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We use out-of-time-order commutator (OTOC) to diagnose the propagation of chaos in one di-
mensional long-range power law interaction system. We map the evolution of OTOC to a classical
stochastic dynamics problem and use a Brownian quantum circuit to exactly derive the master
equation. We vary two parameters: the number of qubits N on each site (the onsite Hilbert space
dimension) and the power law exponent a. Three light cone structures of OTOC appear at N = 1:
(1) logarithmic when 0.5 < a < 0.8, (2) sublinear power law when 0.8 < a < 1.5 and (3) linear
when o > 1.5. The OTOC scales as exp(\t)/z>* and t2%/¢ /z>* respectively beyond the light cones
in the first two cases. When a > 2, the OTOC has essentially the same diffusive broadening as
systems with short-range interactions, suggesting a complete recovery of locality. In the large N
limit, it is always a logarithmic light cone asymptotically, although a linear light cone can appear
before the transition time for o 2 1.5. This implies the locality is never fully recovered for finite
a. Our result provides a unified physical picture for the chaos dynamics in long-range power law

interaction system.

I. INTRODUCTION

Quantum many-body chaos has been a subject of con-
tinuous interest in the past years and has drawn a lot of
attention from various subfields of physics. The dynam-
ics of chaos can by diagnosed by the out-of-time-order
commutator (OTOC)?,

C(t) = ={[01(1), 0a)*)5 (1.1)

which measures the non-commutativity between a
Heisenberg operator O;(t) = e*Oe~t and a time
independent simple operator O,. This quantity has a
natural classical origin, with the commutator becoming a
Poisson bracket, which measures the separation of nearby
trajectories in the flow of the dynamical system. In the
classical chaotic system, the separation grows exponen-
tially in time and the growth rate is called the Lyapunov
exponent. This sensitivity to initial condition is com-
monly known as the butterfly effect.

In quantum system, the unitarity and quantum effect
can produce different scaling behaviors in OTOC.

For instance, in some many-body chaotic system with
all-to-all interactions, O (t) spreads out extremely fast in
Hilbert space and OTOC can grow exponentially in time,
i.e., C(t) ~ exp(At). A here is a quantum analogy of
the Lyapunov exponent and characterizes the quantum
butterfly effect at early time?%. These systems in the

literature are referred to as “fast scramblers”3.

Nevertheless, typical many-body quantum system do
not have all-to-all interactions. The spatial locality puts
extra constraints on the quantum dynamics. Consider
a Heisenberg operator O1(t) initially supported only at
origin. As time evolves, the size of the operator grows.
This can be measured by its OTOC with another oper-
ator Oz(x) sitting at spatial coordinate z. In systems
with local interactions, C(z,t) is zero at ¢ = 0 and starts

to become appreciable at time ¢t = x/vg. Here vp is
the so-called butterfly velocity”®, which characterizes the
ballistic spreading of chaos.

In the last several years, the specific scaling form of
C(z,t) has been extensively investigated across a wide
variety of systems with local interaction. In systems
with large IV limit, field theory calculations indicate that
C(z,t) forms a ballistic “front” which is approximately
exp(A(t — x/vg)) when z > vpt™ . The large N limit
allows enough room for the Heisenberg operator Ol(t) to
grow in local Hilbert space and leads to an exponential
growth of C(z,t) for an extended period of time. In com-
parison, it does not appear to have such Lyapunov regime
for systems with small onsite Hilbert space dimension, at
least at infinite temperature. Ref. 10 and 11 design a one
dimensional local Haar random circuit model and ana-
lytically show that C(x,t) ~ erfc(a(x — vpt)/v/t) when
x ~ vpt . This diffusive wavefront, meaning the width
broadens as v/t, is further confirmed in the numerics of
realistic quantum spin-1/2 chain models'?!3. Here vp is
no greater than the Lieb-Robinson velocity that appears
in the Lieb-Robinson bound, which points out the in-
formation can at most spread linearly in systems with
local interactions.

The physics could be different in systems whose in-
teraction decays as 7~ as a function of interaction dis-
tance r. The range of this type of interaction interpo-
lates between all-to-all and local interactions we men-
tioned before. They exist in a wide variety of experimen-
tal platforms, such as ultracold atoms'®, trapped ions'®
and solid state spin defects!”. The information propa-
gation in these systems could potentially be much faster
than systems with short-range interaction. In the past
decade, a tremendous amount of effort has been devoted
to derive a tight Lieb-Robinson bound!* to power law in-
teraction systems. Hastings and Koma first generalized
the method in Ref. 14 and proved a logarithmic light cone

bound for a > D, where D is the spatial dimension'®.



However, this bound is not tight for large a.. A series of
subsequent improvements were proposed and proved in
Ref. 19-24. As of now?*?*, we have a power law light
cone bound for a@ > 2D and this light cone asymptoti-
cally becomes linear when a@ — co. So when a > 2D, a
local perturbation can spread out at most algebraically
rather than exponentially in time.

In this paper, we deal with the problem of quantum
chaos in power law interaction system. We aim to ob-
tain the light cone structure of chaos dynamics and scal-
ing forms of C(x,t), for which the generic bound above
can not answer precisely. The crucial difficulty in deal-
ing with this problem comes from two aspects: First,
chaotic system is non-integrable and analytical treatment
is intrinsically hard. Meanwhile, numerical calculation
based on either exact diagonalization or matrix product
approach?® usually limits to small system size due to the
large entanglement generated by chaotic dynamics. Ad-
ditionally, long range interaction generates stronger fi-
nite size effect?627 compared to the models with short
range interaction. To circumvent these difficulties, we
construct a Brownian quantum circuit model with power
law interaction. It keeps the power law decay strength of
the interaction, while dispenses its particular form by re-
placing it with a noisy evolution. This is in spirit similar
to the local Haar random circuit'®'' which successfully
describes the hydrodynamics of the chaos propagation in
a generic locally interacting chaotic systems. Hence we
expect our Brownian circuit model serves to be a mini-
mal model for the long-range interacting chaotic system,
which uncovers universal features of various quantities in
chaos dynamics. Here the random nature of the inter-
action allows us to express the “height distribution” of
the operator evolution in terms of a closed-form master
equation?® 3%, We therefore map the complex quantum
dynamics to a relatively simple classical stochastic prob-
lem. Although complete analytical solution is still not
available except for @ = 0, 00, the master equation and
the associated stochastic process are intuitively simple
and allow analytical arguments and large scale numeri-
cal simulations on thousands of sites to greatly reduces
the finite size effect.

The Brownian circuit model we study is in one dimen-
sion with each site hosting N qubits. Our focus is on
small N and large N limits. When N = 1, we will demon-
strate the emergence of the linear, power law and loga-
rithmic light cones from the perspective of chaos propa-
gation. For the linear light cone regime, we can define a
constant butterfly velocity vp to characterize the speed
of chaos propagation. For the power law and logarithmic
light cone regime, we generalize the butterfly velocity
vp to be a time dependent quantity vp(t), which is the
derivative of the light cone trajectory xpc(t). We show
that when 0.8 < « < 1.5, C(x,t) has a power law light
cone, in which vg(t) grows algebraically in time. C(x,t)
beyond the light cone is a power law function in both
spatial and temporal direction, i.e., C(z,t) ~ tQTa/xQO‘.
When 0.5 < o < 0.8, we enter into the logarithmic light

cone regime, in which vp(t) grows exponentially in time.
When « < 0.5, the model completely loses locality and
the physics is essentially the same as o = 0 limit, i.e., all
to all interactions.

The results above do not violate the current informa-
tion bound for power law interaction systems?>. Instead,
it suggests room to potentially tighten the power law
bound for @ > 2D in Ref. 23. For example, we observe
the emergence of the linear light cone when a 2 1.5,
meaning a time independent v even in long-range inter-
action system. In addition, we find that when o > 2, the
OTOC has a diffusive wave front, the same as systems
with local interaction!'®!!,

Besides «, the light cone structure also depends on the
parameter N, which controls the dimension of the onsite
Hilbert space. In the large N limit, we show that the
OTOC is described by a fractional Fisher-Kolmogorov-
Petrovsky-Piskunov (FKPP) equation, which exhibits a
logarithmic light cone structure in the regime 0.5 < a <
1.5. When « 2 1.5, we observe a two-segment light cone
from linear to logarithmic as time evolves. We further
discuss the scaling forms of OTOC in different light cone
regimes and summarize the main results in Fig. 1.
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FIG. 1.  Upper panel: The light cone structures and the

scaling forms of OTOC when varying o« at N = 1. In the
power law light cone regime between 0.8 and 1.5, the OTOC
grows as algebraically in time. The linear light cone regime
with o 2 1.5 can be further divided into two subregimes at
a = 2 according to the different scaling forms of OTOC.
Lower panel: The light cone structure and scaling form of
OTOC when varying « in the large N limit. The values of
the critical « are estimated from the numerics.

The rest of the paper is organized as follows. In Sec. II,
we discuss Brownian quantum circuit and derive the mas-
ter equation governing the operator growth in systems
with power law interactions. In Sec. I1I, we perform nu-
merical simulation on the N = 1 case and demonstrate
the appearance of various light cone structure as we tune
a. We then perform data collapse on C(z,t) and dis-
cuss possible scaling functions of OTOC in Sec. III B. In



Sec. IV, we discuss the light cone structures and scaling
functions of OTOC in the large N limit and compare the
results with the small N limit. Finally, we summarize our
results and discuss possible future directions in Sec. V.

II. THE BROWNIAN QUANTUM CIRCUIT
AND MASTER EQUATION

We begin by introducing the dynamics in the operator
space. Let B, be a complete orthonormal operator basis,
any operator can be expanded as

O(t) = au(t)By. (2.1)

Under unitary time evolution, |, (t)|* can be interpreted
as the probability of the basis B,,, where the total prob-
ability for properly normalized operator »_ |l (t)]2 =1
is conserved.

In a generic chaotic system, the operator dynamics is
complicated and it is usually hard to keep track of the
evolution of each component |a,,(¢)[?. It is also unneces-
sary to know each component of |a,(t)|? if we only focus
on the universal information in OTOC. For instance the
insensitivity to the choice of local operator V suggests
that we can combine |a,()|* on each site and study the
coarse grained hydrodynamics. Inspired by the local ran-
dom Haar circuit models'®!! we introduce a model that
is maximally symmetric on different basis after random
averaging to simplify the dynamics.

The model we consider has L sites, each of which is a
quantum dot that hosts IV spin—% degrees of freedom.
The model contains only the couplings between spins
from different dots. To be concrete, let o#(i,n) be the
Pauli sigma matrix of nth spin at dot 7, and the Hamil-
tonian is composed of two-body interactions,

N 3
H=>" 3" " Juli,jmn,t)o"(im)e"(j,n).
i#j n,m=1 p,v=0

(2.2)
where the coupling constant J is proportional to a power
function of the distance ﬁ In order to make the
model tractable, we take the couplings to be independent
Brownian motions. Dividing the evolution into short pe-
riods of At intervals, the coupling at the s-th interval is
approximately

. g 1
JHV('L,j,m,n,t = SAt) = ABi]»’mvn(t)W’ g = g,
(2.3)
where AB;; ., . (t) are independent Gaussian random

numbers with variance proportional to At¢. The com-
plete time evolution is generated in the continuum limit
of

o tHsAt —iH 1At (2.4)

This type of model is called the Brownian quantum
circuit. The time evolution is a random walk on the
unitary group in the direction of allowed couplings.
The statistical average of the operator spreading is
analytically tractable and many of the variants have
been used to study the quantum dynamics in chaotic
systems!3:29:31,32,

In the one dimensional model we consider, the opera-
tor dynamics is fully determined by the operator height
distribution function

f(h7t): Z

height(B,,)=h

o (D)1, (2.5)

where height h = (hy, ho, -+ ,hr) is a L-component vec-
tor. The height of a Pauli basis B, on each site is the
number of non-identity operators therein. The distri-
bution function f(h) groups all the probability contri-
butions whose corresponding basis has the same height
h. The height distribution is important since it contains
all the necessary information of operator growth and the
mean height is equal to OTOC!329:33 In our previous
paper??, we studied a single Brownian quantum dot of
N qubits with all-to-all interaction, and we derived the
master equation of f(h) with h € [0, N] as the height
distribution on a single dot. Following a similar method,
we can show that the evolution of the joint distribution
f(h) in a one dimensional model is governed by the mas-
ter equation

9f(h,t)
T = ;31)13}1](]\] — hz' + 1)f(h — ei,t)
+ ZDijhj(hi +1)f(h+ e, 1)
j#i

— ZgDijhj(N_ hl) —|—Dijhihj f(h,t),
JF#i

(2.6)
where the coefficient D;; is W e; is a L-component
vector which takes unit value at site ¢ and is equal to
zero at other sites. If we take D;; to be short-range
interaction, the equation is similar to the one derived in
Ref. 13. Starting from f(h), we can compute the mean
height Ej at each site and obtain the spatial and temporal
profile of OTOC. For instance, if we take Oy (t = 0) and
O, as simple operators at dot ¢ and j respectively, the
mean height h; is exactly the same as OTOC C(z =

|i — j|,t) defined in Eq. (1.1).

We first deal with the case of N = 1, representing spin
chain model with small onsite Hilbert space dimensions.
The height at each dot can only take 0 or 1 and therefore
the model is equivalent to a non-equilibrium kinetic Ising



model*. In this case, the master equation becomes,

df(h,t)
ot :;3Dijhjf(h —e;t)+ ;Dijhijl +e;,t)

— 4> 8Dy;h;(1 = hi) + Dijhihy p f(h,t).
i

(2.7)
This equation describes a Markov process shown in Fig. 2
where 1 denotes h = 1 and | denotes h = 0 configura-
tion. The two-site interaction between ¢ and j induces
a transition rate of height change: the dot j with height
h; = 1 will increase the height h; from 0 to 1 with rate
3D;; while decrease its height from 1 to 0 with rate D;;.
Whereas if h; = 0, the transition for h; to go from one
configuration to another is always zero. Such kind of
update rule for Ising spin dynamics is the same as the
one spin facilitated Fredrickson-Andersen model, which
is used to study the dynamics of classical spin glass®®.
Here the corresponding quantum qubit on each site has
Hilbert space dimension 2. This result can be further
generalized to a ¢ dimensional local Hilbert space and
the transition rates becomes 4(1 — q%)Dij and %Dig% In
the ¢ — oo limit, the rate of flipping 1 to | is zero. The
update rule is simplified while the physics remains the
same. After sufficiently long time evolution, the system
reaches the final steady state with uniform mean height
h(z,t — 00) =1—1/¢°.

before | after | rate(q =2) | rate(q = o)
Fori: | 4 ¥ D, 0

* ¥ 4 3D, 4D,
& @)
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FIG. 2. Transition rate induced by an interaction term be-
tween spins from dot j and dot ¢. The flipping rate of N =1
case (shown in the table) for spin at dot 4 is only nonzero
when spin j is up; the rate for flipping up is higher, giving
rise to the operator spreading.

The dynamics of the master equation in Eq.(2.7) has
two simple limits that have been studied in the previous
literatures.

When a = 0, the interaction is equally weighted be-
tween any pair of quantum dots. Therefore we can view
this as an effective single quantum dot with L spins. Be-
cause all dots are identical, the full distribution only de-
pends on the total height >, h; (which is the height of
the effective single dot). The OTOC has an initial ex-
ponential growth and the full dynamics can be described
by a general logistic function behavior??36. The same
scaling behavior should hold even when « is close to 0
that the locality is completely lost.

When a = oo, the transition rate is restricted to the
nearest neighbor dots, i.e., D;; # 0 only when ¢ = j £ 1.

FIG. 3. End point of an operator. Three panels show typical
height configurations at o = oo, where green block represents
h = 1 and empty for h = 0. The red block marks the right
most site with height 1. The flip occurs at nearest neighbor
site. Arrows label the transition rates from the middle state
to the top and bottom ones. There are also flipping processes
to the left of the end point, but they quickly equilibrate.

We set the initial condition to be hy = 1 with rest of
hj = 0. As shown in Fig. 3, a typical height configuration
in this limit will have a regime with high density of h =1
on the left and a A = 0 domain on the right. The red
block is the right most one with height 1, which we will
call the end point. In the ¢ — oo limit, one can view this
as a domain wall between h = 1 domain and h = 0 do-
main. The end point performs a biased random walk!'%!1
towards the right and the mean value h(z,t) propagates
ballistically in time with the front broadening diffusively.
This wave front interpolates h = 0 domain and the left
side of the end point, which quickly equilibrates to have
an average value of hgyy = %. This gives the same pic-
ture described by the random local unitary circuit!®!!,
However, as we will show later, this biased random walk
picture breaks down as we reduce « for two reasons: The
end point can have non-local random walks that is not
restricted to neighbors within fixed radius. The regime
on the left of the end point does not immediately equili-
brate after the front sweeps through. Hence the end point
distribution, though can be defined, does not directly re-
late to the mean height or OTOC. We need to directly
compute the mean height by the master equation.

The full joint distribution f(h) governed by Eq.(2.7)
or Eq.(2.6), resembles a many-body wave function of the
tenor product of heights. Recently, Ref. 13 used the ma-
trix product state (MPS) based algorithm to represent
and evolve f(h,t) in Brownian circuit with local interac-
tion and studied the crossover from large N to small NV
limit. We take an alternative approach here to directly
simulate the Markov process that generates and samples
f(h) for N = 1. We will use this method to analyze the
resulting light cone structure, butterfly velocities and the
scaling form of OTOC in Sec. I1I.

In the end, we briefly mention the N — oo limit. In
this case, we study the normalized height h = %, which
can continuously vary from 0 to 1. The height fluctua-
tion in the Markov process is an order O(%) effect and

will not be considered here— we are now in the mean




field limit. We can write down the evolution equation for
h(z, 1),

% :/dyﬁ(y,t)D(y,m)u — h(z,t))

_ %/dyh(y,t)D(y,w)h(%t)

— [ dyity. D)1 -

sat

h(x,t))  (2.8)

where the kernel D(zx,y) is ﬁ The first term rep-
resents the “flip up” rate generated by the portion of
1 spins at site y to portion of | spins at site x, while
the second term gives the “flip down” rate. This equa-
tion is a generalization of Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) equation®”3® with diffusion kernel re-
placed by the power law kernel. Indeed, in the limit
a — 00, it reduces back to the ordinary FKPP equa-
tion with stable traveling wave solution®®. However, at
finite «, it can exhibit strikingly different dynamics. The
full analysis of this equation will be performed in Sec. IV
which will give the light cone information and the spa-
tiotemporal structure of mean height (OTOC).

III. CHAOS DYNAMICS AT N =1
A. The formation of light cone

We numerically simulate the Markov process described
by Eq.(2.7) with initial condition
Mz=1,t=0)=1, hlz>1,t=0)=0 (3.1
and open boundary condition. This initial condition rep-
resents a simple localized quantum operator at t = 0. In
each run of the simulation (one sample), h(x,t) at fixed
time ¢ is a classical configuration with 0 or 1 on each site.
We take L € [103,10%] and average over 25000 samples

to obtain h(z,t). The large system size and sample num-

ber allow us to treat h(z,t) as a continuous function of
x and t. We take L = 2000 and L = 10000 to estimate
the finite size effect.

After sufficiently long time evolution, h(z,t) will ap-
proach the steady state value h(z,t — 00) = hgat = 0.75.
In contrast to the common interest of Markov process,
our focus here is not the steady state, but the entire
relaxation dynamics towards it. In particular, we will
investigate the formation of the effective light cone and
the scaling form of OTOC.

As the first step, we compute h(x,t) at « = 0 as a
benchmark. In this limit, the transition probability set
by D;; is independent of the locations of two spins and h
quickly becomes uniform on each site. As we mentioned
earlier, the total height is the height in the effective single
quantum dot?”. Indeed the result matches if we rescale
Dij by L.

We now turn to the numerical simulation for a > 0.
The physics of a < 0.5 is similar to the case of a = 0.
The quantum information spreads out almost instanta-
neously to the entire system and therefore h(z,t) is inde-
pendent of x. This can be clearly observed in Fig. 4(a),
where the height simultaneously reaches hgat everywhere
in space. h(t) has an exponential growth in early time
with decreasing Lyapunov exponent A for increasing «.

The locality emerges when « > 0.5. We define the light
cone to be the boundary trc(z), below which h(z,t) is
smaller than the threshold value. In our simulation, we
set this threshold to be hgy/2. We define its inverse
function to be zp¢(t), thus

1
—hgat-
5 ltsat

hzLe(t),t) = h(z, tuo(z)) = (3.2)
Our convention is that a logarithmic light cone cor-
responds to a logarithmic function ty,c(x) rather than
zrc(t). As shown in Fig. 4(b), when o = 0.75, we ob-
serve that the boundary curve is a logarithmic function of
x, indicating that the butterfly velocity vg(t) = dxpc/dt
grows exponentially in time. The coefficient of the loga-
rithmic curve is increasing for increasing a (Fig. 5(a)).

When a 2 0.8, we find the logarithmic light cone to be
replaced by a sublinear power law light cone tpc(z) ~ z¢
with ¢ < 1(Fig. 4(c)). As shown in Fig. 5(b), we notice
that the exponent ( increases as we increase . When
a exceeds about 1.5, it becomes a linear light cone with
¢ =1 at large time. This suggests that the wave front is
propagating asymptotically at constant velocity vp, the
same as systems with local interaction. We expect that
these different light cone regimes should be observed in
a realistic spin chain model with power law interaction.
Notice that the power law or linear light cone in the range
«a > 1 is far below the current information bound pro-
posed in Ref. 23.

B. The scaling form of OTOC

To better understand the possible scaling forms of
OTOC in different light cone regimes, we perform data
collapse for the front of h(x) at different times for various

a. The front of the h(zx) profile is the regime which inter-
polates the regimes of h = hgyy and h = 0. We consider
the following scaling ansatz h(z,t) for data collapse:

T — ch(t))

w(t)

where we first navigate to the vicinity of the wave front
and then probe the possible broadening by the choice of
the width function w(t).

As shown in Fig. 6(a), the mean height for o = 2.5
fits well with the scaling argument (z —wvpt)/v/t with the

butterfly velocity vg as a constant. The front of h(x)
broadens diffusively as it propagates to the right with

h(z,t) — h( (3.3)
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FIG. 4. The spreading of OTOC at various exponent a.
OTOC = hgat/2 on the black line (light cone trc(z)) in (b)
(c) and (d).
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FIG. 5. Light cone scalings. (a) Linear behavior of tLc on

semi-log scale indicates a logarithmic light cone when o < 0.8.
The solid line (L = 10000) stretches linearly longer than the
dashed line (L = 2000), showing that logarithmic light cone
will persist in the infinite system. (b) The power law light
cone t = z° on the log-log scale for o > 0.8. We extract the
exponent ¢ at various « in the inset.

vp. Here the front shape of h(x,t) can also be deter-
mined from the end point distribution p(x), which is a
Gaussian distribution moving to the right with v and
broadens diffusively(see Fig. 8(a)). This means the end
point of h(z) is performing a biased random walk. In
Fig. 6(a), we check that the mean height h(x) is equal to
the front area of p(y), i.e., a complementary error func-
tion by hgat f;o p(y)dy. We notice similar behaviors for
other values of a > 2 with vg decreasing for increas-
ing «.? These results provide strong evidence that the
physics at o > 2 is essentially the same as the Brownian
circuit with local interaction discussed in Sec. II.

As we reduce « to the range between about 1.5 and 2,
although the front still moves with a constant velocity,
it broadens super-diffusively with time. We empirically
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FIG. 6. Data collapse of h(z) curves at various ¢ in the

linear light cone regime of «. Insets show curves before col-
lapsing. (a) The dashed line is the complementary error func-
tion Zerfc(x/3.2). It matches well with the collapsed curve at
a = 2.5. The curves in the inset have the same time differ-
ences. This applies to all the data collapses below. (b) The

data collapse of h(z) at @ = 1.75. Notice that it has a tail
which is close to a power law function.
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FIG. 7. Data collapse of h(x) curves for a = 1.25 (power law
light cone) and a = 0.75 (logarithmic light cone) respectively.
In both insets, h(z) decays as 2% (dashed line). In (b) we
take ¢ = 0o to access larger system size (L = 100000).

take w(t) =t with B > 0.5. B will increase when we
decrease o (Fig. 6(b)). Notice that the tail of the col-
lapsed front is close to a power law decay function. The
right side of p(x) also has a stretched tail caused by the
non-local random walk of the end point(Fig. 8(b)). But

now h(z) is not equal to he [, p(y)dy. The connection

between h(z) and p(z) will be explored in the future.

When 0.5 < o < 1.5, the broadening becomes so wide
that w(t) approaches zpc(t). We therefore simply take

the scaling argument as ﬁ or —%— and collapse the

Lo (t

curves. We further notice that thce( )front decays alge-
braically in spatial direction with the exponent equal to
2a (The inset of Fig. 7(a) and Fig. 7(b)). The scaling
function is therefore (ng(t) )~2% when z 2> x,c(t). This
range of o can be divided into two regimes according to
the light cone structure. When 0.8 < a S 1.5, zp¢(t) is

a power function of time and therefore we have the front




(Fig. 7(a))
(3.4)

It is a scale free power function in both spatial and tem-
poral directions. Here ( is a function of a which decreases
as we reduce a. Eventually, when we enter into the log-
arithmic light cone with 0.5 < a < 0.8, zpc(t) ~ ezt

and the front of h(z,t) approaches a simple scaling form
(Fig. 7(b)),

e/\t

x2a’

h(z, 1) ~ (3.5)

Therefore we have h(x,t) grows exponentially in time
with the Lyapunov exponent A as a function «.

The data collapse results imply the logarithmic, power
law and linear light cone formations across different
ranges of « and the associated scaling forms of OTOC in
the long-range power law interaction, at small N limit.
These results are summarized in Table I. We expect this
feature to be universal and also works for a realistic sys-
tem with power law interaction.

@ Light cone [Scaling form of OTOC
0.5 < a < 0.8|Logarithmic et /2
0.8 < a < 1.5] Power law t20/C ) g2
15Sa<? Linear C((x —vpt)/t?)
a>2 Linear erfc(a(x — vpt)/V1)

TABLE I. The light cone structure and the scaling form of
OTOC.
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FIG. 8. Right end point distribution p(z). (a) When o = 2.5,
p(x) at various t (solid curves) fit well with the Gaussian
packets which broaden diffusively with time (dashed curves).
(b) p(z) at @ = 1.75 on the semilog scale (solid curve) com-
pared with Gaussian packet (dashed curve). The deviation is
obvious, especially for large x.

IV. LARGE N LIMIT

In the large N limit, we can directly solve normal-
ized mean height h(z,t) from Eq. (2.8). The equation is

similar to the fractional FKPP equation which provides
a mean-field description of the reaction-superdiffusion
process*™42. It involves two terms: the reaction term
and the superdiffusive term determined by the parame-
ter a. Ref. 41 and 42 show that when « takes proper
value, the front of the wave solutions of fractional FKPP
equation has the form exp(\t)/x2®, which accelerates ex-
ponentially in time and decays algebraically in spatial
direction. Since h(x,t) also ranges from 0 to 1, in this

section we will also call it h(z,t).

We first briefly discuss the two simple limits of
Eq. (2.8) at @« = 0,00. When o = 0, the result should
match an effective quantum dot with NL spins. In the
a — 00 limit, D;; takes nonzero value only when ¢ = j+1.

Therefore the evolution equation for h(z,t) can be writ-
ten in the following form

Ouh(z, 1) = D(2h(z, 1) + 92h(z, 0)(1 — —h(z, 1)).

(4.1)
This equation is very similar to the ordinary FKPP equa-
tion with short-range diffusion term3”3®, which provides
a mean-field solution for reaction-diffusion process. It
has an exponential front exp(A(t —z/vp)) traveling with
constant butterfly velocity vp without dispersion, con-
trary to the N = 1 solution!®363 whose ballistic wave
front broadens as v/%.

A more striking difference between small N and large
N limits appears at finite . In the Sec. I, we have
shown that in the small N limit, the system has a linear
light cone when o > 1.5. In contrast, in the large N limit
numerical calculation suggests a two-segment structure of
the light cone when o > 1.5 (Fig. 9): a linear light cone
followed by a logarithmic light cone. The latter always
appears in the late time. More quantitatively, we find
three interesting phenomena (see Fig. 9(b)):

hsat

1. The butterfly velocity in the linear light cone
regime is independent of a.

2. The logarithmic light cone scales as tr,c ~ alogx.

3. The transition from linear light cone to logarithmic
light cone occurs at the intersection z ~ alogx.

The early time linear light cone is easy to under-
stand. When « is sufficiently large, the power law ker-
nel in Eq. (2.8) is numerically close to the diffusive
kernel and therefore at early times Eq. (2.8) describes
the ordinary FKPP dynamics with the front scaling as
exp(A(t—x/vp)) (see the data collapse in Fig. 10(a)). Far
ahead of this exponential front, we further notice a power
law tail 272 as shown in Fig. 11(a). It is initially buried
far away from the front and has comparable order with
the exponential front beyond the location determined by
exp(—Ax/vg) ~ 2. When the front reaches this loca-
tion, the power law tail becomes dominant and destroys
the linear light cone. Indeed, in the data collapse for
the late time front dynamics at o = 10 (Fig. 10(b)), we
see the front scales as a power law function e /z? at
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FIG. 9. Light cone structures in large N limit. (a) The curve
trc(z) switches from linear to logarithmic at o = 5. (b) The
transitions from linear to logarithmic light cone at various a.

late times. Similar linear followed by logarithmic light
cone behavior has also been discussed in Ref. 19, 41—
43. When o < 1.5, only logarithmic light cone appears
with the front scaling e* /22 (see Fig. 11(b)). Although
the asymptotic logarithmic light cone appears counter-
intuitively fast, it does not violate the information bound
of the power law interaction systems proposed in Ref. 19—
24, which only works for systems with finite V.

100 — a = 10, early time

10° a = 10, late time

\ L = 2000,vp = 59.6 \,

500 1500

o/ ekp(Lo7a)® 2

(b)

FIG. 10. The scaling of the front in the linear-to-logarithmic
transition in the large N limit at & = 10. (a) Scaling collapse
for the exponential tail on the semi-log scale at early time in
the linear light cone regime. The front propagates linearly in
time. (b) Scaling collapse on the log-log scale at late time
in the logarithmic light cone regime. The front propagates
exponentially in time. The dashed linear scales as 1/2%°.

Based on the analysis above, we find that N = 1 and
N = oo give different light cone structures. The large
N solution (fraction FKPP equation) can be understood
as the mean field approximation of the master equation.
When a < 0.5, almost all the sites are coupled together,
thus justifying the large N mean field limit. When o >
0.5, the mean field approximation starts to break down.
The large N solution does not have a power law light
cone regime as in the case of N = 1. When a > 1.5, we
also see that the initial linear light cone is tamed by the
power law tail of the front in the long time.

The crossover for the dynamics from finite IV to large
N is an intriguing question. As discussed in Ref. 44—
46, the large N solution in diffusion-reaction process is
unstable against the 1/N correction, which can be effec-

100 — 10°

\ 100 102

10-%0 N 107 - -
10° g 10% 10 10% / exp(32.77t) 10
(a) (b)

FIG. 11.  (a) The front shape of h(z,t) vs = at different
times on the semi-log scale for = 10. (b) Scaling collapse of

h(z,t) on the log-log scale at « = 1. The dashed linear scales
as 1/2%.

tively treated as a noise term in FKPP equation. Asymp-
totically, the noise generates fluctuation that leads to
a diffusively broadening of the otherwise dispersion-less
wavefront. The authors of Ref. 13 applied this result to
discuss this crossover in chaotic systems with local inter-
action and showed that in the long time limit, the chaos
dynamics at large but finite N is qualitatively the same
as the small NV limit.

We expect the 1/N correction could also significantly
change spatiotemporal behavior of chaos dynamics in the
power law interaction systems. As long as N is finite,
the large N solution for the front is not stable. When
« is large, we should only observe the linear rather than
the two-segment light cone behavior. Indeed, the asymp-
totic linear light cone structure has been found in some
reaction-superdiffusion kinetics with large but finite N47.
Moreover, a power law light cone at intermediate o could
also appear, which is caused by the competition between
1/N effect and non-local hopping process. A good start-
ing point to explore the profound 1/N effect is to intro-
duce noise term in Eq. (2.8), which we leave for future
work.

V. CONCLUSION AND OUTLOOK

In conclusion, we use OTOC C(x,t) to diagnose the
chaos propagation in one dimensional power law interac-
tion systems with N number of qubits at each site. In the
N =1 limit, by using C(z,t) to define light cone, we find
(1) a logarithmic light cone regime when 0.5 < a < 0.8,
(2) a power law light cone regime when 0.8 < o < 1.5 and
(3) an emergent linear light cone regime when a 2 1.5.
The linear light cone regime can be further divided into
two sub-regimes according to the different scaling behav-
iors of C(z,t). When a > 2, the front of C(x,t) is broad-
ened diffusively in time, the same as systems with local
interaction. This result suggests in this regime, the local-
ity can be fully recovered in the long-range power law in-
teraction systems. When 1.5 < « < 2, the front of C(z, t)
is still moving with constant butterfly velocity but broad-



ens superdiffusively in time. In the power law light cone
regime, we find that the front of C(z,t) ~ t2*/< /22 j.e.,
an algebraic dependence in both temporal and spatial di-
rections. In the logarithmic light cone regime, the above
scaling function is replaced by C(t,z) ~ exp(At)/x>?.
Finally, when a < 0.5, the locality is completely lost and
C(z,t) shows similar behavior as in the o = 0 limit.

We also investigate the scaling function of OTOC in
the large N limit. Besides the pure logarithmic light with
a < 1.5, we also find a transition from early time linear
light cone to late time logarithmic light cone behavior
when a 2 1.5. We comment on the stability of this late
time logarithmic light cone behavior at finite IV and argue
that the large N solution should be unstable against 1/N
correction.

Our work opens the door to a number of intriguing fu-
ture directions. First, our analysis on the small N limit
in one dimension can be extended to system with finite N
or higher dimensions and therefore gives a complete phys-
ical picture for chaos in long range power law interaction
system. Moreover, our result suggests possible improve-
ment for optimizing the information bound in long range
interaction system. Another interesting direction would

be to understand other dynamically related quantities,
such as the entanglement growth and thermalization rate
in a generic chaotic systems with long range interaction.
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