

j=n+1,...N.

(26)

After cutting along the SW-NE diagonal, RU~D

’
A1:d—15Q7.4_1

has the graphical representation

(i—-1)
a1:d—1,01,9_4

This expression may be simplified somewhat by noting
that the topmost unitary (U, in the above example) may

be eliminated to give

(G-1)
al:d—ha/l:d,l

The algorithm for applying the quantum channel is there-
fore:

1. Trace over the first index of R(Y)

() (4)
Rahp,a’l:D - ZRG«G«I:D—MGG/LD,I (29)

This reduces the number of indices of RY) to 2(t —
2), or ¢>*~2) components.

2. Apply the unitaries U;_; and Uf_l. This increases
the rank of the resulting tensor back to 2(d — 1).

3. Continue applying unitaries from the “middle out”
forj=t—2,...2.

4. Apply U; and Uf , with the outer indices fixed.

This process involves O(t) steps of matrix multipli-
cation, where the matrices are of size O(¢'). Thus
if one directly applies the channel to a density ma-
trix, the overall complexity is O(tg>*~1). This is bet-
ter than the naive O(t¢**~Y)) because each of the uni-
taries that make up the channel is a sparse matrix. A
Python implementation of the algorithm is available at
https://github.com/AustenLamacraft/rucl

Since our quantum channel is constructed from a diag-
onal cut through the unitary circuit, there will be edge
effects in a rectangular circuit of finite width. Our ap-
proach is well suited to infinite width circuits: the chan-
nel is applied repeatedly to a random initial density ma-
trix until a steady state density matrix is approached (for
translationally invariant circuits) or a stationary distri-
bution (for random circuits). This typically occurs on
the scale of a number of steps roughly equal to the depth
of the circuit.

C. Low-rank approximation of R

Away from fine-tuned points (see Sec. , finite-depth
local unitary circuits give rise to entanglement spectra
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that are very broad; thus, the vast majority of the eigen-
states of pa are close to zero and do not contribute to
Rényi entropies with n > 1 [2I]. This observation is im-
plicit in the fact that different S,, have different growth
rates [I8]. This fact allows us to propagate R(™) with
negligible error using far fewer than ¢'~! basis states.
We proceed as follows. We approximate

K
~ D Akl (k (30)
k=1

where \j, are the K largest eigenvalues of R and |k) are
the associated eigenvectors. We renormalize all the eigen-
values to preserve the trace. We now evolve each |k) un-
der each “leg” of the quantum channel. This evolution
is efficient because each of the unitaries is a very sparse
matrix. At the end of this process we have the expression

K q2
R Z Z k| Pik) (Dik | (31)

k=11i=1

where |¢;;) are not mutually orthogonal or normalized,
but nevertheless span a K ¢?-dimensional space. Eq.
is the ancilla density matrix that would result from one
step of the quantum channel applied to the approximate
density matrix (30). It is a legitimate density matrix,
since Eq. (| . was. Now we can repeat this process by
approximating R("t1) with its top K eigenvectors, renor-
malizing, propagating, and so on.

When K is sufficiently small, the complexity of evolv-
ing the K top eigenvectors scales as O(Ktq'™!), since
the unitary gates are individually sparse matrices. The
diagonalization step scales as O(K?), meanwhile. Bench-
marking our results against exact diagonalization at
small sizes (and against exact results for random unitary
circuits at arbitrary sizes) we find that keeping < 100
eigenvectors suffices to capture the quantities that are of
interest here—mainly, the purity and min-entropy, and
their fluctuations.

D. Trajectory approach for computing the purity

In this section we describe an approach based on map-
ping wvectors in the ancilla space rather than density ma-
trices. Formally, this method is equivalent to the tra-
jectory approach developed to analyze master equations
in quantum optics [23]. Applying unitaries to a vector is
an O(dq(dfl)) operation because the unitaries are sparse.
While such an approach is evidently attractive, we will
see that there is a trade-off in terms of the number of
times the matrices Ag{)@ must be applied.

The ancilla density matrix can be defined in terms of
averages over trajectories in the physical indices in the
following way. Starting from the Kraus form

ROV =3 "AVRU-DADT,  j=nt1,...N, (32)

S

In the case of unitary circuits the index s is a composite:
s = (s1, $2), and we have changed the indexing of slices
so that indices increase going right to left. We see that L
updates correspond to summing over trajectories in the
physical indices of length L

L L L
R — Z AL AD RO AW AT (33)
s1:5p €E{Zqg}F
If we start from a pure state R(®) = i) (09| we can

write this as an average over trajectories with uniform
distribution

RW) = ¢F E

s1.7, ~uniform

o) Wl (39)
where the vectors |1, , ) are defined as

|w81 L> - (L) (1) |w0> (35)

These vectors are unnormalized. The normalization fac-
tors

(Vo1 [Ps1.0) (36)

are a normalized probability distribution over trajectories
by virtue of the left canonical condition Eq. . Denot-
ing the normalized vectors as |15, ,) we can express the
ancilla density matrix as

p(s1:sp) =

R = o) (Wsra[]- (37)

S1: NNP

As a trajectory increases in length, the normalization
factors are updated according to

1ispo1) (o1 |ATAD yp_q), (38)

so that the second factor may be interpreted as a condi-
tional probability

p(s1:sp) =p(s

W}Lfl‘Agf)TAgi”waﬁ ;o (39)

Eq. expresses the ancilla density matrix in terms of
vectors, but it requires an average over trajectories. The
downside of this approach is that evaluating R will re-
quire roughly v~! trajectories, where ~ is the purity of
a half-infinite region, which sets the approximate rank
of the reduced density matrix. However, this approach
lends itself to parallelization while the channel based ap-
proach does not.

For a translationally invariant system, and assuming
this random process is ergodic, we can substitute an aver-
age over the length of single long trajectory in the L — oo
limit.

p(3L|51:L71) =

1 L
R= lim - ; [Ysr.) (Vsy ] - (40)

In practice, long runs and multiple trajectories are used.
O(D) evaluation of matrix products is not much use if
we still need O(D?) evaluation of the spectrum of R(%) or



O(D?) evaluation of the purity. However, we can access
the purity without dealing with R(") directly using

v=t[R? = E )|<wtliL|wm>|2, (41)

s1:N,t1: N ~p(-

which follows from Eq. (37). This formula expresses the
purity as the average fidelity over pairs of trajectories. In
a high purity state the ancilla vectors stay close to each
other as they evolve over different trajectories, whereas
in a highly entangled state different trajectories explore
different regions of ancilla space.

Note that the expectations discussed in this section are
unrelated to any random variables that may form part of
the specification of the circuit. Evaluating the average
purity, for example, would require an additional average
of Eq. over these variables.

IV. EXACTLY SOLVABLE EXAMPLE:
SELF-DUAL KICKED ISING MODEL

In order to illustrate the utility of the formalism intro-
duced in the previous section, we now turn to an example
of a unitary circuit in which the entanglement spectrum
can be determined analytically. This is the kicked Ising
model at the self-dual point discussed in two recent pa-
pers [19, 20]. The kicked Ising model describes the evo-
lution of a system of L spin-1/2 subsystems (qubits) for
an integer time t by the unitary operator (UKI)t7 where
Uxkr = K1y, is composed of the two unitaries

I, = et K = e i (42)
where
L
HI[h] = [JZij+1 + hij] (43)
j=1
Hq=bY" X, (44)

Jj=1

and (X;,Y;, Z;) are the Pauli matrices for spin j. Hi[h]
is the classical Ising model with arbitrary longitudinal
fields h;, while Hk describes a transverse field.

In Ref. [20] the growth of the entanglement entropies
was found exactly for some particular initial product
states at the special ‘self-dual’ values

™
=1 =T (45)

For a region A of size N, the authors found that when
starting from an arbitrary product state in the Z; basis
the Rényi entropies to be ezactly given by

lim SV (f) = min(2t — 2, N) log 2, (46)

L—oo

independent of Rényi index n. The interpretation in
terms of the entanglement spectrum is striking: there

are 2Min(2t=2.N) gigenvalues equal to 2~ ™n(2=2.N) and
the rest are zero.

We now show how our quantum channel approach may
be used to derive the corresponding result for the case of
a semi-infinite interval

lim SV (t) = (t — 1) log2. (47)
L—oo
We can present the unitary (Ukr)’ as a unitary circuit of
depth ¢, where the layers alternate between unitaries op-
erating between spins 25 —1 and 24, and between spins 2j
and 2j+1. A variety of decompositions are available. For
reasons that will become clear, we choose the following:

(48)

where the one qubit (K) and two qubit (Z) gates have
the form

K = exp [—ibX] (49)
I= exp [—Z'JZ1Z2 —1 (h121 + h2Z2) /2] . (50)
In the Z basis, the elements of Uy, are

sin 2b

(U12)ab,cd = — exp (—iJ[ab + cd) — iJ[ac + bd])

x exp (—ihi[a + ¢]/2 — iho[b+ d]/2) (51)
where a,b,¢,d € {1,—1} and
= T4

=-T_n . 2

J 173 og tanb (52)

The matrix (Ui2)ap,cq 18 unitary, but the matrix U, with
elements (Tj)ab’cd = (U12)ac,bd is not except at the self-
dual points Eq. (45)). The unitarity of Uy, has the graph-
ical representation

= 5aa’5bb’- (53)

The unitarity of Ui has the interesting consequence that
the SW-NE MPS is in left and right canonical form, so
that

D> AP ADT = g0 (54)



To see this, we first give the graphical representation of

3 (Am A ) —
51,82 51,52 ’
a1:3,07.3

51,52

Where we used unitarity to eliminate the top and bottom
gates. Using the motif Eq. we can telescope the
circuit until

(56)

ay—

Finally, we use the explicit form of Eq. at the self-
dual point to evaluate

(U12)a1b,cd (Ufz)agb,cd = 5a1a’1a (57)

the left hand side of Eq.

(55)

which corresponds to an initial state equal to a product
state in the Z; basis. This verifies the condition Eq. .

An MPS in both left and right canonical form describes
a bistochastic quantum channel: one that preserves the
identity. As a result, the ancilla density matrix R/ =
2=t ,,1 for all j. Evaluating the Rényi entropies yields
our result Eq. .

It seems likely that a similar analysis can be performed
for general Clifford circuits, which also have degenerate
entanglement spectra [§]. However, establishing this in
general requires one to carve out several special cases
(such as circuits that generate no entanglement at all
from a number of initial states [29, [30]) and we will not
pursue this here.

V. NUMERICAL RESULTS: RANDOM
UNITARY CIRCUITS

In this section we present numerical results for the evo-
lution of various entanglement measures, and their spa-
tial fluctuations, for random unitary circuits. The coarse
features of the evolution of the entanglement spectrum
were already discussed in Ref. [2I]. In particular, the
bandwidth of the entanglement spectrum broadens lin-
early in time; as noted in that work, this broadening is
a natural consequence of the wide separation between
the entanglement and light-cone speeds. For circuits of
depth > 10 this broadening implies that an appreciable
fraction of the spectrum of the reduced density matrix
is zero to within numerical precision. Our focus here
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FIG. 3. Entanglement density of states (i.e., histogram of
entanglement energies), at depth ¢ = 8, computed both ex-
actly and by low-rank approximation of the quantum channel
(Sec. . For rank 2 20 the low-energy behavior of the
entanglement spectrum is well captured.

is on the large eigenvalues of the reduced density matrix
(which dominate Rényi entropies S,,,n > 1). Because the
vast majority of the eigenvalues are near zero, this “low-
entanglement-energy” tail can be described accurately by
low-rank approximations as in Sec. [[ILC] allowing us to
go to circuits of depth ¢ = 14 with modest computational
effort.

A. Benchmarking the low-rank approximation

For depths ¢ < 10 we can compare the entanglement
spectra computed by low-rank approximation with the
exact ones (Fig. . Although the rank of the reduced
density matrix in this case is 256, we find that working
with the top 20 states allows us to match the low-energy
behavior of the entanglement spectrum.

For the largest depths we have considered, exact time
evolution is not feasible; however, there is an exact re-
sult for the average purity of a semi-infinite system [10],
viz. 4 = (4/5)'"1. (Note that the exponent t — 1 here
is one less than in [I0] because our partition of the sys-
tem lies between the two gates in the top layer of the cir-
cuit, which therefore leaves the entanglement unaffected.)
For the numerical results presented here we increase the
rank of the approximation until the mean computed pu-
rity matches this exact result to within statistical error
(which is about 1%). For the largest depth we have sys-
tematically considered (¢ = 14) we need to keep =~ 120
states to match the mean purity. This is only about
1% of the spectrum; thus the low-rank approximation is
much more efficient than direct propagation of the chan-
nel would be.

10
B. Shape of the entanglement spectrum

In this section we discuss the shape of the entangle-
ment spectrum and its relation to the evolution of the
Rényi entropies for RUCs. First, let us recall that the
eigenstate thermalization hypothesis predicts that the re-
duced density matrix of a subsystem should take the form
N exp(—BH), where H is the Hamiltonian of the sub-
system and ( is the inverse temperature. Therefore the
entanglement Hamiltonian —log p oc SH + log N, i.e., it
is a stretched and shifted version of the physical Hamil-
tonian. The entanglement spectrum therefore has the
same shape as the physical spectrum: for a large subsys-
tem L4 with a local Hamiltonian, it will be essentially
Gaussian in the bulk, with a bandwidth that increases
as v/ Ly, although the extreme value statistics (corre-
sponding to the shape of the spectrum near its ground
state) are model-dependent. When (/L4 is large, the
entanglement spectrum will have a large bandwidth, and
therefore (because of the Jacobian) the reduced density
matrix will have a density of eigenvalues () distribution
of the form g(A) ~ 1/A. Infinite temperature is a singular
limit, as 8 = 0 so the entanglement spectrum is degen-
erate. In practice, a typical, randomly picked state devi-
ates form infinite temperature by an amount ~ 1/y/L 4,
so the entanglement “bandwidth” is L 4-independent (up
to possible logarithmic dependences that we are not con-
cerned with here). For Floquet systems or RUCs with
no conservation laws, these arguments suggest that the
entanglement spectrum of a small subsystem at very late
times is degenerate up to finite size effects. Once finite
size effects are included we expect a Marchenko—Pastur
distribution [31].

For the case of interest to us — large subsystems at short
times — the numerical evidence [2I] suggests that the
spectrum of the reduced density matrix has the density
o(A) ~ 1/X over many decades, at any time 1 < t < l4;
this is qualitatively unlike the (compact) Wishart distri-
bution that obtains at very late times [3I]. The bulk
of the spectrum of the reduced density matrix consists
of eigenvalues below machine precision whenever ¢ 2 8
(Fig. [4). Here, we are concerned with the “low-energy”
or “high-Schmidt-coefficient” edge, which governs the be-
havior of the Rényi entropies S, n > 1, which we can
follow out to later times ¢ ~ 14 (Fig. . The evolution
at early times is nontrivial, but appears to settle down
into a well-defined limiting behavior for ¢t 2 7: there is
a threshold in the entanglement density of states, fol-
lowed by a linear increase with entanglement energy that
persists out to the energies we can reliably access. The
coefficient of this linear growth is approximately 2¢/2 for
the larger accessible ¢. This is exponentially slower than
the growth of the total number of states, so the fraction
of states in the tails thins out exponentially in time.

The Rényi index dependence of S for large n follows
from this behavior of the limit shape, if we further assume
that the entanglement spectrum is self-averaging. A sim-
ple model for the spectral density p(e) of the entangle-
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FIG. 4. (a) Cumulative distribution function of the entangle-
ment eigenvalues under random unitary dynamics, for various
circuit depths, extracted from exact evolution of the reduced
density matrix under the quantum channel corresponding to
the unitary circuit. At the largest depths, an appreciable
fraction of the entanglement spectrum consists of eigenvalues
below machine precision. (b) A more detailed view of the
entanglement spectrum near its “low-energy” edge at various
depths ¢ under random unitary dynamics. Recall that the
rank of the density matrix increases exponentially with the
depth. All points except ¢ = 14 are averaged over 3000 real-
izations; t = 14 is averaged over 300 realizations. Inset: slope
of the linear growth of the entanglement density of states with
energy.

ment energies that is consistent with the large deviation
form Eq. is

ple) = exp[atO(E — vact)] (58)
in which case
o — NUs
Un = 1_n (59)

A large n result this implies v, /v ~ 1 — 1/n, which is
consistent with our numerical observations [Fig. [5].
Although the late-time entanglement spectrum is not
numerically accessible, our results allow us to comment
on a few possible qualitative scenarios of the entangle-
ment spectrum. First, it is clear numerically that the
probability density of states is exponentially small near
the low-energy edge of the entanglement spectrum. This
turns out to be necessary for the Rényi entropies to have
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FIG. 6. Histograms of Sz and S for ¢ = 12; lines are fits to
a Gaussian.

distinct velocities. (If one considers, e.g., a box-shaped
entanglement DOS, it is simple to show that all Rényi
entropies with n > 0 must have the same velocity, re-
gardless of the aspect ratio of the box. Similar results
hold for Marchenko-Pastur and other possible compact
shapes.) Second, one might suppose the entanglement
spectrum has a Gaussian shape. Matching exact results
for Sp, the normalization of p, and Sy requires the Gaus-
sian to have a linearly growing mean and variance. Nu-
merically, the entanglement bandwidth grows linearly in
time rather than as a square root, possibly because of
level repulsion. Developing a theory of how the entangle-
ment spectrum evolves is an important question for fu-
ture work: at present we do not have even a phenomeno-
logical Brownian-motion model of this growth.



C. Statistics and spatial correlations of
entanglement

Out to the latest times we have considered, the
sample-averaged Rényi entropies have Gaussian distri-
butions. (Thus, quantities such as the purity are log-
normally distributed.) Whether these distributions be-
come anisotropic at much larger system sizes is unclear;
however, we have not seen any sign of incipient skewness
out to the times we can simulate (Fig. [6).

We now turn to fluctuations of the entanglement across
spatial cuts. The prediction of Ref. [§], based on a
mapping to the KPZ equation, is that the entanglement
fluctuations are spatially correlated, with a correlation
length £(t) ~ t%/3, and that the width of the entangle-
ment distribution scales as ¢!/3 (i-e., the entanglement
“roughens”). The method used here works with an in-
finite system at a fixed depth, and enables one to ad-
dress these spatial correlations. We find that the spa-
tial correlations of entanglement do get longer-ranged
in time, as their power spectrum clearly narrows in k-
space (Fig. . The Fourier transform has a characteris-
tic width, from which we can extract a correlation length
that clearly grows sub-linearly with . However, the cor-
relation length remains short out to the latest times we
can access, so we do not have the dynamic range to ex-
tract meaningful exponents.

The KPZ picture also predicts that the entanglement
“roughens” with time, i.e., its standard deviation grows.
This is consistent with what we see, although, again, the
roughening is too weak to extract meaningful exponents.

D. Trajectory Approach For Purity

Finally, we demonstrate the trajectory approach de-
scribed in Section [[IID} To evaluate the purity using
Eq. we evolve a pair of trajectories si.;, and ty.p
with the transition probabilities given in Eq. . For
a random unitary circuit with a purity that fluctuates
with spatial position, evaluating the unaveraged purity
at a point would involve averaging over many trajecto-
ries with the same set of gates. As a proof of principle
we instead focus on the ensemble averaged purity, and
average the fidelity | (¢4, |¥s,,) |? for | = 1,...L with
a trajectory of L = 1000. In this case we can compare
with the known exact result ¥ = (4/5)'~! for random
unitary circuits [I0]. Since we are now evolving vectors
in the ancilla space rather than density matrices we can
simulate deeper circuits. Fig. [8|shows the average purity
for depths up to 18, comparing the trajectory method
with the exact result, as well as with the density matrix
approach for depths up to 12. Good agreement is found
in all cases.
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FIG. 7. Top: power spectrum of the Fourier transform of min-
entropy across spatial cuts, normalized to one for all circuits.
Note the narrowing of the Fourier transform with increasing t.
Data are for a single system of length 5000. Bottom: estimate
of the correlation length £ extracted from the width of the
Fourier peak.

E. Circuits with more structure

The transfer-matrix method discussed here extends di-
rectly from random unitary circuits to any other type of

Y
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.
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FIG. 8. Average purity of a random unitary circuit with ¢ = 2
computed by applying the quantum channel (red circles) and
by the trajectory method (green bars) for L = 1000 steps.
Good agreement is found with the result 5 = (4/5)*"! from
Ref. [I0] (dashed blue line).



circuit that can be decomposed into a “brickwork” ar-
rangement of two-site gates. We discuss two examples
here: circuits with a conservation law and translation-
invariant circuits.

1. Number-conserving circuits

As an illustrative example we now turn to circuits with
a single conservation law, which we choose to be the num-
ber of 1 spins in the computational basis [32] 33]. For a
random circuit, all classes of product states are equiv-
alent; however, circuits with a conservation law yield
very different entanglement DOS depending on the ini-
tial state. Fig. [0] shows the results for three classes of
initial states: random product states, random bit-strings
in the computational basis, and a uniform Néel state.
While the Néel state behaves analogously to the random
unitary circuit, at least at these depths, we see that the
other two types of product states give rise to very differ-
ent entanglement spectra, with substantially higher DOS
at low energies. The difference can be attributed to rare
states with anomalously large weight on configurations
with long strings of aligned spins, which do not entangle
under number-conserving dynamics [12] [13].

2. Translation-invariant circuits

Next, we consider translation-invariant circuits, in
which all the gates at a given time-step are identical.
Gates could be the same at different time-steps (giving a
Floquet system) or random at every time-step (giving a
system with perfectly spatially correlated noise). We fo-
cus here on the former case. For concreteness we focus on
the integrable Trotterization of the XXZ model that was
recently introduced [34H36]. This model is parameterized
by two parameters (n,\), and the dynamics consists of
repeated application of the two-site gate

1 0 0 0
0 sinn sin A 0
— sin A)  sin A
UmA) = [ 28y =iy (60)
sin(n+A) sin(n+X)
0 0 0 1

When 7 is imaginary and A is real, this is a Trotterized
version of the Ising phase of the XXZ chain, with larger
7 corresponding to larger easy-axis anisotropy.

One could consider the dynamics of entanglement for
either random or homogeneous initial states. For ran-
dom states, we expect (and find) spatial fluctuations of
entanglement, which have a growing correlation length
as in random unitary circuits (Fig. . At the acces-
sible times, we are unable to extract any clear qualita-
tive difference between the behavior of the correlation
length in these integrable circuits and the random uni-
tary case. For translation-invariant states (specifically
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FIG. 9. Entanglement spectra for circuits with a conservation
law. Upper panel: behavior of the entanglement spectrum
near its edge for three classes of initial states: random prod-
uct states, random computational-basis bit-strings (“number-
sharp”), and the nonrandom Néel state. Lower panel: fluctu-
ations of the min-entropy for these three classes of states. All
data are for depth ¢ = 12, averaged over 3000 samples. Only
the initial Néel state approaches a Gaussian distribution.

the Néel state), the quantum channel converges to a def-
inite steady state after a time interval on the order of
the circuit depth (Fig. . Comparing the transient be-
havior between the XXZ circuit and a (presumably non-
integrable) circuit consisting of tiling a random two-site
gate, we see that the transient behavior of the integrable
case is different: the min-entropy overshoots its steady-
state value in the integrable case, but not in the random
case. Fig.[12] shows the lowest 40 entanglement energies
at t = 12 as a function of the anisotropy parameter n; as
one would expect, increasing the anisotropy slows down
the growth of entanglement. This manifests itself as the
top eigenvalue in the Schmidt spectrum drifting toward
zero, leading to a large gap in the Schmidt spectrum.
However, the min-entropy, starting from the Néel state,
grows linearly out to the circuit depths we can access,
with no signs of curvature. This is consistent with the
intuitive picture of ballistic entanglement growth in inte-
grable systems [37], since quasiparticles move ballistically
although spin dynamics is diffusive [36, [B8-40].

An interesting quantitative difference between inte-
grable dynamics and generic chaotic dynamics is that
(for intermediate values of ) the entanglement spectrum



stays “narrow” in the integrable case: Schmidt coeffi-
cients do not rapidly spread out over many decades the
way they do under random unitary dynamics. This is
consistent with the quasiparticle picture, which predicts
that entanglement should spread with a characteristic
quasiparticle velocity that does not depend on the Rényi
index. (We note that attempts to make this intuitive
picture more quantitative have been technically challeng-
ing [41].) How this picture extends to the case of strong
anisotropy, in which the quasiparticles have a broad dis-
tribution of velocities, is an interesting open question.
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FIG. 10. Power spectrum of min-entropy fluctuations in the
XXZ chain; the initial state is a random product state in
the computational basis. As in random unitary circuits, the
correlation length of the entanglement fluctuations grows in
time.
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VI. CONCLUSIONS

In concluding, let us summarise the technical achieve-
ments of the quantum channel approach:

1. Unitary circuits are presented directly as matrix
product states in canonical form.

2. The spectrum of the reduced density matrix is re-
lated to that of the ancilla states exposed by the
diagonal cut.

3. The resulting quantum channel allows us to work
in the infinite width limit at finite depth.

4. Analytical results are obtained for the kicked Ising
model at the self-dual point using a simple graphi-
cal calculus, simpler than the approach of Ref. [20].

5. The numerical evaluation of the channel may be
improved by making a low rank approximation for
the ancilla density matrix or by unraveling a quan-
tum trajectory over the physical states.

In this work, we benchmarked the quantum channel
approach against exact results for the purity in random
unitary circuits, and used it to compute the shape and



fluctuations of the entanglement spectrum at low “entan-
glement energies.” With relatively little computational
effort we were able to get converged results for depths
t = 14 for the entanglement spectrum and ¢t = 18 for
the purity. We expect that there is room to optimize
the algorithm and perform more resource-intensive com-
putations, allowing us to access somewhat later times
than we have in the present work. Our results support
and extend earlier work [21] showing that the entangle-
ment spectrum has a bandwidth that grows rapidly in
time, with a sharp onset. Under random unitary dy-
namics (with or without a conservation law), most of the
Schmidt coefficients that are generated are exponentially
small in circuit depth, and can therefore be truncated,
allowing for efficient computation of the entanglement
spectrum. We were able to compute the spatial fluc-
tuations of entanglement for large systems, and finally
for translation-invariant systems we obtained converged
results for the entanglement spectrum by evolving the
associated quantum channel to convergence.

A key distinction between the quantum channel ap-
proach and standard methods (such as time-evolving
block decimation [42]) for evolving a matrix-product
state is that the quantum channel approach constructs
the entanglement spectrum without explicitly represent-
ing the physical wavefunction at time ¢. Our trunca-
tion and sampling schemes are also conceptually different
from that in time-evolving block decimation (TEBD) [24]
42]. Thus the quantum channel offers benefits if one
wants to compute the entanglement spectrum (since it
requires storing only the object of interest); however, it
is not clear how one would apply our methods to compute
observables in the physical (rather than ancilla) space.

A number of avenues for future work present them-
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selves. The thermodynamic shape of the entanglement
spectrum of a semi-infinite circuit is still not well under-
stood beyond its coarsest features. At a technical level,
applying our approach to the entanglement of a finite
region will involve considering the quantum channel at
different ‘times’, instead of the stationary (distribution
of the) ancilla density matrix. Finally, our analysis of
the kicked Ising model shows that the soluble self-dual
point arises simply from the relation Eq. 7 and sug-
gests a criterion for searching for more models in the
same class (see also Ref. [43]). The ancilla-space den-
sity matrices for these “dual-unitary” circuits are pro-
portional to the identity and thus have no operator en-
tanglement [44] at any time; they can be represented as
matrix-product operators of bond dimension one. For
circuits close to these dual-unitary points, therefore, we
expect the ancilla-space operator entanglement to grow
slowly, so representing the reduced density matrix as a
matrix-product operator and using TEBD methods to
apply the quantum channel is a promising strategy. For
generic unitary circuits, we have checked that the ancilla-
space operator entanglement grows linearly in time with
a prefactor of order unity, so this TEBD approach is less
promising.
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