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Bulk photovoltaic effects in the presence of a static electric field
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This paper presents a study of dc photocurrents in biased insulators to the third order in the
electric field. We find three photocurrents which are characterized by physical divergences of the
third-order free-electron polarization susceptibility. In the absence of momentum relaxation and
saturation effects, these dc photocurrents grow as t" (n = 2,1,0) with illumination time. The
photocurrents are dubbed jerk, third-order injection, and third-order shift current, respectively, and
are generalizations of the second-order injection and shift currents of the bulk photovoltaic effect.
We show that the injection, shift, and jerk currents admit simple physical interpretations in terms of
semiclassical wavepacket dynamics and the concept of intraband current. Experimental signatures
and extensions to higher-order susceptibilities are also discussed.

I. INTRODUCTION AND MAIN RESULTS

Electrons in crystals can exhibit fascinating dynamics
in the presence of external electric and magnetic fields.
In metals, the anomalous Hall effect in metallic ferro-
magnets'>? or the chiral anomaly in Weyl semimetals®*
are two examples. Insulators, despite lacking a Fermi
surface, can also exhibit nontrivial carrier dynamics such
as injection and shift currents. Generically referred as
bulk photovoltaic effect (BPVE), the injection and shift
currents are dc photocurrents in irradiated homogeneous
insulators or semiconductors that lack inversion symme-
try.

The peculiar nature of the BPVE was first noticed by
its photocurrent dependence on light polarization, its de-
pendence on the intensity of light, and by its large open-
circuit photovoltages. This led to the first successful phe-
nomenological theory of both components of the BPVE,
namely, the injection and shift current.® " Later, quan-
tum kinetic theory was used to find explicit microscopic
expressions for the response tensors®®. The BPVE has
been extensively studied since the 1960s in ferroelectrics
in the context of photovoltaic applications. More re-
cently, the BPVE has attracted attention for its promise
in novel optoelectric applications;’'° specifically in two-
dimensional (2D) ferroelectrics.!* 13

In the injection current, also called circular photogal-
vanic effect (CPGE), the lack of inversion symmetry can
be manifested in two scenarios. In the first scenario, pho-
toexcited carriers relax momentum asymmetrically into
+k directions via collisions with other electrons, phonons
or impurities. This leads to a polar distribution and a
net current® 7. In the second scenario, light pumps car-
riers into velocity-carrying states asymmetrically at +k
points in the Brillouin zone (BZ) leading to a polar distri-
bution and a net current®!4. In both scenarios, the key
point is that the rate of pumping into or out of current-
carrying states at time-reversed directions is asymmetri-
cal. Within a simple relaxation time approximation, the
steady state injection current in both cases is propor-
tional to the first power of the relaxation time constant
and vanishes for linearly polarized light.

The shift current, on the other hand, has a distinct

microscopic origin which is not completely understood.
It is known that shift current processes involve the co-
herent transfer of charge across a unit cell. This happen
because materials that lack inversion symmetry have the
centers of charge in the valence and conduction bands
spatially separated. The shift current vanishes for circu-
lar polarization of light and decays in the time scale of
the quantum coherence of the solid.

The injection or shift current (or both) has been
reported in ferroelectric materials®!%19723  GaAs?42,
CdSe®627,  CdS?", quantum wells?®2?,  RhSi?,
Bii2GeOg?!, and others as reported previously.®3234

Following Sipe and coworkers'*, BPVE response ten-
sors can be derived from the perspective of divergent po-
larization susceptibilities. In this approach, the inversion
symmetry breaking is encoded in light-matter interac-
tions and not on momentum relaxation processes; the
latter are included phenomenologically a posteriori. For
not too large electric fields, the insulator’s response to
an external electric field is described perturbatively by
susceptibilities x,, as

P=Py+x1E+ x2E* + 3E* + - -, (1)

where Py is the electric polarization in the absence of an
external electric field,?>3% y; is the linear susceptibility,
and a2, X3, ... are nonlinear susceptibilities.?”

The electric polarization in insulators is commonly
thought to be determined by the off-diagonal elements
of the density matrix because these elements describe
the displacement of charge from its equilibrium posi-
tion in the presence of an electric field. Intraband pro-
cesses, however, have been shown to be important.39:42:43
Among other things they cure unphysical divergences in
susceptibilities in the dc limit by incorporating the fact
that the intraband motion of Bloch electrons cannot ac-
celerate indefinitely in insulators3?42. Importantly, when
intraband and interband processes are taken into account
on an equal footing divergent susceptibilities represent
real photocurrents.

Consider, for example, the dc divergences of ys. If
we denote the amplitude of the electric field by E? =
Zﬁ Ege_i“’ﬁt, the polarization to second order is



TABLE I. Summary of bulk photovoltaic effects (BPVESs) obtained from divergences of free electric polarization susceptibilities.
The 2nd injection and shift current are derived from singularities in x2 at zero frequency. The BPVEs can be classified by
their dependence on illumination time in the absence of momentum relaxation and saturation effects, e.g., 12, n3 and 7
are called injection current responses and similarly o2, o3 are called shift currents responses. We write susceptibilities as,

abe...

Xn ¢ (—ws, wg, We, ...) where b, c... are Cartesian indices, wg, ws, ... are frequency components, and ws, = wg +we +... frequency
sums®®. [X,Y] ({X,Y}) indicate commutation (anticommutation) with respect to b,c indices only. Other conventions are

explained in Sec. II.
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P = 37 x5 (s, wp, ) BB, (2)
bBco

and oscillates with frequency wy, = wg + w, in the long-
time limit. It can be shown that the intraband, xo;,
contribution to x»

X2 = X2i + X2e» (3)

can be expanded in powers of wy; as'439

(—iws)?x2i = N2 + (—iws)og + -+ . (4)

In can be shown that the interband component ys. is
regular as wy — 0. Together with the Maxwell equation
dpP
— =17 5
=1, (5)

and assuming a monocromatic optical field, Eq. 4 implies
12 and o9 are response functions of the nonlinear currents

d a aoc (6]
I =23 (0,0, —w) BN @) E(~w),  (6)

be
TP =23 08%(0,0, ~w)E' (W) E(~w).  (7)
be

72 and oo are the standard injection and shift cur-
rent response functions derived from the susceptibil-
ity approach.' Importantly, they vanish for frequencies
smaller than the energy gap (they are ‘resonant’). The
dots in Eq. 4 are associated with the (nonresonant) rec-
tification currents.**%5. In the absence of momentum
relaxation and saturation effects the injection and shift
currents grow with illumination time as

T o mat 8)
T4 o . 9)

In this article we show how the injection and shift cur-
rents are modified by the presence of a static field from
the perspective of the physical dc divergences of the free
third order electric polarization susceptibility x3. Biased
irradiated semiconductors of this kind have been exten-
sively studied numerically using the semiclassical Boltz-
mann equation.*® As shown below, this approach misses
some important quantum effects which are recovered in
the susceptibility approach.

The third order polarization



P — Z ng“l(—wg,wﬁ,wg,w(;)EgEg‘Ege_int,
bBeods
(10)

oscillates with frequency ws, = wg + we + w;s in the long-
time limit. We show that the intraband part, xs;, of
X3 = X3i + X3e admits the Taylor expansion

(—iws)?xsi = 13 + (—iws)ns + (—iws) o5 + -+, (11)
or alternatively the Laurent series
L3 n3 | 03

X3i=;+;+?+“'7 (12)

where z = —iwy, and 13, 73, o3 are (resonant) residues.
Clearly, x3; diverges in the dc limit (wy = 0) and similar
to 12 and o9, t3, 3 and o3 represent response functions
of nonlinear currents

d?
ﬁ‘]je(jll = 6ZL§de(O,w, —w,0)Eb (W) E*(~w)E§

bed
(13)
d 3 aoc (6]
Gl = 63780~ 0) B () B () B
(14)
Jg,53) =6 Z o3%°4(0, w, —w, 0) E*(w) B¢ (—w) EY.
bed
(15)

The difference is that a static field (zero frequency) is
taken into account in addition to a monochromatic op-
tical field. In the absence of momentum relaxation and
saturation effects the currents vary as t2,¢,t° with illu-
mination time and we dub them jerk, 3rd-order injection
current and 3rd-order shift current, respectively. The
dots in Eq. (12) represent regular terms associated with
rectification currents.

Since xse is regular in the dc limit one can write the
same expansion as in Eq. (12) for both x3; and x3. Sim-
ilarly, the third order photoconductivity which is defined
by

JeG) = Z Uab‘:d(g)(—wg,wg,wo,wts)EgEgEge*i”Et,
bBecodd
(16)

admits the expansion

L
0<3)2%+@+03+..._ (17)
z z

The macroscopic current dynamics in a sample involves
not only the above generation processes but also the sub-
sequent evolution of charge distribution in the sample.

In the presence of dissipation, the dc divergences will
be cut-off by a momentum relaxation time scale, just as
the dc divergence of metals in the Drude model is cut-
off by a momentum relaxation time. In the BPVE, we
expect two relevant relaxation time scales. One is the
relaxation time scale of the diagonal elements of the den-
sity matrix, 71, which t3, 13, and 72 depend on. This
could be of the order of 100 fs or longer in clean semi-
conductors?”. The second is the relaxation time scale of
the off-diagonal elements of the density matrix, 7o, which
o3 and o9 depend on. Typically, we expect 7o < 71, but
a recent experiment found 7, to be as large as 250 fs.?°
For weakly disordered semiconductors, the conductivity
at wss = 0 becomes

o® =T12L3+7'1773+03. (18)

Note that ¢(® can also be viewed as the photoconduc-
tivity, i.e., the light-dependent correction to the dc con-
ductivity.®

We can generalize the above results to any power in the
electric fields. In general, with each additional power in
the electric field, x,; has an additional frequency factor
in the denominator. This means that the dc singularities
of xn; are, at most, of the order n. We can show that
the nth order z = 0 singularities of y,, (n > 2), represent
photocurrents which vary as t" in the absence of mo-
mentum relaxation and saturation effects. This occurs
when all but two of the external frequencies are zero.
In addition, there is a hierarchy of higher order shift,
injection,..., currents which are represented by z = 0 sin-
gularities of order 1,2, 3,..n of x,. Formally y, can be
expanded as

Xn = Z a2, (19)

l=—n

where a; = 0 for frequencies less than the gap and hence

the residues are
1 Xn dz
= — — 20
w=sm (20)

The poles of x,, may be of lower order than n when the
optical field is not monocromatic; see, for example, the
4th row in Table I where the field’s frequencies are w and
2w.

Importantly, we give simple physical arguments to ex-
plain the microscopic processes involved in t3, 73, o3
and o9 and provide explicit expressions in terms of ma-
terial parameters amenable for first principles computa-
tions. To have a sense of the magnitude of these cur-
rents, we calculate them in single-layer GeS using a two-
dimensinal (2D) tight-binding model. In particular we
give specific signatures of these currents for ultrafast THz
experiments, see Table II.

The article is organized as follows. In Sec. IT we de-
scribe the conventions used in this paper. In Sec. IV, III,



and V we introduce the Hamiltonian, polarization, and
current operators. In Sec. V A we revisit the calculation
of the intraband current following Sipe and Shkrebtii.!?.
In Sec. VII we rederive the expressions for the injection
and shift current responses giving simple physical inter-
pretations based on semiclassical wavepackets dynamics
in electric fields. We then study the physical divergences
of x3 at zero frequency in Sec. IX, X, and XI. The jerk
current has been presented previously and is included
here only for completeness?. BPVEs arising from sin-
gularities of x,, (n > 3) are discussed in Sec. XIT A. Ex-
perimental signatures in single-layer GeS are summarized
in Sec. XIII. A summary of the BPVEs is presented in
Table I. Details of the derivations are given in the appen-
dices.

II. NOTATION

To keep the notation under control we often omit the
independent variables such as time, real space position,
or crystal momentum, specially in expressions which are
diagonal in these variables.

We use the standard notation for the nth electric po-
larization susceptibility,®® x2°¢(—wswgs, w,, ...), where
Wg,We,... label external frequency components, abc, ...
label Cartesian components, and wy, = wg + Wy + ... the
frequency sum. We often write y2°¢ or simply Y, for
brevity absorbing a free permittivity factor ¢y into the
susceptibility.

We adopt a semicolon and subscript, ‘,,’, to mean a co-
variant derivative with respect to crystal momenta with
respect to Cartesian component a = x, y, z. Unless other-
wise specified we contract the spinor index, e.g., na — n
in all expressions. A hat on a Hamiltonian, polariza-
tion, and current indicates an operator and a lack of a
hat means a quantum mechanical average. We do not
use hats on the creation or annihilation operators or on
the position operator. A bold font indicates a vector or
spinor.

To distinguish the injection current derived from 73
from that of 73 we often call the former 3rd-order injec-
tion current and the latter 2nd-order injection current.
Similarly, 3rd-order shift current refers to current derived
from o3. We hope the missing details will become clear
from the context.

III. HAMILTONIAN
We start from a Hamiltonian
o= [ary (;;n SV e (b a)) (21
FHing,  (22)

describing Bloch electrons with spin-orbit (SO) coupling,
where V(r) is the periodic potential of the ions, p =

4

—ihV, is the momentum operator, e(r) = =V, V(r) is
the SO field from the nucleus, and pp = eh/2mc is the
Bohr magneton. H;,; contains interactions with other
electrons, phonons, and impurities. We assume a mean
field theory for this term. Its effect is to renormalize
the parameters of the noninteracting theory. Momentum
relaxation is incorporated phenomenologically at the end
of the calculation. The electron charge is e = —|e|. We
define the real space spinor field as

() e

A classical homogeneous electric field is coupled to the
Hamiltonian by minimal substitution, p — p—eA. After
the gauge transformation

1/;0( _ waefieAT/h’ (24)

(o is the spinor component) the Hamiltonian for the
transformed fields becomes

H(t) = Ho + Hp(t). (25)

In what follows we omit the tilde above the transformed
fields. Hy is given by Eq. (22), and the perturbation has
the dipole form

fID:—e/dr't/)TrE'c/J. (26)

The electric field is given by E = —9A /0t. The eigen-
functions of Hy can be chosen to be Bloch wavefunc-
tions ¥\ (kr) = u'? (kr)e=*, where u'’ (k,r + R) =
ul? (k,r) has the period of a lattice vector R. k is the
crystal momentum and 8 = 1,2 is the spinor index. The
field operators can then be expanded in Bloch states

Ya(r) =Y i) (kr)ans (), (27)
nBk

where aIL 5(k) creates a particle in a Bloch state and obeys

anticommutation rules {a , (k), ams(k)} = Snmbasduw
(= 6nm(27)36(k — K’)/V in the thermodynamic limit).
In this basis, Hy is diagonal

FIO = Z ha]n,@allganﬁv (28)
nBk

and hwyg(k) is the energy of band n and spinor 5. The
sum over crystal momenta is confined to the Brillouin
Zone (BZ). In the thermodynamic limit in d-dimensions
the sum becomes Y, — V [d?k/(27)¢, where V is the
volume of the crystal. In what follows we chose the peri-
odic gauge by which Bloch wavefunctions are periodic in

reciprocal lattice vectors, 'gb%m k+G,r)= ¢5f) (k,r).



IV. POLARIZATION OPERATOR

The many-body polarization operator is well defined
in finite systems. It is given by

f’:%/dri/ﬂ er ¥, (29)

where P = er/V is the one-body polarization operator.
Using the polarization operator Eq. 26, the dipole Hamil-
tonian becomes simply

Hp=-VP-E. (30)

In periodic systems, Hp is given in terms of Bloch oper-
ators a, (k) as

P %Z (nk|r|mk')al, (K)am(K). (31
nmkk’

Because the position operator is unbounded and the
Bloch wavefunctions extend to infinity, the matrix ele-
ments (restoring spinor indices)

(nk|r|mk’) —{nak|r|mpk’)
- / dr (@ (ko) ) (Kr),  (32)

are singular. Fortunately, this singularity does not prop-
agate to observables such as the spontaneous polariza-
tion'* if we separate the singularity by the well-known
identity 48

(nK|r|mk') = 8 [0(k — K')nn + iVid(k — K)]+
(1 = Snm)d(k — K)épm. (33)

Here &,,,,, are the Berry connections
Enm - fnamﬂ = /dI‘ ug‘l)T iV uﬁff) (34)

The polarization operator can then be separated into in-
terband component proportional to (1 — d,,,), and in-
traband component proportional to d,,,. To tighten the
notation let us define the dipole matrix elements as

Com =&wmn NFEM
=0 otherwise. (35)
The polarization is then'
P=P.+P, (36)
where
f)e - % Z rnmajlama (37)
nmk
sy e +
P=1 %;anan;b, (38)

and b = z,y, 2. The intraband polarization depends on
the covariant derivative of a,,

J
A = (W — i€l ) an, (39)

which transforms as a scalar, a,;;, — an;bewi, under local
gauge transformations w,(f ) w,‘f )¢ This should be
contrasted with the transformation of da,, /9Ok® which ac-
quires a gauge-dependent contribution and hence it can-
not represent a physical observable.

From Eq. 36, the susceptibility also naturally separates
into intraband and interband contributions as

X = Xi + Xe- (40)

V. CURRENT OPERATOR

The current density is given by

j= 5 / dr P, (41)

where v = [r, Hy|/ih = p/m + p%0 x e is the electron’s
velocity. In the presence of light, the momentum changes
to p — P+ eA, but after the gauge transformation (24),
the current has the same expression. In terms of Bloch
operators it becomes

J=— Z vnma}:am, (42)

where v, = (nk|V|mk). The current satisfies charge
conservation and Maxwell’s equation

L
P .
E_‘L (44)

where p = epfyp is the local charge density, j =
(e/2)1v1h+ (e/2)(V1h) T4 is the local charge current, and
P is the polarization given by Eq. 36. Local particle con-
servation follows from the equation of motion (EOM) of p
in the standard way. Maxwell’s equation is established as
follows. From Eqs. 36 and 28 and ihdP /dt = [P;+P., H],

we obtain

dpe
"t

= % Z (iwn;acsnm + wmnrfm)azam (45)

nmk
where wy., = W, —ws,. We define the covariant derivative
of the matrix element O,,,,, = (nk|O|mk) between Bloch
states n, m at a single crystal momentum by

Onm;b = l: 0 Z(ﬁfmn - gfnm) Onmy (46)

okt



which can be shown to transform as a tensor under gauge
transformations. Since the energy bands are the diag-
onal matrix elements of the Hamiltonian, their covari-
ant derivative reduces to the standard derivative wy,., =
Owy, /Ok® = ve = p? /m+p% (o xe)?, . On the right hand
side of Eq. 45, we recognize the diagonal and off-diagonal
matrix elements of the velocity. The off-diagonal matrix
elements are obtained by taking Bloch matrix elements
on both sides of v = [r, H]/ih. Comparing with Eq. 42,
the Maxwell’s equation is established in the basis of Bloch
operators.

The intraband polarization operator defines the intra-
band current operator which, as shown below, connects
the semiclassical wavepacket dynamics and the BPVEs.

A. Intraband current

We define the intraband current operator as the time
derivative of the intraband polarization operator J; =
dP;/dt. Similarly, the interband current is J, = dP./dt.
The total current is the sum of the two

J=J3,+1J.. (47)
Let us first calculate J ¢ from

dPa

ih— VY (P!, PP+ PUE".  (48)
b

The first term has been computed in Eq. (4
ond term is

5). The sec-

[P B+ P =
Ze
2 Z nmb+zz np pm - inZm])aILa’m' (49)
nmk

To make progress we now invoke a sum rule first discussed
by Sipe and coworkers.?? It derives from taking matrix
elements of

[r, rb] =0, (50)

and carefully separating the interband and intraband
parts of the position operator shown in Eq. 33. It is easy
to show that such procedure works for spinor matrix el-
ements too. Two cases are of interest follow. Taking
diagonal matrix elements (n = m) of Eq. 50 gives

&
ba — nn — b _a
Qn = kb - aka = —1 Z lrln — Tnlrln}? (51)

and off-diagonal elements (m # n) gives

rgzm;b nm a = —i Z nlrlm - nlrlm] (52)

It is customary, in analogy with electrodynamics, to de-
fine a gauge field tensor Q22 derived from the Berry vector
potential of band n. The Berry curvature Q,, =V x &,,,,
is related to the gauge field by Q2 = Y €08, We
now separate the diagonal from the nondiagonal matrix
elements in Eq. 49 and use Egs. (51,52) to obtain

-V Z[PS,HZ’ +PE" =

262

2
(Bx Q) akan+ T 3 Bl dlan.
nk nmkb
(53)

Subtracting J. (Eq. 48) from J (Eq. 45) we obtain J;

72 {wm o — (ExQ )%
nmk

al . (54)

e
--E- T'nm;a

h

This is an important result. The first term is the stan-
dard group velocity (renormalized by the SOC) of an
electron wavepacket in band n, w,,, = v2. As shown
below, this term gives rise to the injection current con-
tribution to the BPVE. The second term depends on
the Berry curvature €2, and is often called ‘anoma-
lous’ velocity. It gives rise to many topological effects
in condensed matter physics. For example, it gives
rise to the (intrinsic) anomalous Hall conductivity in
metallic ferromagnets,*? and, as can be easily shown®?,
to the (intrinsic) nonlinear Hall effect in nonmagnetlc
metals.®1%2 In insulators, this term contributes to third
order in the electric field but not to second order.

The third term resembles a small dipole created by
the external electric field. Just as the standard momen-
tum derivative of Bloch energies leads to the usual group
velocity, the (covariant) derivative of the dipole energy
Upm = €E - ry,,, can be thought of as a group velocity

Uzllip,nm = _%E *Tnm;a (55)
associated with a pair of wavepackets in distinct bands.

The first two integrands in Eq.(54) are gauge invariant
and are usually interpreted as velocity contributions of
electron wavepackets.®® The dipole velocity, on the other
hand, is not gauge invariant and hence is not a physical
velocity. The dipole current, on the other hand, is gauge
invariant and, in this context, the dipole velocity can
be given a the interpretation of the velocity of pairs of
wavepackets. As shown below, the dipole velocity gives
rise to the shift current contribution to the BPVE. In
summary, the intraband current unifies the well-known
semiclassical dynamics of wavepackets with the BPVEs.

Up to this point, the above formalism is valid for met-
als and insulators. We now focus on the short time



response of insulators, discarding Fermi surface contri-
butions and momentum relaxation. By ‘short time’ we
mean shorter than momentum relaxation characteristic
time (~100 fs) but longer than the period of light (~2 fs).
The BPVE in this regime has been explored using ultra-
fast THz spectroscopy in various materials!!23,24,26-28

VI. PERTURBATION THEORY

Let us define the single-particle density matrix
Pmn = <ajlam>7 (56)

where the a, operators are in the Heisenberg represen-
tation and the quantum average is over the ground state
defined in the infinite past. The ground state has all
the valence bands filled and all conduction bands empty.
Being noninteracting, the system is completely character-
ized by the single-particle density matrix. The amplitude
of the electric field is

Eb _ Z Ege—i(wg-‘rie)t’ (57)
B

where 8 = 1,2, ... labels the frequency components of the
field. The dipole Hamiltonian is treated as a perturba-
tion with the electric field being turned on slowly in the
infinite past so that all the transients effects have van-
ished. As usual, this is accomplished by taking the limit
€ — 0 at the end of the calculation. To find the density
matrix we first compute its EOM'

apmn
ot

) &
+ WimnPmn = % %: Eb(pmlrlbn - Tfnlpln)

e
—5 2 E' P (58)
b

The first term on the right comes from interband pro-
cesses as can be recognized by the presence of r,,,. The
second term comes from the intraband processes which
involves the covariant derivative of the density matrix

0
s = | g5~ € =€) | s (59
Only when the intraband and interband motion is con-
sidered on an equal footing, the EOM reduces to the
Boltzmann equation (in the one-band limit) with no col-
lision integral (or the standard semiclassical EOM in a
homogeneous electric field).

A. Oth order

If E = 0 the solution of Eq.(58) is simply p{oh = Spm fn,
where f,, = f(en(k)) = 0,1 is the Fermi occupation of
band n at zero temperature.

B. 1st order

Substituting the Oth order solution into the right-hand

side of Eq.(58) and solving for pﬁnL we obtain

on = Z Pl Bpe 0! (60)
b
_ E Tmnfnm Ege—lwgt. (61)
h b5 Wmn —Wp

where we defined f,,, = fn — fi- Note that to first order
only the interband processes are allowed in insulators.

C. 2nd order

To second order we have

P =D PP B Egem Rt (62)
bB co
where
_(2)bBeo _ ie (1)b8
Pmn h(wmn . WZ) |:pmn c

(M8 ¢ c (1)
+ZZ pml) ’ Tl — mlpl(n) B) ’ (63)

and wy, = wg + w,. The covariante derivative of a quo-

tient in p,(WZlf is simply

< Tgmnfnm > _ rZzn;bfnm . Tfnnfnmwmn;b (64)
b

Wmn — Wy Wmn — Wy (wmn - Wa)2

D. nth-order

In the long-time limit, by which we mean longer than
the period of light, we expect harmonic solutions of the
form

. (n)
pn= D ﬁﬁﬁn‘“‘”’ ot EgreT L (65)
a1Q,..
where w(zn) = Wq, +** + Wy, . Substituting into Eq.(58)

(+)

and 1terat1ng we obtain an equation for g, in terms

~(n)

of pmn. Omitting the supercripts ajaq, ... for clarity we

obtain

~(n+1) _ ie [ (n) Gni1 an+1 ~(n)

P (p 1T - Py )
= oy || 2 :

+ . } (66)

Note that at every order in perturbation theory there
are interband (first term) and intraband (second term)
contributions. In general, the nth-order p(™ (n > 1) has
271 intraband and 2”1 interband contributions.



VII. PHYSICAL DIVERGENCES OF x:

In the long-time limit, the susceptibility and conduc-
tivity response tensors to second order are defined by

PP =% x5 (~ws, wp,wo ) B Efe %, (67)
bBco

Jo? = Z cabe( wg,wg,wg)EgEge*int, (68)
bBco

where wy, = wg + w,. They are related by dP“(g)/dt =
J*2) x5 can be split into interband and intraband com-
ponents X2 = x2.+x2: using Eqs.(37),(54),(61), and (63).
The result is3*

abc

a b
X25 = E nmf”lm ( "mn )
nmk Wmn — Wy \Wmn — W ic

b ,.c c b
_ (rmlrlnflm _ Tml’rlnf’le ) (69)
E ;
Wmn — Wy Wml — wg Win — Wg

nlmk
b . b J
X5:° _ ¢ } : Wrm;aTmmTmndmn
Cy  w? Wi, — W
2 Y pmk nm B
b
1 r’flm'armnf’fbm
+ iw Z w’ wg (70)
b nmk mn I6]

where we defined Cy = €3 / h2V. These expressions need
to be symmetrized with respect to exchange of indices
bB <« co. We note that yo; is easier to calculate from

ng) rather than directly from sz).

The Taylor expansion of yo; in Eq. 4143 means that
X2i diverges as wy, — 0 and that the injection 7, and shift
09 response tensors can be obtained from this expansion,
see Appendix B. Here we derive these tensors from a
slightly different perspective that exposes the analytic

properties of xs;. Let us assume xo; admits a Laurent

series
72 g2
X2i:?+?+"' (71)
where z = —iwy. Then 17, is given by
1
= — dz zx2i, (72)
270 jz1=p

where p is the radius of convergence. All the frequen-

cies are parametrized in terms of wy = iz. One such
parametrization is
wg = w + ngws; (73)
We = —W + NyWs, (74)

where ng +n, = 1. The manifold where wy = 0 is a line
of singular points (wg,ws) = (w, —w), parametrized by a
single frequency w > 0. Symmetrizing y2; with respect to

exchange of indices b8 <+ co and using Eq. 72 we obtain

Uélbp((l w, —UJ) as

ﬂ%bc = hgv Z Jmn Wnm; arql;mrmn(s(wnm —w), (75)

nmk

or equivalently

abe __ e b c c b
M2 2h2V E fmnwnm;a(rnnern - rnmrmn)
nmk

X0 (wpm — w), (76)

which are both independent of the parameters ng, n,. In
calculating 7o we take the limit p — 0 before the limit
€ — 0. This corresponds to the physical situation where
wy = 0 in the infinite past. Similarly, 0$*¢(0,w, —w) is
given by

1

= omi dz Xai- (77)

|z]=p

An explicit integration gives

abe _ ime3
) K2V E fmn nma Tmn

nmk

- r%mrfnn;a)é(wnm - W).

(78)

In calculating oy we took ng = n, = 1/2 to eliminate a
resonant imaginary term which depends on ng—n,. This
term does not arise in the standard method'*? because
there the prescription is to Taylor expand only the real
parts. Taking ng = n, means we are approaching the
line of singularities at right angle.

Eqgs.(75) and (78) are the well-known injection and
shift current tensors. 7y is pure imaginary and antisym-
metric in b, ¢ indices and hence vanishes for linear polar-
ization®. oy, on the other hand, is real, symmetric in b, ¢
indices and hence vanishes for circular polarization. Fol-
lowing the standard convention,?® the injection and shift
currents are

2) — Z o_abc —ws, wg, wU)EgEgefiwgt

bBco

d

dtJ“” Znabc wg,wg,wU)E,@Ec e~wst o (79)
bBco

Assuming a monocromatic source E(w)e™ ! + c.c. and
performing the frequency sums keeping only dc terms
(ws = 0), we obtain

JH2) = zzaabc (0,w, —w)E*(w)E°(—w)  (80)
L =23 g (0,0, ) B W)E (), (81)
be

where the factor of 2 is from the intrinsic permutation
symmetry of susceptibilities.?® Being quadratic in the



fields they vanish for centrosymmetric systems. The
above expressions indicate the injection and shift cur-
rents vary as

TEL (@) ~ ot (82)
3G (0] ~ o (83)

with illumination time in the absence of momentum re-
laxation and saturation effects.

A. Physical interpretation of injection and shift
current

In this section we show that the injection and shift
currents can be understood from simple semiclassical
wavepacket dynamics.

1. Injection current

The physical origin of the injection current is well
known. It arises from the asymmetry in the carrier injec-
tion rate at time-reversed momenta in the BZ?32. To see
this, let us consider an electron wavepacket with velocity
ve. The current is

= 7 2 favh (84)
nk

where f,, = pE?,Z The effect of an optical field is to inject

carriers into the current-carrying states in the conduction

bands. Taking a time derivative of the occupation we
obtain
dfn
—J“ = o 85
dt inj dt —Un ( )

For low intensity, the Fermi’s Golden Rule gives the one-
photon absorption rate?

df 27re

dt - 2 : ‘E rcv|25(wcv - w)

df. 271'6

dat § [B@) - reofd(wer —w),  (86)

where ¢, v labels a conduction or a valence band respec-
tively. For complex fields, e.g, circularly polarized or
elliptically polarized light, the carrier injection rate at
time-reversed points +k in the BZ is not the same

d

L1 # 5100, (57)

leading to a polar distribution of Bloch velocity states.
This is the microscopic origin of the injection current
and, as we show below, of many higher order injection

conduction band Space > X
Q Ex(t) out of phase Ex(t) in-phase
o °le—e e—e
p(t) p(t)
valence band §
momentum B current
FIG. 1. Intuitive picture of microscopic generation of shift

current. The wiggle lines represent particle-hole oscillations
between the valence and conduction band centers of charge
(circles) which are spatially separated. The quantum inter-
ference between population oscillations ppm (t) and dipole os-
cillations E(t) - rpn gives rise to a dc current.

currents. Substituting into Eq.(85) we obtain the injec-
tion current as

d a2 27re
dt ’LTL]) - ZZWCU arvc cv wCU - w)
b'c¢! cvk
X EY (W)E® (—w),  (88)
or
d a2 e’
dt m(j) h2V Z Z fmnwnm arnm mng(wnm - w)

bc nmk
x B (w)E¢(—w),
(89)

which is the standard injection current shown in Eq.(81).

2. Shift current

Injection current is proportional to the momentum re-
laxation time and hence explicitly breaks time-reversal
symmetry. The shift current, on the other hand, does not
require the presence of momentum relaxation® to break
time reversal symmetry. In this sense, shift current is
like the dissipationless Hall conductivity.®* In the quan-
tum Hall effect, time reversal symmetry is broken by a
magnetic field. How is time-reversal symmetry broken
in the shift current? It is broken at the time of photon
absorption which is an irreversible process.

Materials that exhibit shift current have valence and
conduction band centers spatially separated within the
unit cell and hence charge is shifted upon photon ab-
sorption. This process depends only on the off-diagonal
density matrix elements and hence it requires quantum
coherence as has been extensively documented. Here we
propose that shift current arises from the quantum in-
terference of two distinct microscopic processes involving
wavepacket oscillations in the presence of an electric field.



To see this consider the dipole current in Eq.(54) to sec-
ond order

dzp - V Z E “Tnm;a pgrlez( ) (90)

nmk

The total current is the sum of dipole velocities for each
pair of wavepackets in bands n, m weighted by the prob-

ability p%?, of being occupied. From Eq. 61 we have

i = i 3 3 Mo gy it g
Wmn — Wo
bﬁ(‘o nmk
where wy;, = wg + w,. Symmetrizing with respect to

exchange of indices b3 <> co, assuming a monocromatic
field E* = E°(w)e™™* + c.c., and keeping only the dc
resonant terms we obtain

Z7T€ ¢
Sh hQV Z Z fmn Tnm;a"mn + Tnm;arffrm)
bec nmk
), (92)

Which is the standard expression for the shift current
in Eq. 80. This calculation suggests that the quantum
mechanical interference of population and dipole oscil-
lations is the microscopic origin of the shift current, see
Fig. 1. We note that electron oscillations between centers
of charge, alone, do not lead to a dc current. However,
the directionality of the electron oscillations combined
with an isotropic relaxation (due to, e.g., randomized
collisions) could, in principle, also lead to a dc current.
We now show how the injection and shift currents are
modified by the presence of a static electric field.

X8 (wWnm — w) B (W) E¢(—w

VIII. PHYSICAL DIVERGENCES OF x3

In the long-time limit, the susceptibility and conduc-
tivity response tensors to third order are defined by

ped) = Z X“de wg,wg,wa,w(s)EgE(‘;Ege_i“’Et,
bBcodd
(93)
JoB) = Z U“de(?’)(—ng,ng,wmw(;)EgEf,Ege_wzt,
bBcodd
(94)

where wy, = wg+w,+ws. They are related by dP®) /dt =
J®). 3 can be split into interband and intraband com-
ponents x3 = X3e + X3:- An explicit calculation gives

(—in)BX&‘ =13+ (—iwz)ﬁg + (—iw;j)203 + e (95)

See Appendix D. The same expression was obtained in
Ref. 39. The difference is that we calculate the intraband
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current J;* explicitly and use it to guide our physical intu-
ition about the singularities of x3;. Eq.(95) is equivalent
to

X3i:;+*+*+"' (96)

where z = —iwy. Since s, is regular, Eq. 96 implies that
the conductivity in the limit of no momentum relaxation
is

o® = + 773 + o3 + z(reg), (97)

where reg represents the remaining regular terms (as z —
0). The residues t3, n3 and o3 define various current
contributions as follows. The limit

lim,_,0z20®) =13, (98)
or equivalently
) 2, d> .3
hmwzﬁod J ®) = dt2 J]e(rl)c
= Z 1340, wg,wa,w5)EBEBE5,
bBcodd
(99)

subject to ws, = 0 defines the jerk current. Similarly the
limits

lim, o2 [0(3) - %} — s, (100)
z
lim, o [ ®) _ 22 _ %} — 03, (101)

define higher order injection and shift currents (respec-
tively) in the presence of a static electric field:

a(3) _ abed b e d
%JZTL] = Z UL O wﬁawo>w5)EgE5E5, (102)
bBcodd
Jsa}(L3) = Z abcd(o wﬁ,wgywﬁ)EﬁEﬁEé, (103)
bBcodd

subject to wy, = 0. We now analyze each of these currents
in detail.

IX. JERK CURRENT
A. Hydrodynamic model

In an isotropic system the current is

J o0 = env?, (104)



where n is the carrier density. Taking two derivatives we
obtain

d? d*n dn dv® d?v®

—J8 s =e——v* + 2e— en—-—. 105

g elas = gt T Ta YO g (105)
If the rate of carrier injection dn/dt = g and acceleration
eE§/m* are constant in time then

d? _ 2e%gE§

a

&Zﬁ clas —

leads to a current varying quadratically with illumination
time. This effect has been extensively studied in the con-
text of the THz generation in bias semiconductor anten-
nas using semiclassical kinetic equations, see for example
Ref. 46. However, the static field modifies the carrier in-
jection rate giving rise to novel contributions. The sum
of all contributions is called the jerk current. We now
discuss this effect.

= constant, (106)

B. Susceptibility divergence

We find ¢35 from the limit limy, _o(—iws)?x3; = t3.
The details of the derivation are outlined in Appendix D.
13%¢4(0, w, —w, 0) is given by*°

2met
Lgde = 6h3V Z fmn [2wn77L;adTZmT$,Ln

nmk

+ Wnm;a (Tfnnrfnn);d] O (Wnm — w),
where Wpmad = 02Wnm/0k?0k® = 0w, /OkIOk® —
02wy, | OkIOK.

Assuming time-reversal symmetry in the ground
state we can choose rp,(—k) = rpn(k) to show
that (3 is real, symmetric in the b,c indices, and
satisfies [1°°4(0,w, —w,0)]* = 18%(0,w, ~w,0) =
13%¢4(0, —w,w,0). From Eq. 99, we see that t3 controls
the current

(107)

R , »
ﬁJ;e(r,z: Z Lgde(—wg,wB,ww,wg)EgEﬁEgle st
bBeydd

(108)

subject to wy, = 0. Performing the sum over frequencies
we obtain
d* a3

~5jerh =6 > 1820, w, —w, 0) E* (w) E*(—w) Ef,
bed

(109)

where E{ is a static external field. The factor of 6 = 3!
is the number of pair-wise exchanges of field indices
(bB), (ca), (d6).2® The jerk current vanishes for frequen-
cies smaller than the energy band gap. Eq.(109) indicates
that the jerk current grows quadratically with illumina-
tion time

139 ()] ~ 1582,

jerk

(110)
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in the absence of momentum relaxation and saturation ef-
fects. In analogy with second derivative of velocity which
is called ’jerk’ we dub it jerk current. This should be
compared and contrasted with injection current which
grows linearly with illumination time (Eq. 82) and shift
current which is constant (Eq. 83).

Two terms contribute to the jerk current. The first de-
pends on the curvature difference of the bands involved,
or equivalently on inverse mass differences. This term is
related to the stiffness of the lattice and can also be inter-
preted as the electron acceleration in the static electric
field. The second contribution depends on the change of
transition probabilities due to the static field.

C. DMaterials

In general, the 81 components of ¢3 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 43m point group, with 21 nonzero
components and 4 independent components.*® However,
t3 is symmetric under exchange of bc which reduces the
number of independent component to 3. In 2D materi-
als the number of components of ¢3 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case ¢3 has only six independent components.

In general, linear, circular or unpolarized light will pro-
duce jerk current along the direction of the static field.
Current transverse to the static field may not be gener-
ated with unpolarized or circular polarization.

D. Physical interpretation of jerk current

The terms in Eq.(107) are hard to interpret physically.
We now rederive the same result in a physically more
transparent way using a phenomenological model.*® Con-
sider an electron wavepacket in band n subject to a static
electric field EZ. The electron’s wavevector obeys

dk 0A

hdt = —e ETE (111)
where the vector potential Ay gives the static electric
field B = —0AZ/0t. The Bloch velocity of the electron
vn(k — eAp/h) can be expanded in powers of Ag. The
time derivatives of this expression have a simple form
as powers of the field. For example, the 1st and 2nd
derivatives are given by

dvi e d
) YY) (112)
dt b4
d*v?  e?
= =13 an;adeEgEg. (113)

de



Now, taking two time derivatives of Eq.(84)

2o oo
dt? VZ( a2

dfn dvd d*v?
20t dt fn dt? >
(114)

and using Eq.(112), and (86) we have (to linear order in
Eg)

@ a3
@Jjerk =
2met b ¢ d
sy Z Z2wcv;adrvcrw§(ww —w)E’(w)E° (—w)Ej
be'd cvk
27(-6 ’UC CU)
; %wcv a 8kd 6((*)511 - w)

x EY(w)E® (—w)EJ. (115)

Since w > 0 we can extend the sums over to all bands and
recover Eq.(109). An important point of this calculation
is to show that the physical origin of the first term in
Eq.(107) comes from the acceleration of carriers in the
static electric field. The second contribution comes from
changes in the carrier injection rate, d?f, /dt?> which is
missing in the standard semiclassical approach.*5

E. Jerk Hall current

In an isotropic medium, charge carriers move par-
allel to the electric field. The jerk current, on the
other hand, can flow transverse to the static electric
field in a rotationally symmetric medium. To see this,
let us assume a sample biased in the z-direction and
compute the current in the y-direction while an opti-
cal field E = XE*(w)e ™! + yEY(w)e~ ™! + c.c., with
E%w) = |E%(w)|e~a is incident perpendicular to the
sample surface which defines the zy-plane. The current
in the y—direction is

d? 3
@']Jye(rll 3_]HEO? (116)
where the effective jerk Hall (jH) conductivity is
i = 6877 BT (W) + 6577 | BY (w)?
120 B (@) || BY()| cos(@s — 6,). (117)

In a simple relaxation time approximation jerk conduc-
tivity (see Eq. 97) is cut off by a relaxation time 7 as

L3 L3

— 118
(—in)Q (% - iwg)Q ( )
Hence, the jerk current is
2
y(3) Ti
J]erk (1 _ iOJETl)Q 3]HE07 (119)

12

FIG. 2. (a) Band structure of single-layer GeS*®*® indicating
transitions near the band edge (red arrow). (b) crystal struc-
ture of single-layer GeS, (c) two-dimensional, two-band tight
binding model of single-layer GeS which reproduces the non-
linear optical response of near the band edge. The hopping
parameters considered are indicated. See main text for more
details.

where 77 is the relaxation time of the diagonal density
matrix elements. In the dc limit the current is propor-
tional to the square of the momentum relaxation. For
frequencies larger than the Drude peak but smaller than
interband transitions the current is independent of the
scattering time and it is a measure of the geometry of
the Bloch wavefunctions.

The dependence on light’s polarization as cos(¢z — ¢y)
and the square of the momentum relaxation are unique
characteristics of the jerk current which can be used to
distinguish it from 53 and os.

The symmetries of the crystal can also constrain the
contributions to the jerk current, e.g., if the crystal has
mirror symmetry y — —y the first and second terms
in Eq. 117 vanish. In addition, for circular polarization
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FIG. 3. Jerk current response tensor from the two band model
of single-layer GeS. The two-band model is shown in Fig. 2.
The tensor vanishes for photon energies lower than the energy
band gap (~ 1.9 eV13’56). The strongest component is along
the polar axis zzxx. The components yyzrx, zxyy, describe a
Hall-like response and are an order of magnitude smaller. For
added clarity, these components are multiplied by 10 in the
figure.

¢z — ¢y = £7/2 the last term vanishes. An estimate of
the jerk current in realistic materials is given next.

F. Example: Jerk current in single-layer GeS

To get a sense of the magnitude of the jerk current in
real materials we now calculate it for single-layer GeS.
Single-layer GeS is of great interest for its predicted in-
plane spontaneous ferroelectric polarization, suitable en-
ergy band gap in the visible spectrum (~ 1.9 ¢V) and
large nonlinear optical response!!+13:57:58

We consider a 2D, two-band tight-binding model of
single-layer GeS shown in Fig. 2c. The details of the
model are presented in Appendix G. The model has been
shown to reproduce the ab-initio shift and injection cur-
rent of single-layer GeS near the band edge,!3°%59 specif-
ically in the energy range 1.9-2.14 eV. Since the model
is 2D, we divide the model’s 2D current by the thickness
of the GeS layer (d ~ 2.56A) to obtain an effective bulk

value.

Because of the mirror symmetry y — —y of the model
(and of the crystal), only six tensor component are inde-
pendent. As seen in Fig. 3, the strongest is along the po-
lar (chosen along z-axis) of magnitude ~ 10 Am/V3s2.
The current transverse to the static electric field, de-
scribed by the component ¢5¥*" (see Eq. 116), is an order
of magnitude smaller.

The sample is rectangular of dimensions L x L and
thickness d = 2.56 A and is biased by an external battery
of voltage V, as seen Fig. 2c. Let us assume the optical
field is incident perpendicularly to the plane of single-

13
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FIG. 4. Total jerk current induced by an optical field inci-
dent perpendicular to the plane of single-layer GeS. The inset
shows the top view of the setup.

layer GeS as

E(t) = XE"(w)e ™! + yEY(w)e ™! +cc.  (120)
E( = xEj]. (121)
where E%(w) =  E%w)cosfe™ =, FEY(w) =

E%w)sinfe~™v, # is the angle with the x-axis.
The longitudinal and transverse currents are

50 = 6AT (57 [E* () + 5™ | BV (@)[*) Eg . (123)

]erk: -
I8 = 12A728Y"" | B (w) || BY (w)| cos(és — ¢y) ER,
(124)

jerk —

where A = Ld is the transverse area of the sample. Note
that the current along the polar (z)-axis is independent
of the polarization of light. Hence, the polar component
of the current will not vanish even for unpolarized light.
The transverse component of the current, on the other
hand, vanishes for circularly polarized (and unpolarized)
light and is maximum for linearly polarized light.

The optical field is linearly polarized (¢, = ¢,) at
an angle 6 with the polar axis as shown in the inset to
Fig. 4a. The figure shows the total current induced as
a function of . We assumed semiconductor parameters
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typically found in the laboratory: L = 100um, V = 1V,
E¢ = V/L = 10* V/m, amplitude of the optical field
E°(t) = 10° V/m, and 7, = 100 fs*7.

First note that the magnitude of the current is of the
order of pA-nA which is within experimental reach. 7 is
maximum when the polarization of light coincides with
the polar axis and decreases monotonically as the polar-
ization turns away towards the y-axis. IY, on the other
hand, is nonmonotonic; it is zero when the light polariza-
tion and the polar axis coincide, then rises to a maximum
at 45° and then decreases to zero for light polarized per-
pendicular to the polar axis.

In ultrafast pulsed experiments, the THz radiation
emitted by the currents can be analyzed to study the
nonlinear optical response of the system without need of
mechanical contact. In this scenario the system does no
have time to decay and the response is determined by
the laser pulse characteristics not by the momentum dis-
sipation mechanism. The above results indicate that the
crystal structure, the geometry of the setup and light po-
larization can be used to uniquely characterize the jerk
current tensor components. Injection and shift currents

has been reported in THz spectroscopy in various mate-
rialg24:27,28,60-62_

X. 3RD ORDER INJECTION CURRENT

An explicit calculation of n3 is given in Appendix E.
The result is Eq. 122. We defined Q22¢ = Q3499 a5 the
difference of Berry vector potentlalb The Berry potentlal
is related to the Berry curvature by Qad Z €ade§

The covariant derlvatlve of rd /wnm is with respect
to the gauge dependent rd . (see for example Eq. D6).
The product 78, mna 1S gauge invariant and hence its
covariant derivative reduces to the standard derivative (
see for example Eq. B1). To simplify notation we also

defined
[0(b), P(c)] = O(b) P(c) — O(c) P(b) (125)
Di (wnmvw) = 6(wnm - W) + 6(wnm =+ W)a (126)

where O, P are arbitrary matrix elements which depend
on the cartesian indices b, c. For example

b c
[rnm » T'mn

— b d
] = Tn'rnr'rcnn - szmrmn' (127)
One can see that 73 in Eq. 122 is manifestly anti-

symmetric under exchange of b,c. In addition, it is

ml

1D — (Wi, w).- (122)

easy to show that 7$°°4(0,w, —w,0) is pure imaginary
and satisfies [73%°4(0, w, —w O)] —ngbed (0, w, —w, 0) =
7§24 (0, —w, w, 0). Slmllar to 72 the antisymmetry in the
b, ¢ indices implies that n3 vanishes for linearly polarized

light. n3 represents the current

d a3) _

%" =6 L0~ OB WE(-) B,
(128)
which varies as
5] ~ st (129)

in the absence of momentum relaxation and saturation
effects.

A. Materials

In general, the 81 components of 73 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 43m point group, with 21 nonzero
components and 4 independent components.*® However,
73 is antisymmetric under exchange of b, ¢ which reduces
the number of independent components to 1. In 2D ma-
terials the number of components of 73 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case 13 has only 2 independent components.

In general, circular or unpolarized light will produce
3rd order injection current along the direction of the
static field. Current transverse to the static field may
not be generated with unpolarized or linear polarization.

B. Physical interpretation of 3rd order injection
current

The presence of a static field gives rise to new physical
processes which we now describe in detail.

1st term.- The first term in Eq.(122) arises from the
asymmetric injection of carriers in anomalous velocity
states. To see this, let us consider an electron wavepacket
in band n subject to a static field ES. The static field
induces an anomalous contribution to the electron’s ve-
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FIG. 5. Injection current response tensor n3°°? in single-layer

GeS near the band edges. 73 gives rise to current transverse to
the static field. As can seen it will vanishes for linearly polar-
ized light. The tight-binding model parameters are described
in Sec. IXF.

locity which generates a current given by (Eq. 54)

2
e
Ty s anEO X an
hV -

where we used f, = png Taking a time derivative of the

occupations we obtain (to 2nd order in the optical field
and 1st in the static ﬁeld)

Jsin = (130)

d dfn
Ly = Yng «q,.
et ! hV a0

(131)
This expression means that when the optical field is
turned on electrons will be excited from the valence into
anomalous conduction states. To lowest order in the in-
tensity, Fermi’s Golden rule gives the one-photon injec-
tion rate shown in Eq.(86). Using Eqgs.(86) we obtain

Z Z Q“drb 7‘1)05 Wey — W) X

b'c’d veck

d _a3) 27r6
qrUsir T

EY (w)E (—w)EY.
(132)

Using the fact that w > 0 we can extend the sum to all
bands and recover the 1st term in Eq. 122.

2nd term.- In the presence of a static field a
wavepacket drifts in the BZ giving rise to a current. Sim-
ilarly, a dipole of two wavepackets drift in the presence of
a static field giving rise to a current. To see this, consider
the dipole velocity contribution to the current in Eq. 91.
Writing explicitly the small imaginary part of the exter-
nal frequencies and taking the resonant we obtain

a ime®
J3i(,22) - hgv Z Z fnm Tnm; a mné(wmn + w)

bc nmk

rb 5(wmn—w)]Eb(w)Ec(—w). (133)

c
+ rnm;a mn
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FIG. 6. n3-Iinjection current in single-layer GeS near the band
edge. (a) shows I® and (b) I°. Light is circularly polarized
and incident perpendicular to the plane of the GeS. Two bias
setups are shown.

Taking a time derivative of the dipole matrix elements,
exchanging n, m indices and making k — —k, we obtain

d
%J?n(;) - ﬁ Z Z fnm@kd nm;aTmn

bed nmk
- Tfmm;arfnn)(s(wnm - w)Eb(w)Ec(—w)Eg,
(134)

which can be recognized as the 2nd term in Eq. 122.
3rd term.- The 3rd term takes into account the
change of the electron distribution due to the static field.
To see this, let us consider the current of an electron
wavepacket in band n to third order in the electric field.

From Eq. 54
3z 3 = ZU?LP%?;Z
nk

(135)

Taking a time derivative of the density matrix gives

- . (136)

dt 313 V Un 8t

From Eq. 58 the time derivative of the density matrix is

3Pnn b
_ § EY( (2) b b (2)

ZEb nnb

(137)



Now consider the intraband part of the second order den-
sity matrix obtained from Eq. 63

@) ie e b e —iwst
Prm,intra = — EﬁEge—lwz ) (138)
Wmn wy

bBco

where wy, = wg + wy. The first order density matrix in
the presence of a static field is (see Eq. 61)

Pil® = fmn
nm

(139)

Substituting the above equations into Eq. 137 and taking
the resonant part we recover the 3rd term in Eq. 122. The
factor of two in Eq. 122 is due to two possible choices for
the static electric field.

4th term.- This contribution arises from electrons ex-
cited from the valence to conduction bands via an inter-
mediate state [. These new states are generated by the
presence of static field.

C. 3rd order injection Hall current

Let us assume a static field is in the z-direction and
compute the current in the y-direction. An optical field
of the form E = XE%(w)e™ ™! + yEY(w)e ™! + c.c. is
incident perpendicular to the sample surface which we
take to define the zy-plane. From Eq. 128 the current
transverse to the static field is

d ) _

|E%(w)|e~ = and the Hall coefficient is

- 37,HE0 (141>

where E*(w) =

Sgig = 12ing"""[E* (W) E¥ ()] sin(¢x — oy)-

Similar to 72, n3 vanishes for linear polarization ¢, = ¢,
and is maximum for circularly polarized light. In a simple
relaxation time approximation, the dc singularity in the
conductivity (see Eq. 97) is cut-off by a phenomenological
relaxation time 71 as

(142)

B, B (143)
— Wy E — Wy,
The current is
(3) _ 1
ngH - 1 7’@&)27' 31HE0’ (144)

If wy = 0, the current is proportional to 71 the relaxation
of the diagonal density matrix elements. For frequencies
larger than the Drude peak ws7 > 1 but smaller than
interband transitions the current is independent of the
scattering time and hence is a measure of the geometry
of the Bloch wavefunctions.
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D. Example: 3rd order injection current in
single-layer GeS

To get a sense of the ns-injection current in real mate-
rials we now calculate it for single-layer GeS. We use the
same 2-band, 2D tight-binding model of single-layer GeS
and same sample geometry as in Sec. IXF.

Out of the 16 tensor components the antisymmetry in
the b, ¢ indices and the mirror symmetry y — —y of the
model leaves only two independent components, yyzrz
and zzyy. This means that the current flows only per-
pendicular to the static electric.

These tensor components are shown in Fig. 5. The
2nd term in 73 is the dominant term followed by the 3rd,
and the 1st which are one and two orders of magnitude
smaller respectively.

For concretes the optical field has circular polarization
and the static field is along the polar (z-) axis of the
sample as

E(t) = xE%(w)e ™' + yE®(w)e ™! + c.c.,
E, = XE], or yEJ,

(145)
(146)

where ¢, —
by

¢y = m/2. The transverse currents are given

I = 1247 in5™ |E* (w)|| BY ()| EY sin(¢y — b.)
(147)

1P = 1247 iml¥™ |E* ()| | EY (w) | B sin(, — o)
(148)

where A = Ld is the transverse area of the sample. Note
that the current vanishes for linearly polarized light but
is maximum for circular polarization.

The calculated total induced current is shown in Fig. 6.
The static field is shown in two configurations, namely,
parallel and perpendicular to the polar axis of single-layer
GeS. In both configurations the chirality of light is the
same. The induced current is of the order of pA which is
within experimental reach.

XI. 3RD ORDER SHIFT CURRENT

Explicit calculation of o3 gives Eq. 140. For details see
Appendix F. In Eq. 140 we defined the anticummutator
with respect to the b, ¢ indices only as

{O(b), P(c)} = O(b)P(c) + O(c) P(b)

where O, P are arbitrary matrix elements For example

d d d
{ "mn b — "mn b T "mn c
>rnm;a = Tnm;a Tnm;a'
Wnm, ic Wnm, ic Wnm, b

(150)

(149)
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D, is defined in Eq. 126. Clearly, o3 is symmet-
ric under exchange of b,c, pure real, and satisfies
o3%°d(0, w, —w,0) = U§de(0,—w,w,0). The tensor de-
fines the nonlinear current

JaP =63 0820, w, —w, 0) B () B*(—w) B, (151)

bed

which, in the absence of momentum relaxation and sat-
uration effects is constant with illumination time. Note
that this calculation assumes quantum coherance in the
solid.

A. Materials

In general, the 81 components of o3 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 43m point group, with 21 nonzero
components and 4 independent components®®. However,
o3 is antisymmetric under exchange of b, ¢ which reduces
the number of independent components to 3. In 2D ma-
terials the number of components of o3 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case o3 has only 6 independent components.

In general, linear, circular or unpolarized light will pro-
duce 3rd order shift current along the direction of the
static field. Current transverse to the static field may
not be generated with unpolarized or circular polariza-
tion.

B. Physical interpretation of the 3rd order shift
current

1st term.- The first term in o3 arises from the quan-
tum interference of dipole and band coherence oscilla-
tions. To see this, note that an oscillating external field
creates an oscillating dipole which couples two distinct
bands. The dipole velocity is given by Eq. 55. If the
occupations of the bands oscillate 180° out of phase with
respect to the dipole oscillations a dc (dipole) current can
be established. The process is mediated by the intraband
part of the (second order) density matrix as
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() = ((F2) st -

)

[{ Tnl> ( mnrlm) } - Ir;inn{rle;a7 r?m}] D+(wnl7 UJ). (140)
B = i B0 a0, (152)

nmk
where pgnzl i is the first term in Eq. 63 which clearly rep-

resents the intraband part of pﬁnlb. Setting one of the
fields in p( to be static (say Ef — E§) we have

4 b d
Ja(3) e "nm;a (Tmnfnm>
3sh,1 — 3 E : E : _
WV bBeodnmk M~ Yo Wmn /e

XEﬂEC Ed —iwxt
(153)

where ws; = wg +w,. Symmetrizing with respect electric
field indices, substituting wgs = +w and w, = Fw, and
keeping only resonant terms we recover the 1st term in
Eq. 140.

2nd term.- The second term in o3 arises from the
quantum interference band coherence oscillations only.
To see this, note that a static external field creates a
static dipole which couples two distinct bands. The static
dipole together with a static occupation of the bands cre-
ate a dc (dipole) current. This process is also mediated
by the (static) intraband part of the (second order) den-
sity matrix as

J;S(ELQ Z Z E nm apmnz

d mnmk

(154)

Following the same procedure as above and after an in-
tegration by parts it is easy to show that we recover the
2nd term in Eq. 140.

3rd and 4th term.- The 3rd and 4th terms in o3 are
not easily derived from a simple model. These processes
involve virtual transitions to intermediate bands created
by the static external field and involve the interband part
of the second order density matrix.

C. 3rd order shift Hall current

Let us assume a static field is in the z-direction and
compute the shift current in the y-direction. An optical
field of the form E = XE%(w)e™ ™! + yEY(w)e™ ! + c.c.
is incident perpendicular to the sample surface which we
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FIG. 7. Shift current response tensor 0§°*? of single-layer GeS
near the band edges. The model parameters are the same as
in Sec. IXF. The largest response is along the polarization
axis x. The transverse response governed by xxyy and yyzrx
is an order of magnitude smaller.

take as the xzy-plane. The current transverse to the static
field is

3
Tinn = Yoo (155)
where E%(w) = |E%(w)|e~*® and the effective Hall con-
ductivity is

Senp = 12057 | E¥(W)[| B (w)] cos(¢z — ¢y).  (156)
Similar to o9, o3 vanishes for circular polarization and
is maximum for linear polarization ¢, = ¢, at 45° with
respect to the z-axis. Contrary to injection current, the
shift current does not have a Drude-like dc divergence
but rather gives a finite contribution in this limit. Hence

we expect that while quantum coherence is maintained
in the solid the current is given by the above equation.

D. Example: 3rd order shift current in single-layer
GeS

To get a sense of the 3rd order shift current in real
materials we now calculate it for single-layer GeS. We
use the same setup and tight-binding model of single-
layer GeS as in Sec. IXF.

Because of the mirror symmetry y — —y of the model,
only six tensor components are independent. As seen in
Fig. 7, the strongest is along the polar axis of magnitude
~ 5 x 1071 Am/V3. The component transverse to the
static electric field o§¥*" (see Sec. XIC) is an order of
magnitude smaller.

The sample is rectangular of dimensions L x L and
thickness d = 2.56 A and is biased by an external battery
of voltage V' as seen in Fig. 2c. For concreteness let us
assume the optical field is incident perpendicularly to the
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FIG. 8. o3-shift current in single-layer GeS near the band
edge. (a) shows I and (b) IY. Light is linearly polarized at
an angle 6 with respect to the polar axis (z-axis see inset).

plane of single-layer GeS as

E(t) = XxE®(w)e” ™! + yEY(w)e ™! + c.c., (157)
Eo =XEj. (158)
The longitudinal and transverse currents are
z(3 TTTT| T TYYT x
159 = 6A(03"" |B* ()| + 05" | BV ()2 B (159)

1Y) = 6A0YY™ |E* (w)|| EY(w)| cos(¢x — ¢,) E5  (160)

where E%(w) = E%w)cosfe i  EY(w) =
E°w)sinfe~™v, 0 is the angle with the x-axis,
and A = Ld is the transverse area of the sample. Note
that the current along the polar z-axis is independent
of the polarization of light and hence, it will not vanish
even for unpolarized light. The transverse component of
the current, on the other hand, vanishes for circularly
polarized (and unpolarized) light and is maximum for
linearly polarized light.

We chose the optical field linearly polarized (¢, = ¢y)
at an angle € with the polar axis as shown in the inset
to Fig. 8. The figure shows the total current along x and
y-axis induced as a function of §. We assumed the same
semiconductor parameters as before, e.g., L = 100um,
V =1V, E¥ = V/L = 10* V/m, amplitude of the optical
field E°(t) = 10° V/m, and 7, = 100 fs.

First note that the magnitude of the currents is of the
order of pA-fA. I* is maximum when the polarization of



light coincides with the polar axis and decreases mono-
tonically as the polarization turns away towards the y-
axis. IY, on the other hand, is nonmonotonic: it is zero
when the polarization and the polar axis coincide, then
rises to a maximum at 45° and then decreases to zero
again for light polarized perpendicular to the polar axis.

XII. GENERALIZATIONS
A. Snap current

By power counting it is easy to see that the leading di-
vergence of x4 is of order wy, 4 and that it occurs when all
but two of the external frequencies are zero. Proceeding
as before we calculate the corresponding response tensor
cgbede (0, w, —w, 0,0). Taking three derivatives of Eq. 84
and using Eqgs. 86,112, and 113 we obtain

2med
abcde __ b c
Sq = 0nAy E fmn [3an;ade7nnmrmn

nmk

+ 3an;ad (TfLmrfnn ) €

+ Wnmsa (TZmrfrm);de] 6(wnm - w)' (161)

The tensor is symmetric in the b, ¢ indices and represents

a third derivative of the nonlinear current

&3 I
dt3

=41 "% (0,w, —w, 0,0) E* (w) B (—w) BY E§,
bede
(162)

where Eg,Eg represent static fields. By analogy with a
particle’s third derivative of its velocity we dub it snap
current. The current grows as ~ t> with illumination
time in the absence of momentum relaxation and satura-
tion effects. Hence, it is proportional the third power of
the relaxation time 7

JoV = 741y " e B (W) EC(—w) E{ B, (163)

bede

Note that the snap current could be thought of a sec-
ond order correction of the dark conductivity due to the
presence of the optical field.

B. Higher order singularities

One can show that the leading physical divergence of
Xni represents; in general, the n — 1-th time derivative of
a current and that these occur when all but two of the
external frequencies are set to zero. They are obtained
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from the leading term in the Taylor expansions

(—iws)*x3i = t3 + (—iws)ns + (—iws)?o3 + ... (164)
(—iws) Xai = 64 + (—iws)tg + (—iws)?ng + ... (165)
(—iws)°x5i = ks + (—iws)ss + (—iws)?es + -+ (166)
(—iws)®xei = @6 + (—iws)re + (—iws) s + - -
(167)

These higher order analogs of the injection current are
named by analogy to a particle’s time derivatives of its
velocity, e.g.,jerk, snap, crackle, pop,....etc. and denote
them by, ¢, ¢, k, @,.. respectively. Their physical origin
is similar to the injection current namely the rate of car-
rier injection at current carrying states at time-reserved
points in the BZ is asymmetric creating a polar distribu-
tion. The charges are then accelerated by the external
field.

An alternative formulation is the Laurent series for x,;
(or xp, since Xpe ir regular) as

%)
l
Xni = E apz

l=—n

(168)

where z = —iwy;, and a; = 0 for frequencies less than the
gap. The residues a_y =10, a_2 = 0, a_3 = (, etc., are
formally given by

1 Xni dz
Zl+1

a; = ;
21

(169)

[z]=p

p is the radius of convergence of the 1/z series. In these
calculations the limit p — 0 is taken before the limit
e— 0.

In general, if more than two frequencies are dis-
tinct32:39:63 (but wy = 0), the series starts from [ > —n.

XIII. EXPERIMENTAL SIGNATURES

In real materials, the measured current will be limited
by momentum dissipation mechanisms due to collisions
with other electrons, phonons, or impurities. For weak
disordered insulators we expect the dc divergence of the
conductivity in Eq. 97 will be cut-off by a relaxation time
constant as

o3 — L3 "3

T — o5+

1 _
T1 T1 sz

(170)

Note that o3 relies on quantum coherence and hence its
current will decay on the coherence time scale of the solid
T9. Calculation of 79 requires a microscopic model of
dissipation which will be presented elsewhere.

We have estimated the current of each contribution
assuming that we can detect its signatures separately.
This is a challenge in itself as is well documented in the
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TABLE II. Summary of nonlinear Hall-like responses of single-layer GeS. A static electric field is present along the z—axis.
In addition, an optical electric field is incident perpendicular to the plane of the sample which defines the zy-plane. The Hall
current is in the y-axis. The sample geometry is shown in Fig. 2c and the details are in Sec. IXF. Polar axis of single-layer
GeS defines the z-axis. I = inversion symmetry, no I = no inversion symmetry. Order of magnitude of current are given for
frequencies near the band edge. I® is the current along the z-axis. *For comparison, longitudinal current is given for 72 and

o2 for the same parameters. w.r.t. stands for with respect to.

Current |[Momentum |Dependence |I vs. |Hall current Hall current Hall current |Sign of |Hall current |Ref.
v relaxation |on Eg§ no I dependence on |vanishes for maximum for |I¥, IY |magnitude® |Eq.
polarization polarization polarization
t3-jerk |77 linear I, no I |cos(¢ps — ¢py) |circular, linear at 45° |+,- 1078 A 124
linear E(t) || z,y |w.r.t. x-axis
n3- . . . . . ~12 148
injection 1 linear I, nol |sin(¢pe — ¢y) linear circular +,+ 10 A
o3-shift |72 linear I, no I |cos(¢z — ¢dy) circular, linear at 45° |+,+ 1071 A 160
linear E(t) || =,y |w.r.t. z-axis
"R No no I 1076 A*
injection
oo-shift | No no I 1078 A*

literature®!. Here we propose to use ultrafast THz spec-
troscopy together with the symmetry of the crystal, the
geometry of the setup and the polarization of light to
isolate these components. In ultrafast experiments, mo-
mentum relaxation plays a minor role and the magnitude
of the current is given by the parameters of the lasers.
For example the shift current magnitude follows the enve-
lope of the pulse?*27. Recently, the 2nd order injection,
shift or both currents have been reported via THz ra-
diation?*28:60-62  In Table II we present a summary of
the jerk, injection and shift Hall current component for a
model of single-layer of GeS near the band edge. As we
can see, either the dependence on polarization, the lin-
earity of the static field, the order of magnitude of the in-
duced current, or the momentum dissipation dependence
can be used to distinguish them apart.

The jerk and o3-shift Hall currents have 72, 75 de-
pendence momentum relaxation time scale. But, mea-
suring this dependence can be difficult in THz experi-
ments?728:60-62 " Since they have the same dependence
on the polarization of light, the tie can be broken by the
signs of the longitudinal vs transverse currents as shown
in the 8th column of Table. II.

XIV. CONCLUSIONS

The 2nd order injection and shift currents are
archetypical examples of nontrivial carrier dynamics in
insulators and semiconductors. In this paper we revisited
the derivation of the intraband current and proposed a
microscopic interpretation of shift current based on the
coherent motion of pairs of wavepackets.

We also studied the photocurrents to 2nd order in an
optical and to 1st order in a static field from the per-
spective of the third order electric polarization suscepti-

bility dc divergence. Three new bulk photovoltaic effects
are found. We dub them jerk, 3rd order injection and
3rd order shift currents, respectively. The jerk current
and 3rd order injection currents can be thought of as a
higher order versions of the standard 2nd order injection
current and have essentially the same microscopic origin,
namely, the asymmetric rate of population of current-
carrying states at time-reversed points in the BZ. The
presence of the electric field, however, give rise the new
contributions which are absent in the 2nd order injection
current such as the anomalous and dipole velocity states.

The 3rd order shift current can be thought as a higher
order version of the 2nd order shift current. It involves
the coherent motion of pairs of wavepackets across the
BZ. We showed that all photocurrents can be understood
physically using semiclassical wavepacket dynamics. We
have shown that generalizations to higher orders are pos-
sible and gave an example. Explicit expressions for the
photocurrents amenable for first-principles computations
are given. Estimates for single-layer GeS show that ex-
perimental observation of these currents is possible.
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Appendix A: List of identities

Some definitions used in this paper are:



Vin (k) = (un|viun) = v (k) (A1)
fn = flen(k)) (A2)

fam = fon— fm (A3)
fnm( ) =1 <un|vk|um> (A4)
Tnm (k) = &nm(k), (m#n) (A5)
rnn (k) = 0. (A6)
Whm = Wy, — Wap,- (A7)

They describe velocity matrix elements (A1), Fermi dis-
tribution (A2), Fermi function differences (A3), Berry
connection (A4) , off-diagonal (A5) and diagonal dipole
matrix elements (AG), respectively, and frequency band
differences (AT7). w, is the periodic part of the Bloch
wave function (spinor index contracted), and the covari-
ant derivative of the dipole matrix elements is defined
as

_ 0 - ea a
T'nmia = [816“ - Z( nn mm):| Tpm, (AS)

or generally of any Bloch matrix element O,,,, as

Onm;b = |:8 — ’L(

e R )

We also defined the commutator and anticommutator
with respect to the Cartesian indices b, ¢ as

[O(b), K(c)] = O(b) K (¢) = O(e) K (b)
{O(), K(c)} = O(b)K(c) + O(c) K (b)

where O, K are any Bloch matrix elements. Some iden-
tities used in this paper:

(A10)
(A11)

wn(=k) = wy (k) (A12)
Wnia(—k) = —wpo(k) = 8 n(k) (A13)
Vi (=k) = =V (k) = [Vnm(k I (A14)
Crm(—K) = (k) = (rmn(—k))* (A15)
rnm;a(_k) = rmn;a(k) = (rnm a(k))* (Alﬁ)
Wnm;a(k) = vy (k) — o5, (K) = —Wnm;a(—k)
= Winn:a(—K) (A17)
Qn(—k) = —Q (k) = — (2, (k)" (A18
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They arise from the hermicity of operators and the as-
sumptions of time-reversal invariance of the ground state.
hw,, and €2, denote the band energy and Berry curvature
of band n.

Appendix B: Derivation of 7, and o2 from Taylor
expansion of y»

ab('( ab(‘(

To compute 75°¢(0,w, —w) and ¢§°¢(0,w, —w) from
Eq. 4, start from Eq. 70 and symmetrize (—iws)?x2; with
respect to pair-wise exchanges of electric fields indices
b, B and ¢, 08, Then write explicitly the small imaginary
part of frequencies, wg — wg + i€, Wy — wy + i€ and let
1/(x—ie) = 1/x+imd(z). Next, set wg = w+ngws,ws =
—w + news, 1 = ng + ny, and Taylor expand real parts
up to first order in wy. It is easy to show that the non-
resonant terms cancel and we obtain Eq. 75 and 78 as
claimed. In this calculation we used

(Trchrfnn);a =T

c b
nm;armn + Tnm
9 c b

r

= %(Tnm mn)

b

Tmn;a

(B1)

and some identities listed in Appendix A. Note that the
expression ¢, r? s gauge invariant and hence the co-
variant derivative reduces to the standard crystal mo-
mentum derivative.

Appendix C: Expansion of xs;

Using Eqgs. 37, 54, 63, and 66 the third order suscep-
tibility x§*°!(—ws,wp, ws,wa) can be written as yz =
X3e + X3i where
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FIG. 9. Origin of the 1st,2nd, ... contributions to the expressions for ts-jerk (Eq. 107), ns-injection (Eq. 122) and o3-shift
(Eq. 140) response tensors. Each of the 6 terms in the xs; originates from either the Bloch velocity (first three), anomalous
velocity (4th) and the dipole velocity (5th and 6th). Due to the structure of the poles in these expressions shift current processes
also contribute to injection processes as shown by the 2nd term in 73.
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nmk
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We defined C3 = e/R3V, Q2d = Qad —Qad )5 = wg + first three terms in x3; are derived from the combination
W +wa and wy = wg + w,- "These expressions still need  42p3) (Eq. 54). By analogy with ya; (Eq. 70), we would
to be symmetrized with respect to pair-wise exchange  expect these terms to be injection current-type of contri-
of electric field indices (b, 3), (c,0), (d,A). It is easier butions with one caveat; the 1st term has no analog in
to calculate y3; is calculated from the intraband current X2i since it is proportional to three powers of frequency,
rather than from P(S) Wy, Zw; ! and is the most divergent at zero frequency. The

Eq. C2 has a distinguishable structure, see Fig 9. The second and third terms, proportional to w§2, seem stan-



dard injection coefficients similar to the 1st term in yso;.

The 4th term is proportional to (wswo)~! and arises
from the anomalous velocity (E x Q)apg,%. It is an in-
jection current-type of coefficient. The fifth and sixth
terms, proportional to wgl, originate from E - rnm;apg,%%
and hence are expected to be shift current-type of con-
tributions.

The goal in the next sections is to calculate the coeffi-

cients 3,13, 03 in the expansion

(—iws)?x3i = 3 + (—iws)ns + (—iwg)?o3 + -+ (C3)

To avoid cumbersome notation in the next three sections
(D,E,F) we write the susceptibilities with the additional
factors as

—iw 3. abcd
7( ZC),?)X?” — X3i (C4)

The strategy is to parametrize (the real part of) the ex-
ternal frequencies as

wg =W + ngws,
We = —W + NyWy,

wa =0, (C5)

subject to ng + n, = 1. Fig. 9 summarize the result.

Appendix D: Derivation of .3

t3 derives from x3;1 and x3s2-

1. 1st term of 3

Integrate by parts xs3;1 and symmetrize it with respect
to pair-wise exchange of electric field indices (b, 5), (¢, o),

23

(d,A) *® to obtain

3
X3i,1 = E X3i,1,1
=1

b c
wnm;adfmnrnm Tmn

_ s
B 6 Z (Wnm *wﬁ)(wnm + wo)

nmk

7;6072 an;acfmnrzmrf’lnn
(wnm - wﬁ)(wnm + WA)

nmk
: d c
Wy wnm;abfmnrnmrmn

6 nmk (wnm - WA)(wnm + wa)

(D1)

The 2nd and 3rd terms will cancel against other terms
as we show later, but the first term will contribute to ¢3.
By partial fractions and writing explicitly the imaginary
parts of the frequencies, the first term gives

. b c
_ —wy an;adf'rrmrnmrmn
X3i,1,1 -

6(&)5 + (JJO-) ke (an —Wp — 7’6)
_ Wy Z wnm;adfmnr'rcnnrfnn (DQ)
6(wp +wo) 2= (Wnm — wo — i€)

Using Eq. C5, 1/(x —i€) = 1/x + imd(z), and expanding
in powers of wy, to 1st order we obtain

2w
§ b
X3i,1,1 = F wnm;adfmnrnmrycnné(wnm - W)

nmk
Wy b e 0 1
- g wnm;adfmnrnmrmn
6 Ow \wWnm —w
nmk

(D3)

The first term is independent of wy, and vanishes for fre-
quencies smaller than the energy band gap. This is the
first term of ¢3 in Eq. 107. The second nonresonant term
will cancel against other terms.

2. 2nd term of .3

This contribution is obtained from y3;2. To see this,
let us symmetrize the 2nd term in Eq. C2. After two
integration by parts we obtain



d b
WnmsacmnTnm fmn
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sz
X3i2 = ZX312 1= Z (an —wp — UJU)(an - w,@)

nmk

. b
+ Wy Z wnm;arnmfmn < )
6 Wnm — Wg Wnm — OJ5 — Wy

nmk

'LWE an;abrinrch,mfmn in wnm;ar%mfmn < )
6 — (Wnm — wg — We ) (Wnm — We) 6 = Wnm — Wo Whm — WB —wo )
o iWE wnm;arfnnfmn ( T?Lm ) . in Z an;arfnnfmn ( >
6 ke Wnm — Wg — WA \Wnm — Wg id 6 ik Wnm — WA — Wo \Wnm — WA
_ ’iOJE an;arfnnfmn < sz ) _ iWZ Z wnm;annnfmn ( > (D4)
6 nmk Wnm — We — WA \Wnm — We id 6 ik Wnm — WA — W3 \Wnm — WA b
[
There are 8 terms. To O(wsx), the I = 1,3 terms cancel In this calculation we have used the identity
with identical 2nd and 3rd terms in Eq. D1. The terms
l =26 and | = 4,8 combine to give the third term of 9 1 D) 1
73 in Eq. 122 (see next section). The [ = 5,7 terms % (_> =3 < — > . (D9)
contribute to t3. W \Wnm — W Wnm \Wnm — W
Note that we can set wg +w, = 0 (or wa = 0) (where
this combination appears) since the pair of poles of the Note that the 3rd term in (D8) contributes to ¢3. The

expression are distinct. This is not true inl = 5,7 and we
consider them separately. After differentiation the [ =5
term we obtain

. c b
wy wnm;armnrnm;dfmn
X3i2,5 = — E (

6 = (wWnm — wa) (Wnm — wg)
in wnm;arfnnrszmnwnm;d
?Z(w — wo)(Wpm — wg)? (D5)
ik nm 2 nm B
here wy = wg + wa and we used
< r;izm > _ 7agm;c . Tgmwnm;c (DG)
Wnm — WA ic Wnm — WA (wnm - WA)2

Now obtain simple poles via partial fractions. The term
with a square of frequencies in denominator can be han-
dled by

Wnm;d 0 -1

O —wn )~ g Wrm — ) (D7)

and a partial integration. Next, write the imaginary part
of frequencies, use 1/(z—ie) = 1/x+imd(z), and set wg =
w+ngws,wWs = —w+news, and 1 = ng+n,. Note that
with these definitions we = w+ (1+ng)ws. Now expand
to second order in wy; and set (without expanding) wa =
wy. After some algebra we obtain

in c 8 1
6 Z T’mnrfm;d mngra <wnm_w)

nmk

zwg 0 1
Z 8kd w"m armn nm)fmnaw (‘Unm_w)

_ _ c b .
+6 Z akd (wnm§armnrnm)fmn6(wnm w) (DS)

nmk

X3i2,5

other two nonresonant terms which will eventually can-
cel. A similar calculation for the | = 7 terms gives

) _in b c 0 1
Xai21 =g Z atgs ()

nmk

zwg b 0 1
Z 8kd w"m almn T nm)fmnaw (wnm +w)

nmk

9 b c
*g > e WnmialmnTrm ) fmnd(Wnm +w)  (D10)

nmk

Combining the [ = 5 and | = 7 terms above and using
B1 we obtain

X3i2,5+X3i2,7 =

iwyy 0 1
? Wnm; ad’rmn nmfmn Ow B —

w — W
nmk nm

21 0 e
+5 O g (@nmiaT ) Frnnd (@ — w) - (D11)

nmk

The 1st term is nonresonant and will cancel against the
2nd term in Eq. D3. The 2nd term combined with the
first term in Eq. D3 gives ¢3 in Eq. 107.

Appendix E: Derivation of 713

We now derive each of the contributions to 73 in
Eq. 122.



1. 1st term of n3

The first term in 73 comes from ys;4. Symmetrizing
X3i4 in Eq. D4 and after partial fractions we obtain

3
X3i,4 = ZXSZ’A,Z (E1)
=1
= . Z Ql f’rrmr |:1
6(0.)5 +w0 — nm nm mn Wnm — W5
1
- Wnm + Wa:|
+ é Q(L(‘ fmnrfLmT‘gﬂn
nmk (wnm - wﬁ)(wnm + wA)
+ é Qab fmnr'gmr:nn (E?)
6 nmk (wnm - WA)(wnm + wa)

Only the 1st term contributes to n3. Writing the imag-
inary parts of the frequencies, setting wg = w + ngws,

J

m.n afmn

X3i5 = ZX3751 Mz Z

nmk

b
( rnm
Wnm — Wg — We Wnm — Wp

3

b
mn'a fmn < Tnm
nmk

Wnm — Wp — WA

Wnm — Wg

) b c
Wy, TmnsaJmn < "nm

6 Wnm — We — WA

Let us consider x3;5,3 first

;2
W3,

c b
Tmn;afmn ( Trnm ) (E5)
)
6 Wnm — W2 \Wnm —Wg / 4

nmk
where wy = wg + wa. Performing a partial fraction ex-
pansion, a substitution 1/(x—ie) = 1/x+ind(x), followed
by a Taylor expansion (to 2nd order) in wy of the real
part about (wg,ws) = (w,w) using wg = w + Ngwy, Wy =
—w + nywsy such that wy = w + (1 + ng)ws, we obtain

o (1
Ow \wpm —w
iwd

0 1
| wsy c by O 1
12 (Tmn;arnm),dfmn Ow (wnm — w)

nmk

iws (i) . b
+ T Z (Tmn;aTnm)i,dfmn(S(wnm

nmk

X3i5,3 =

2
w
Py} c b
6 § Tmn;arnm;dfmn

nmk

X3i5,3 =

~w) (E6)

the first two terms are nonresonant contributions which

Wnm — We
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Wy = —w + nywy, and Taylor expanding, we obtain to
leading order in wx

20w
X3i,4,1 = = Z Qnmfmnrflmrfnné(wnm - w)
nmk
0 1
Z
Q mn _ E3
DI e

Adding 1/2 of the first term to 1/2 of itself and letting
k — —k in the 2nd term we obtain the first contribution
of n3 in Eq. 122. The 2nd term cancels against other
nonresonant contributions.

2. 2nd term of 73

This term arises from xs;5. Symmetrizing we obtain

.9 d
+ wy, Tmn;amn ( rfzm >
b

" 6 = Wnm — W — Wo \Wnm — Wo /.,

. 9 b d
) L WS Z Transafmn ( re. >
-d 6 Wnm — WA — Wo \Wnm — WA ic

. 9 c
iws, Tmnsafmn

d
< "nm
m — WA —Ws \Wnm — WA b

cancel against other terms.
gives

A similar analysis of X355

iw? 0 1
X3i5.5 = _E rb ré _ —
29, 6 mn;a' nm;dJmn Ow Wnm + W

nmk

0 1
E Z mna nm) dfmnaw (W)

nmk

wwx (e

+ T() Z (Tfnn;arrclm);dfnm(s(wnm +w) (E7)
nmk

the first two terms are nonresonant contributions which

cancel against other terms. After changing indices n,m

and k — —k we see that the 3rd term in Eq. E6 plus the

3rd term in Eq. E7 gives the 2nd term of n3 in Eq. 122.

3. 3rd term of 73

The third contribution to Eq. 122 arise from xzi22 +
X3i2,6 T X3i2,4 + X3i2,8 in Eq. D4.



Note that we can set wg + w, = 0 from the outset
since the poles in these expressions are distinct. Setting
1/(xz —i€) = 1/x + ind(x) and Taylor expanding about
(wg,ws) = (w, —w) we see that to leading order the non-
resonant parts vanish and we obtain

X3i2,2 T X3i2,6 =
d
wy T Tmn b
- wnm;a < Tnmfmn(s(wnm - w)~ (E8>
3 Wnm / ..
bmk H

Similar manipulations lead to vanishing nonresonant
terms and to

X3i2,4 T X3i2,8 =

d
@ wnm;a < rmn ) T;mfmné(w”m + w)' <E9)
bmk Wnm ib

12
X3i3 = E X3i3,1
l

_ ) Wnm;al” no omfon no omfmo
6 Wnm — Wa — W Wno — W Wom — W
nmok nm B o | Wno B om 5 ]
ws wnm?’lr no omfon o Tnoromfmo
6 Wnm — Wa — W Wno — W Wom — W
nmok T B A [ Wno 6] om B ]
+ ) wnm?‘lr no omeTL o Tnoromfmo
6 Wnm — Wg — WA | Wpo — Wo Wom — Weo |
nmok

We analyze the structure of xs;3 by dividing its terms
into two groups. The first group composed of the [ =
1,2,3,4 terms can be added together to give a simple
result (see Eq. E15). The second group is composed of
the | = 5-12 terms. The [ = 5,6,9, 10 terms have pair of
poles separable by partial fractions and can be combined
with the [ = 12,11,8,7 terms (respectively). Since we
are interested in results to linear in wy, it is useful to
note we can set wg + wy, = 0 or wa = 0 in all terms
from the outset. This is because the pair of poles in each
term are always distinct and separable by simple partial
fractions. This should be contrasted with the | = 5,7
terms of Eq. D4, or the 1=3.,5 terms in Eq. E4, where the
poles collide and they have to be treated separately.

The sum of the [ = 1,2 terms can be written as

X3i3,1 + X3i3,2 =

Wy

d b
wnmﬂrmnrnorgm fOTL F+(

Wnoswp), (E11)

Wnm,
nmok
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Relabeling of indices n, m, setting k — —k, and adding
to Eq. E8 we recover the 3rd term of 7s.

4. 4th term of 73

The 4th term arises from xs;3. Let us label the 12
terms obtained after symmetrization of y3;3 as

+ w£ Wnm;al |: no omen _ rnoromfm0:|
6 K Wnm — We — Wp Wno — We Wom — We
nmo
wl an;arfnn |: no omen _ rnoromfm0:|
6 Wnm — WA — Ws | Wno — WA Wom — WA
nmok
+ o‘}l w"mﬂrfnn |: no omen . 7ﬂnorornfm.oj|
6 Wnm — WA —W | Wno —WA  Wom — WA
nmok
(E10)
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where F is defined as
1 1
F(wno,wp) =
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= H—‘r(wnov wﬁ) +inD— (wnoa w,@)v (E12)
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Similar manipulations for the sum of the | = 3,4 terms
leads to

X3i3,3 + X3i3,4 =
Wy
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Adding the [ = 1-4 contributions we find
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The first term will cancel against other nonresonant con-

tributions.
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T'nngm + TTCLoTom)fOTLH-‘r (wnm w)

(anw)

J

b
_ >} Wnm; armnrno omfon .
X3i3,5 = E X3i3,5,0 = +imd (wWpm — w) —
6 Wmo Wnm — W Wno — W
l nmok
d
— > Wnm; a’rmnrno omfmo 1 - 1
X3i3,6 = E X3i3,6,0 = —— +imd(wpm —w) — ———
6 Wno Wnm — W Wom — W
nmok
b c ..d
_ wy wn?n;armnrnoromfon .
X3i3,9 = E X3i3,9,0 = — +imd(wpm +w) — ————
6 Wmo Wnm + W Wno + W
l nmok
4 b .d .c
_ %>} wnm;armnrnoromfmo .
X3i3,10 = E X3:3,10,0 = —— + i (Wnm + w) —
l 6 nmok Wno Wnm + W Wom + w

We now combine them with the resonant (r) and non-

— im0 (Wno —

— i (Wom —
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Next we consider the group of [ = 5,6,9,10. It is easy
(E15)  to show these terms can be written as

} (E16)
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} (E18)
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tively). The result is
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resonant (nr) parts of the [ = 12,11,8,7 terms (respec-
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(E25)
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of the sum of the [ = 1-4 and [ = 5-12 groups gives the



4th term of n3 and the nonresonant part vanishes. First
the resonant contributions.

a. Resonant contributions

Let n <+ m and k — —k in X343,6,4 and add to x3;3,5,4
to obtain

X3i3,6,4 T X3i3,5.4 =

_ Zﬂ'wg w Tran om nof(m
§ nm;a

mo

D_(wno,w). (E28)

nmok

Similar manipulations on X3i3,10,4 and X3i3,9,4 give

X3i3,10,4 T X3i3,9,4 =

W
ws Z wnm;aM —(Wnoyw).  (B29)
nmok Wmo
Adding Eq. E28 and E29 gives
X3i3,6,4 T X3i3,5,4 + X3i3,10,4 T X3i3,9,4 =
. d
1w, r
6 Z wnmﬂwmn (Tfnnrfw - T’rcnn’rfw) O’VLD—(wnov LU).
nmok mo
(E30)

Performing analogous manipulations add Eq. E21 to
Eq. E23 and Eq. E25 to Eq. E27 to obtain

X3i3,5,2 + (X3i3,12)r + X3i3,6,2 + (X3i3,11)r

Z wnmm —(Wnm,w), (E31)

om

mwg

nmok
and
X3i3,10,2 + (X3i3,7)r + X3i3 92+ (X3i3,8)r =

mwz Z wnma—m" om "Ofm" —(Wpm,w). (E32)

om

nmok

respectively. After n <> [, and k — —k in Eq. E30 add
to Eq. E15 to obtain

4

( § X3i3,0)r + X3i3,6,4 + X3i3,5,4 + X3i3,10,4 + X3i3,9.4 =
1

ZT(O‘}E n ¢ c ..b
E : Wnl; a Trnolom — rnorom)fOnD*

nmok

(Wnoyw).
(E33)

Now add Eq. E31 and Eq. E32 to obtain
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X3i3.6,2 + (X3i3,11)r + X3:3,5,2 + (X3i3,12)r
+ X343,10,2 + (X3i3,7)r + X3i3,0,2 + (X3i3,8)r =

: d
ITwWs E "mn ;b c c b
6 wno;aw (rnorom - rnorom) O’ﬂD*

nm

(Wno,w).
nmok

(E34)

Finally, the sum of all resonant terms in y3;3 to linear
order in wy, amounts to adding Eq. E33 to Eq. E34. The
result is

E33+ E34 =
2i7TWZ Z T;]lnn ( b c )f ( )
Wnosa Trnolom — T‘no’l‘on on Wno, W
6 nmok nm
(E35)

which is the 4th term in 7s.

b. Nonresonant contributions

The sum the nonresonant third term of Eqs. E16, E17,
E18 and E19 give

X3i3,6,3 T X3i3,5,3 + X3i3,9,3 + X3i3,10,3 =

d

Wy Tom (rfnnrno + Tfnnrfw)fon H
+(
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Wnoy W).

W
nmok mo

(E36)

Next, the sum of Eqgs. E20 and E22 and of Eq. E24 and
E26 gives

X3i3,5,1 + (X3i3,12)nr + X3i3 6,1+ (X3i3,11)nr =

) rmn no omfmn H+

- T4 an;a (anv w)v (E37)
Wom,
nmok
X3i3,9.1 + (X3i3,8)nr + X3i3,10,1 + (X3i3,7)nr
b c ..d
— wl an;a Tmnrnoromfmn H+ (wnm7 CU) (E38)
Wom,
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After [ +» n and k — —k in Eq. E36 combined with the
nonresonant part of Eq. E15 we obtain

4

(Z X3i3,0)nr + X3i3,6,3 + X3i3,5,3 + X3i3,9,3 + X3i3,10,3 =
1

d
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wl rmn(r(O/ano + romT:Lo)fO’ﬂ H (
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Adding Eq. E37 and Eq. E38 we obtain

E37+ E38 =
d b

c b ..c
Wy rom(rnormn + Tnormn)fmn
- Wnm;a

Hy (wnm w),

w
nmok om

(E40)
which after [ <> n and n <> m, is seen to cancel Eq. E39.

This concludes the proof that to linear order on wy the
nonresonant terms vanish.

Appendix F: Derivation of o3
1. 1st and 2nd terms in o3

Consider x3i5,1 and x3;5,2 in Eq.E4. In these terms we
can set wg + w, = 0 since the real part of the denomi-
nators never vanishes. Setting 1/(x —i€) = 1/x + ind(z)
and using

d b d d
0 rmn;arnm _ rmn;a 7"b + 71mn;a 7ﬂb
- nm nm;c
Oke Wnm Wom ) Wnm

3

(F1)
the resonant parts are
(X3i5,1 + X3i5,2)r =
2 d d
W r . r .
TS (22 b (22 e 6w — )
nmk Wnm Wnm
(F2)

Similar manipulations on xs;5,4 and xs;5,6 in Eq. E4 yield
the rest of the terms in the square brackets in o3. The
nonresonant parts can be shown to vanish.

2. 3rd and 4th terms in o3

This contributions to o3 arises from x3;6 in Eq. C2. It
can be shown that the nonresonant parts vanish and the
resonant part gives the 3rd and 4th term in o3. Since the
algebraic steps are very similar to those used in finding
the third term in 73 we omit the derivation.

Appendix G: two-band model of single-layer GeS

We consider a two-band, 2D model of single-layer GeS.
The Hamiltonian is

H = foo0 + fa0a, (G1)
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where 0,,a = x,y, z are the standard Pauli matrices and
0p is the 2 x 2 identity matrix. In this section, summa-
tion over repeated indices is implied. The functions f,
are given by the hopping integrals of the model. The
Hamiltonian has eigenvectors given by

uczA(fgj}fy> (G2)
_ fz_€
uv—A(fx+Z.fy>7 (G3)

where A=2 = 2¢(e— f,) is the normalization and eigenval-
ues by E., = fo+e where € = +/f,f, and ¢, v denote the
conduction and valence band respectively. An arbitrary
phase factor has been omitted, since the final expressions
are independent of this phase. The Bloch wave functions
are constructed as

Yok = S MR uDo(r ~ R)
R

4 eik~rougl2)¢(r —rp — R)], (G4)

where ugf) denotes the eigenvector corresponding to
eigenvalue n = v, ¢ (valence, conduction) and i = 1,2
denotes the first and second components. rg = (ag,0)
is the position of site B with respect to site A which is
taken to be the origin. ¢(r) are p,-orbitals and R runs
over all lattice positions. Notice that the phase of the
wave function at site B is different than that at site A.

The hopping parameters of the Hamiltonian are®

fo = 2t}[cosk - a; + cosk - ag]

+ 2th cosk - (a; — ag), (G5)
fo—ify = X0ty + ta®y + t307), (G6)
fz = Av (G7)

where &y = e~ a1 4 e~?ka2 A ig the onsite potential
and tq,t9,ts,t],t, are hopping matrix elements as indi-
cated in Fig. 2(c). a; = (az, —ay),a2 = (ag,a,) are the
primitive lattice vectors. Note that fy and hence t/,t}
do not enter into the injection current.

For single-layer GeS the parameters are: (as,ay,d) =
(4.53/2,3.63/2,2.56) A, where d is the thickness of
the slab, ag = 0.62 A, and (t1,to,ts,t],th,A) =
(—2.33,0.61,0.13,0.07, —0.09,0.41) eV. It was shown
that these parameters reproduce the band structure and
geometry of the wavefunction in the vicinity of the
Gamma point®®. To compare with bulk values the re-
sults are multiplied by 2/d. The factor of 2 accounts for
the smaller TB unit cell.



»

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

30

R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154
(1954).

N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev.
Mod. Phys. 90, 015001 (2018).

A. Vishwanath, Physics 8, 84 (2015).

B. I. Sturman and V. M. Fridkin, The Photovoltaic and
Photorefractive Effects in Non-CentrosymmetricMaterials
(Gordon and Breach Science Publishers, Philadelphia,
1992).

V. 1. Belinicher and B. I. Sturman, Physics-Uspekhi 23,
199 (1980).

V. L. Belinicher and B. I. Sturman, Ferroelectrics 83, 29
(1988).

R. von Baltz and W. Kraut, Phys. Rev. B 23, 5590 (1981).
J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akba-
shev, A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Hawley,
D. Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L.
Johnson, Nature Photonics 10, 611 (2016).

A. M. Rappe, 1. Grinberg, and J. E. Spanier, Proceedings
of the National Academy of Sciences 114, 7191 (2017).

K. Kushnir, M. Wang, P. D. Fitzgerald, K. J. Koski, and
L. V. Titova, ACS Energy Letters 2, 1429 (2017).

B. M. Fregoso, T. Morimoto, and J. E. Moore, Phys. Rev.
B 96, 075421 (2017).

T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto,
J. E. Moore, and J. B. Neaton, Phys. Rev. Lett. 119,
067402 (2017).

J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337
(2000).

D. H. Auston, A. M. Glass,
Rev. Lett. 28, 897 (1972).
A. M. Glass, D. von der Linde, and T. J. Negran, Applied
Physics Letters 25, 233 (1974).

W. T. H. Koch, R. Munser, W. Ruppel,
Ferroelectrics 13, 305 (1976).

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and
M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).

M. Nakamura, F. Kagawa, T. Tanigaki, H. S. Park, T. Mat-
suda, D. Shindo, Y. Tokura, and M. Kawasaki, Phys. Rev.
Lett. 116, 156801 (2016).

M. Holtz, C. Hauf, A.-A. Herndndez Salvador, R. Costard,
M. Woerner, and T. Elsaesser, Phys. Rev. B 94, 104302
(2016).

M. Nakamura, S. Horiuchi, F. Kagawa, N. Ogawa, T. Ku-
rumaji, Y. Tokura, and M. Kawasaki, Nature Communi-
cation 8, 281 (2017).

N. Ogawa, M. Sotome, Y. Kaneko, M. Ogino,
Y. Tokura, Phys. Rev. B 96, 241203 (2017).

K. Kushnir, Y. Qin, Y. Shen, G. Li, B. M. Fregoso, S. Ton-
gay, and L. V. Titova, ACS Applied Materials & Interfaces
11, 5492 (2019).

D. Coété, N. Laman, and H. M. van Driel, Applied Physics
Letters 80, 905 (2002).

A. Ghalgaoui, K. Reimann, M. Woerner, T. Elsaesser,
C. Flytzanis, and K. Biermann, Phys. Rev. Lett. 121,
266602 (2018).

N. Laman, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel,
Applied Physics Letters 75, 2581 (1999).

N. Laman, M. Bieler, and H. M. van Driel, Journal of

and A. A. Ballman, Phys.

and P. Wrfel,

and

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42
43

44

45
46

47

48

49

50
51

53

54

55
56

57

Applied Physics 98, 103507 (2005).

M. Bieler, N. Laman, H. M. van Driel, and A. L. Smirl,
Applied Physics Letters 86, 061102 (2005).

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys.
Rev. B 76, 161304 (2007).

D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann,
C. Felser, J. Moore, D. H. Torchinsky, and J. Orenstein,
“Quantized photocurrents in the chiral multifold fermion
system rhsi,” ArXiv:1902.03230 [cond-mat.mes-hall].

A. M. Burger, R. Agarwal, A. Aprelev, E. Schruba,
A. Gutierrez-Perez, V. M. Fridkin, and J. E. Spanier, Sci-
ence Advances 5 (2019).

H. M. van Driel and J. E. Sipe, “Coherence control of pho-
tocurrents in semiconductors,” (Springer, New York, NY,
2001) Chap. 5, pp. 261-306.

J. Rioux and J. Sipe, Physica E: Low-dimensional Systems
and Nanostructures 45, 1 (2012).

L. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, and
A. M. Rappe, npj Comput. Mater. 2, 16026 (2016).

R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47,
1651 (1993).

R. Resta, Rev. Mod. Phys. (1994).

In the standard notation of susceptibilities®® a permittiv-
ity of free space, €, is factored out of x,. For clarity of
notation we dont factor this term.

R. W. Boyd, Nonlinear Optics (Academic Press; 2nd edi-
tion, San Diego, USA, 2003).

C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
B. M. Fregoso, R. A. Muniz, and J. E. Sipe, Phys. Rev.
Lett. 121, 176604 (2018).

C. Aversa and J. E. Sipe, IEEE Journal of Quantum Elec-
tronics 32, 1570 (1996).

D. E. Aspnes, Phys. Rev. B 6, 4648 (1972).

D. Culcer, A. Sekine, and A. H. MacDonald, Phys. Rev.
B 96, 035106 (2017).

M. Bass, P. A. Franken, J. F. Ward,
Phys. Rev. Lett. 9, 446 (1962).

F. Nastos and J. E. Sipe, Phys. Rev. B 82, 235204 (2010).
P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt.
Soc. Am. B 13, 2424 (1996).

G. Li, K. Kushnir, M. Wang, Y. Dong, S. Chertopalov,
A. M. Rao, V. N. Mochalin, R. Podila, K. Koski, and L. V.
Titova, in 2018 43rd International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz) (2018).
E. 1. Blount, Solid State Physics: Advances in Research
and Applications, Vol. vol 13 (Academic Press, 1962).

F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
B.M. Fregoso unpublished.

I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806
(2015).

J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805
(2010).

D. Xijao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,
1959 (2010).

D. J. Thouless, M. Kohmoto, M. P. Nightingale,
M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

L. C. Gomes and A. Carvalho, Phys. Rev. B (2015).
A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E.
Moore, Nature Communications 8, 14176 (2017).

S. R. Panday and B. M. Fregoso, Journal of Physics: Con-
densed Matter 29, 43LT01 (2017).

and G. Weinreich,

and



31

8 1. Wang and X. Qian, Nano Letters 17, 5027 (2017). 51 D. A. Bas, K. Vargas-Velez, S. Babakiray, T. A. Johnson,

5 8. R. Panday, S. Barraza-Lopez, T. Rangel, and P. Borisov, T. D. Stanescu, D. Lederman, and A. D. Bris-
B. M. Fregoso, “Injection current in ferroelectric group-iv tow, Applied Physics Letters 106, 041109 (2015).
monochalcogenide monolayers,” ArXiv:1811.06474 [cond-  °2 D. A. Bas, R. A. Muniz, S. Babakiray, D. Lederman, J. E.
mat.mes-hall]. Sipe, and A. D. Bristow, Opt. Express 24, 23583 (2016).

50 D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. 63 R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel,
de Heer, P. N. First, and T. B. Norris, Nano Letters 10, and J. E. Sipe, Phys. Rev. Lett. 76, 1703 (1996).

1293 (2010).



	Bulk photovoltaic effects in the presence of a static electric field
	Abstract
	Introduction and main results
	Notation
	Hamiltonian
	Polarization operator
	Current operator
	Intraband current

	Perturbation theory
	0th order
	1st order
	2nd order
	nth-order

	Physical divergences of 2
	Physical interpretation of injection and shift current
	Injection current
	Shift current


	Physical divergences of 3
	Jerk current
	Hydrodynamic model
	Susceptibility divergence
	Materials
	Physical interpretation of jerk current
	Jerk Hall current
	Example: Jerk current in single-layer GeS

	3rd order injection current
	Materials
	Physical interpretation of 3rd order injection current
	3rd order injection Hall current
	Example: 3rd order injection current in single-layer GeS

	3rd order shift current
	Materials
	Physical interpretation of the 3rd order shift current
	3rd order shift Hall current
	Example: 3rd order shift current in single-layer GeS

	Generalizations
	Snap current
	Higher order singularities

	Experimental signatures
	Conclusions
	acknowledgments
	List of identities
	Derivation of 2 and 2 from Taylor expansion of 2
	Expansion of 3i
	Derivation of 3
	1st term of 3
	2nd term of 3

	Derivation of 3
	1st term of 3
	2nd term of 3
	3rd term of 3
	4th term of 3
	Resonant contributions
	Nonresonant contributions


	Derivation of 3
	1st and 2nd terms in 3
	3rd and 4th terms in 3

	two-band model of single-layer GeS
	References


