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Bulk photovoltaic effects in the presence of a static electric field

Benjamin M. Fregoso
Department of Physics, Kent State University, Kent, Ohio, 44242, USA

This paper presents a study of dc photocurrents in biased insulators to the third order in the
electric field. We find three photocurrents which are characterized by physical divergences of the
third-order free-electron polarization susceptibility. In the absence of momentum relaxation and
saturation effects, these dc photocurrents grow as tn (n = 2, 1, 0) with illumination time. The
photocurrents are dubbed jerk, third-order injection, and third-order shift current, respectively, and
are generalizations of the second-order injection and shift currents of the bulk photovoltaic effect.
We show that the injection, shift, and jerk currents admit simple physical interpretations in terms of
semiclassical wavepacket dynamics and the concept of intraband current. Experimental signatures
and extensions to higher-order susceptibilities are also discussed.

I. INTRODUCTION AND MAIN RESULTS

Electrons in crystals can exhibit fascinating dynamics
in the presence of external electric and magnetic fields.
In metals, the anomalous Hall effect in metallic ferro-
magnets1,2 or the chiral anomaly in Weyl semimetals3,4

are two examples. Insulators, despite lacking a Fermi
surface, can also exhibit nontrivial carrier dynamics such
as injection and shift currents. Generically referred as
bulk photovoltaic effect (BPVE), the injection and shift
currents are dc photocurrents in irradiated homogeneous
insulators or semiconductors that lack inversion symme-
try.

The peculiar nature of the BPVE was first noticed by
its photocurrent dependence on light polarization, its de-
pendence on the intensity of light, and by its large open-
circuit photovoltages. This led to the first successful phe-
nomenological theory of both components of the BPVE,
namely, the injection and shift current.5–7 Later, quan-
tum kinetic theory was used to find explicit microscopic
expressions for the response tensors5,8. The BPVE has
been extensively studied since the 1960s in ferroelectrics
in the context of photovoltaic applications. More re-
cently, the BPVE has attracted attention for its promise
in novel optoelectric applications;9,10 specifically in two-
dimensional (2D) ferroelectrics.11–13

In the injection current, also called circular photogal-
vanic effect (CPGE), the lack of inversion symmetry can
be manifested in two scenarios. In the first scenario, pho-
toexcited carriers relax momentum asymmetrically into
±k directions via collisions with other electrons, phonons
or impurities. This leads to a polar distribution and a
net current5–7. In the second scenario, light pumps car-
riers into velocity-carrying states asymmetrically at ±k
points in the Brillouin zone (BZ) leading to a polar distri-
bution and a net current5,14. In both scenarios, the key
point is that the rate of pumping into or out of current-
carrying states at time-reversed directions is asymmetri-
cal. Within a simple relaxation time approximation, the
steady state injection current in both cases is propor-
tional to the first power of the relaxation time constant
and vanishes for linearly polarized light.

The shift current, on the other hand, has a distinct

microscopic origin which is not completely understood.
It is known that shift current processes involve the co-
herent transfer of charge across a unit cell. This happen
because materials that lack inversion symmetry have the
centers of charge in the valence and conduction bands
spatially separated. The shift current vanishes for circu-
lar polarization of light and decays in the time scale of
the quantum coherence of the solid.

The injection or shift current (or both) has been
reported in ferroelectric materials9,11,15–23, GaAs24,25,
CdSe26,27, CdS27, quantum wells28,29, RhSi30,
Bi12GeO20

31, and others as reported previously.5,32–34

Following Sipe and coworkers14, BPVE response ten-
sors can be derived from the perspective of divergent po-
larization susceptibilities. In this approach, the inversion
symmetry breaking is encoded in light-matter interac-
tions and not on momentum relaxation processes; the
latter are included phenomenologically a posteriori. For
not too large electric fields, the insulator’s response to
an external electric field is described perturbatively by
susceptibilities χn as

P = P0 + χ1E + χ2E
2 + χ3E

3 + · · · , (1)

where P0 is the electric polarization in the absence of an
external electric field,35,36 χ1 is the linear susceptibility,
and χ2, χ3, ... are nonlinear susceptibilities.37

The electric polarization in insulators is commonly
thought to be determined by the off-diagonal elements
of the density matrix because these elements describe
the displacement of charge from its equilibrium posi-
tion in the presence of an electric field. Intraband pro-
cesses, however, have been shown to be important.39,42,43

Among other things they cure unphysical divergences in
susceptibilities in the dc limit by incorporating the fact
that the intraband motion of Bloch electrons cannot ac-
celerate indefinitely in insulators39,42. Importantly, when
intraband and interband processes are taken into account
on an equal footing divergent susceptibilities represent
real photocurrents.

Consider, for example, the dc divergences of χ2. If
we denote the amplitude of the electric field by Eb =∑
β E

b
βe
−iωβt, the polarization to second order is
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TABLE I. Summary of bulk photovoltaic effects (BPVEs) obtained from divergences of free electric polarization susceptibilities.
The 2nd injection and shift current are derived from singularities in χ2 at zero frequency. The BPVEs can be classified by
their dependence on illumination time in the absence of momentum relaxation and saturation effects, e.g., η2, η3 and η4

are called injection current responses and similarly σ2, σ3 are called shift currents responses. We write susceptibilities as,
χabc...n (−ωΣ, ωβ , ωσ, ...) where b, c... are Cartesian indices, ωβ , ωσ, ... are frequency components, and ωΣ = ωβ+ωσ+ ... frequency
sums38. [X,Y ] ({X,Y }) indicate commutation (anticommutation) with respect to b, c indices only. Other conventions are
explained in Sec. II.

BPVE Symbol Expression

Time
depen-
dence
∼ tα

Origin Ref.

Injection ηabc2
πe3

2~2V

∑
nmk fmn ωnm;a[rbnm, r

c
mn]δ(ωnm − ω) 1

χ2(0, ω,−ω) → ∞
39

Shift σabc2
iπe3

2~2V

∑
nmk fmn{r

c
nm;a, r

b
mn}δ(ωnm − ω) 0

39

Jerk ιabcd3
πe4

3~3V

∑
nmk fmn

[
2ωnm;adr

b
nmr

c
mn + ωnm;a(rbnmr

c
mn);d

]
δ(ωnm − ω) 2

χ3(0, ω,−ω, 0) → ∞

40

Injection η3 Eq. 122 1 present

Shift σ3 Eq. 140 0 present

Injection ν3 Eq. 7 1
χ3(0,−2ω, ω, ω) → ∞

41

Shift σ3 Eq. 8 0
41

Snap ς4 Eq. 161 3

χ4(0, ω,−ω, 0, 0) → ∞

present

Jerk ι4 2

Injection η4 1

shift σ4 0

Any an
1

2πi

∮
|z|=ρ dz

χn
zl+1 , z = −iωΣ, ρ→ 0, l = −n, · · · ,−1, Eq. 169 α = n −

1, ..., 0
χn(ωΣ, ωβ , ωσ, ...) → ∞,
ωΣ = ωβ + ωσ + · · · → 0

present

P a(2) =
∑
bβcσ

χabc2 (−ωΣ, ωβ , ωσ)EbβE
c
σe
−iωΣt, (2)

and oscillates with frequency ωΣ = ωβ + ωσ in the long-
time limit. It can be shown that the intraband, χ2i,
contribution to χ2

χ2 = χ2i + χ2e, (3)

can be expanded in powers of ωΣ as14,39

(−iωΣ)2χ2i = η2 + (−iωΣ)σ2 + · · · . (4)

In can be shown that the interband component χ2e is
regular as ωΣ → 0. Together with the Maxwell equation

dP

dt
= J, (5)

and assuming a monocromatic optical field, Eq. 4 implies
η2 and σ2 are response functions of the nonlinear currents

d

dt
J
a(2)
inj ≡ 2

∑
bc

ηabc2 (0, ω,−ω)Eb(ω)Ec(−ω), (6)

J
a(2)
sh ≡ 2

∑
bc

σabc2 (0, ω,−ω)Eb(ω)Ec(−ω). (7)

η2 and σ2 are the standard injection and shift cur-
rent response functions derived from the susceptibil-
ity approach.14 Importantly, they vanish for frequencies
smaller than the energy gap (they are ‘resonant’). The
dots in Eq. 4 are associated with the (nonresonant) rec-
tification currents.44,45. In the absence of momentum
relaxation and saturation effects the injection and shift
currents grow with illumination time as

|Ja(2)
inj | ∝ η2t (8)

|Ja(2)
sh | ∝ σ2. (9)

In this article we show how the injection and shift cur-
rents are modified by the presence of a static field from
the perspective of the physical dc divergences of the free
third order electric polarization susceptibility χ3. Biased
irradiated semiconductors of this kind have been exten-
sively studied numerically using the semiclassical Boltz-
mann equation.46 As shown below, this approach misses
some important quantum effects which are recovered in
the susceptibility approach.

The third order polarization
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P a(3) =
∑
bβcσdδ

χabcd3 (−ωΣ, ωβ , ωσ, ωδ)E
b
βE

c
σE

d
δ e
−iωΣt,

(10)

oscillates with frequency ωΣ = ωβ + ωσ + ωδ in the long-
time limit. We show that the intraband part, χ3i, of
χ3 = χ3i + χ3e admits the Taylor expansion

(−iωΣ)3χ3i = ι3 + (−iωΣ)η3 + (−iωΣ)2σ3 + · · · , (11)

or alternatively the Laurent series

χ3i =
ι3
z3

+
η3

z2
+
σ3

z
+ · · · , (12)

where z = −iωΣ and ι3, η3, σ3 are (resonant) residues.
Clearly, χ3i diverges in the dc limit (ωΣ = 0) and similar
to η2 and σ2, ι3, η3 and σ3 represent response functions
of nonlinear currents

d2

dt2
J
a(3)
jerk ≡ 6

∑
bcd

ιabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0

(13)

d

dt
J
a(3)
inj ≡ 6

∑
bcd

ηabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0

(14)

J
a(3)
sh ≡ 6

∑
bcd

σabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0 .

(15)

The difference is that a static field (zero frequency) is
taken into account in addition to a monochromatic op-
tical field. In the absence of momentum relaxation and
saturation effects the currents vary as t2, t, t0 with illu-
mination time and we dub them jerk, 3rd-order injection
current and 3rd-order shift current, respectively. The
dots in Eq. (12) represent regular terms associated with
rectification currents.

Since χ3e is regular in the dc limit one can write the
same expansion as in Eq. (12) for both χ3i and χ3. Sim-
ilarly, the third order photoconductivity which is defined
by

Ja(3) ≡
∑
bβcσdδ

σabcd(3)(−ωΣ, ωβ , ωσ, ωδ)E
b
βE

c
σE

d
δ e
−iωΣt,

(16)

admits the expansion

σ(3) =
ι3
z2

+
η3

z
+ σ3 + · · · . (17)

The macroscopic current dynamics in a sample involves
not only the above generation processes but also the sub-
sequent evolution of charge distribution in the sample.

In the presence of dissipation, the dc divergences will
be cut-off by a momentum relaxation time scale, just as
the dc divergence of metals in the Drude model is cut-
off by a momentum relaxation time. In the BPVE, we
expect two relevant relaxation time scales. One is the
relaxation time scale of the diagonal elements of the den-
sity matrix, τ1, which ι3, η3, and η2 depend on. This
could be of the order of 100 fs or longer in clean semi-
conductors47. The second is the relaxation time scale of
the off-diagonal elements of the density matrix, τ2, which
σ3 and σ2 depend on. Typically, we expect τ2 < τ1, but
a recent experiment found τ2 to be as large as 250 fs.25

For weakly disordered semiconductors, the conductivity
at ωΣ = 0 becomes

σ(3) = τ2
1 ι3 + τ1η3 + σ3. (18)

Note that σ(3) can also be viewed as the photoconduc-
tivity, i.e., the light-dependent correction to the dc con-
ductivity.5

We can generalize the above results to any power in the
electric fields. In general, with each additional power in
the electric field, χni has an additional frequency factor
in the denominator. This means that the dc singularities
of χni are, at most, of the order n. We can show that
the nth order z = 0 singularities of χn (n ≥ 2), represent
photocurrents which vary as tn in the absence of mo-
mentum relaxation and saturation effects. This occurs
when all but two of the external frequencies are zero.
In addition, there is a hierarchy of higher order shift,
injection,..., currents which are represented by z = 0 sin-
gularities of order 1, 2, 3, ..n of χn. Formally χn can be
expanded as

χn =

∞∑
l=−n

alz
l, (19)

where al = 0 for frequencies less than the gap and hence
the residues are

al =
1

2πi

∮
|z|=ρ

χn dz

zl+1
. (20)

The poles of χn may be of lower order than n when the
optical field is not monocromatic; see, for example, the
4th row in Table I where the field’s frequencies are ω and
2ω.

Importantly, we give simple physical arguments to ex-
plain the microscopic processes involved in ι3, η3, σ3

and σ2 and provide explicit expressions in terms of ma-
terial parameters amenable for first principles computa-
tions. To have a sense of the magnitude of these cur-
rents, we calculate them in single-layer GeS using a two-
dimensinal (2D) tight-binding model. In particular we
give specific signatures of these currents for ultrafast THz
experiments, see Table II.

The article is organized as follows. In Sec. II we de-
scribe the conventions used in this paper. In Sec. IV, III,
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and V we introduce the Hamiltonian, polarization, and
current operators. In Sec. V A we revisit the calculation
of the intraband current following Sipe and Shkrebtii.14.
In Sec. VII we rederive the expressions for the injection
and shift current responses giving simple physical inter-
pretations based on semiclassical wavepackets dynamics
in electric fields. We then study the physical divergences
of χ3 at zero frequency in Sec. IX, X, and XI. The jerk
current has been presented previously and is included
here only for completeness40. BPVEs arising from sin-
gularities of χn (n > 3) are discussed in Sec. XII A. Ex-
perimental signatures in single-layer GeS are summarized
in Sec. XIII. A summary of the BPVEs is presented in
Table I. Details of the derivations are given in the appen-
dices.

II. NOTATION

To keep the notation under control we often omit the
independent variables such as time, real space position,
or crystal momentum, specially in expressions which are
diagonal in these variables.

We use the standard notation for the nth electric po-
larization susceptibility,38 χabc...n (−ωΣωβ , ωσ, ...), where
ωβ , ωσ,... label external frequency components, abc, ...
label Cartesian components, and ωΣ = ωβ + ωσ + ... the
frequency sum. We often write χabc...n or simply χn for
brevity absorbing a free permittivity factor ε0 into the
susceptibility.

We adopt a semicolon and subscript, ‘;a’, to mean a co-
variant derivative with respect to crystal momenta with
respect to Cartesian component a = x, y, z. Unless other-
wise specified we contract the spinor index, e.g., nα→ n
in all expressions. A hat on a Hamiltonian, polariza-
tion, and current indicates an operator and a lack of a
hat means a quantum mechanical average. We do not
use hats on the creation or annihilation operators or on
the position operator. A bold font indicates a vector or
spinor.

To distinguish the injection current derived from η3

from that of η2 we often call the former 3rd-order injec-
tion current and the latter 2nd-order injection current.
Similarly, 3rd-order shift current refers to current derived
from σ3. We hope the missing details will become clear
from the context.

III. HAMILTONIAN

We start from a Hamiltonian

Ĥ0 =

∫
dr ψψψ†

(
p̂2

2m
+ V (r) + µ2

Be · (p̂× σσσ)

)
ψψψ (21)

+Ĥint, (22)

describing Bloch electrons with spin-orbit (SO) coupling,
where V (r) is the periodic potential of the ions, p̂ =

−i~∇∇∇r is the momentum operator, e(r) = −∇∇∇rV (r) is
the SO field from the nucleus, and µB = e~/2mc is the

Bohr magneton. Ĥint contains interactions with other
electrons, phonons, and impurities. We assume a mean
field theory for this term. Its effect is to renormalize
the parameters of the noninteracting theory. Momentum
relaxation is incorporated phenomenologically at the end
of the calculation. The electron charge is e = −|e|. We
define the real space spinor field as

ψψψ =

(
ψ↑
ψ↓

)
. (23)

A classical homogeneous electric field is coupled to the
Hamiltonian by minimal substitution, p̂→ p̂−eA. After
the gauge transformation

ψ̃α = ψαe
−ieA·r/~, (24)

(α is the spinor component) the Hamiltonian for the
transformed fields becomes

Ĥ(t) = Ĥ0 + ĤD(t). (25)

In what follows we omit the tilde above the transformed
fields. Ĥ0 is given by Eq. (22), and the perturbation has
the dipole form

ĤD = −e
∫
dr ψψψ† r ·E ψψψ. (26)

The electric field is given by E = −∂A/∂t. The eigen-
functions of H0 can be chosen to be Bloch wavefunc-

tions ψψψ
(β)
n (kr) = u

(β)
n (kr)e−ikr, where u

(β)
n (k, r + R) =

u
(β)
n (k, r) has the period of a lattice vector R. k is the

crystal momentum and β = 1, 2 is the spinor index. The
field operators can then be expanded in Bloch states

ψα(r) =
∑
nβk

ψ(β)
nα (kr)anβ(k), (27)

where a†nβ(k) creates a particle in a Bloch state and obeys

anticommutation rules {a†nα(k), amβ(k′)} = δnmδαβδkk′

(= δnm(2π)3δ(k − k′)/V in the thermodynamic limit).
In this basis, H0 is diagonal

Ĥ0 =
∑
nβk

~ωnβa†nβanβ , (28)

and ~ωnβ(k) is the energy of band n and spinor β. The
sum over crystal momenta is confined to the Brillouin
Zone (BZ). In the thermodynamic limit in d-dimensions
the sum becomes

∑
k → V

∫
ddk/(2π)d, where V is the

volume of the crystal. In what follows we chose the peri-
odic gauge by which Bloch wavefunctions are periodic in

reciprocal lattice vectors, ψψψ
(β)
n (k + G, r) = ψψψ

(β)
n (k, r).
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IV. POLARIZATION OPERATOR

The many-body polarization operator is well defined
in finite systems. It is given by

P̂ =
1

V

∫
dr ψψψ† er ψψψ, (29)

where P̂ = er/V is the one-body polarization operator.
Using the polarization operator Eq. 26, the dipole Hamil-
tonian becomes simply

ĤD = −V P̂ ·E. (30)

In periodic systems, HD is given in terms of Bloch oper-
ators an(k) as

P̂ =
e

V

∑
nmkk′

〈nk|r|mk′〉a†n(k)am(k′). (31)

Because the position operator is unbounded and the
Bloch wavefunctions extend to infinity, the matrix ele-
ments (restoring spinor indices)

〈nk|r|mk′〉 →〈nαk|r|mβk′〉

=

∫
dr ψψψ(α)†

n (kr)r ψψψ(β)
m (k′r), (32)

are singular. Fortunately, this singularity does not prop-
agate to observables such as the spontaneous polariza-
tion14 if we separate the singularity by the well-known
identity1,48

〈nk|r|mk′〉 = δnm[δ(k− k′)ξnn + i∇∇∇kδ(k− k′)]+

(1− δnm)δ(k− k′)ξnm. (33)

Here ξnm are the Berry connections

ξnm → ξnαmβ =

∫
dr u(α)†

n i∇∇∇k u(β)
m . (34)

The polarization operator can then be separated into in-
terband component proportional to (1 − δnm), and in-
traband component proportional to δnm. To tighten the
notation let us define the dipole matrix elements as

rnm ≡ ξξξnm n 6= m

≡ 0 otherwise. (35)

The polarization is then14

P̂ = P̂e + P̂i, (36)

where

P̂e =
e

V

∑
nmk

rnma
†
nam, (37)

P̂ bi =
ie

V

∑
nk

a†nan;b, (38)

and b = x, y, z. The intraband polarization depends on
the covariant derivative of an

an;b ≡
( ∂

∂kb
− iξbnn

)
an, (39)

which transforms as a scalar, an;b → an;be
iφβn , under local

gauge transformations ψ
(β)
n → ψ

(β)
n eiφ

(β)
n . This should be

contrasted with the transformation of ∂an/∂k
b which ac-

quires a gauge-dependent contribution and hence it can-
not represent a physical observable.

From Eq. 36, the susceptibility also naturally separates
into intraband and interband contributions as

χ = χi + χe. (40)

V. CURRENT OPERATOR

The current density is given by

Ĵ =
e

V

∫
dr ψψψ†v̂ψψψ, (41)

where v̂ = [r, Ĥ0]/i~ = p̂/m + µ2
Bσσσ × e is the electron’s

velocity. In the presence of light, the momentum changes
to p̂→ p̂+ eA, but after the gauge transformation (24),
the current has the same expression. In terms of Bloch
operators it becomes

Ĵ =
e

V

∑
nmk

vnma
†
nam, (42)

where vnm ≡ 〈nk|v̂|mk〉. The current satisfies charge
conservation and Maxwell’s equation

∇ · ĵ +
∂ρ̂

∂t
= 0 (43)

dP̂

dt
= Ĵ, (44)

where ρ̂ = eψψψ†ψψψ is the local charge density, ĵ =
(e/2)ψψψ†v̂ψψψ+(e/2)(v̂ψψψ)†ψψψ is the local charge current, and

P̂ is the polarization given by Eq. 36. Local particle con-
servation follows from the equation of motion (EOM) of ρ̂
in the standard way. Maxwell’s equation is established as
follows. From Eqs. 36 and 28 and i~dP̂/dt = [P̂i+P̂e, Ĥ],
we obtain

i
dP̂ a

dt
=

e

V

∑
nmk

(
iωn;aδnm + ωmnr

a
nm

)
a†nam (45)

where ωnm ≡ ωn−ωm. We define the covariant derivative
of the matrix element Onm ≡ 〈nk|O|mk〉 between Bloch
states n,m at a single crystal momentum by

Onm;b ≡
[
∂

∂kb
− i(ξbnn − ξbmm)

]
Onm, (46)
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which can be shown to transform as a tensor under gauge
transformations. Since the energy bands are the diag-
onal matrix elements of the Hamiltonian, their covari-
ant derivative reduces to the standard derivative ωn;a =
∂ωn/∂k

a = van = pan/m+µ2
B(σσσ×e)ann. On the right hand

side of Eq. 45, we recognize the diagonal and off-diagonal
matrix elements of the velocity. The off-diagonal matrix
elements are obtained by taking Bloch matrix elements
on both sides of v̂ = [r, Ĥ]/i~. Comparing with Eq. 42,
the Maxwell’s equation is established in the basis of Bloch
operators.

The intraband polarization operator defines the intra-
band current operator which, as shown below, connects
the semiclassical wavepacket dynamics and the BPVEs.

A. Intraband current

We define the intraband current operator as the time
derivative of the intraband polarization operator Ĵi =
dP̂i/dt. Similarly, the interband current is Ĵe = dP̂e/dt.
The total current is the sum of the two

Ĵ = Ĵi + Ĵe. (47)

Let us first calculate Ĵe from

i~
dP̂ ae
dt

= [P̂ ae , Ĥ0]− V
∑
b

[P̂ ae , P̂
b
i + P̂ be ]Eb. (48)

The first term has been computed in Eq. (45). The sec-
ond term is

[P̂ ae , P̂
b
i + P̂ be ] =

− ie
2

V 2

∑
nmk

(
ranm;b + i

∑
p

[ranpr
b
pm − rbnprapm]

)
a†nam. (49)

To make progress we now invoke a sum rule first discussed
by Sipe and coworkers.39 It derives from taking matrix
elements of

[ra, rb] = 0, (50)

and carefully separating the interband and intraband
parts of the position operator shown in Eq. 33. It is easy
to show that such procedure works for spinor matrix el-
ements too. Two cases are of interest follow. Taking
diagonal matrix elements (n = m) of Eq. 50 gives

Ωban ≡
∂ξann
∂kb

− ∂ξbnn
∂ka

= −i
∑
l

[ranlr
b
ln − rbnlraln], (51)

and off-diagonal elements (m 6= n) gives

ranm;b − rbnm;a = −i
∑
l

[ranlr
b
lm − rbnlralm]. (52)

It is customary, in analogy with electrodynamics, to de-
fine a gauge field tensor Ωabn derived from the Berry vector
potential of band n. The Berry curvature ΩΩΩn =∇∇∇× ξξξnn
is related to the gauge field by Ωabn =

∑
e εabeΩ

e
n. We

now separate the diagonal from the nondiagonal matrix
elements in Eq. 49 and use Eqs. (51,52) to obtain

−V
∑
b

[P̂ ae , P̂
b
i + P̂ be ]Eb =

ie2

V

∑
nk

(E×ΩΩΩn)aa†nan +
ie2

V

∑
nmkb

Ebrbnm;a a
†
nam.

(53)

Subtracting Ĵe (Eq. 48) from Ĵ (Eq. 45) we obtain Ĵi

Ĵai =
e

V

∑
nmk

[
ωn;aδnm−

e

~
(E×ΩΩΩn)aδnm

− e

~
E · rnm;a

]
a†nam. (54)

This is an important result. The first term is the stan-
dard group velocity (renormalized by the SOC) of an
electron wavepacket in band n, ωn;a = van. As shown
below, this term gives rise to the injection current con-
tribution to the BPVE. The second term depends on
the Berry curvature ΩΩΩn and is often called ‘anoma-
lous’ velocity. It gives rise to many topological effects
in condensed matter physics. For example, it gives
rise to the (intrinsic) anomalous Hall conductivity in
metallic ferromagnets,1,49 and, as can be easily shown50,
to the (intrinsic) nonlinear Hall effect in nonmagnetic
metals.51,52 In insulators, this term contributes to third
order in the electric field but not to second order.

The third term resembles a small dipole created by
the external electric field. Just as the standard momen-
tum derivative of Bloch energies leads to the usual group
velocity, the (covariant) derivative of the dipole energy
Unm = eE · rnm, can be thought of as a group velocity

vadip,nm = − e
~
E · rnm;a (55)

associated with a pair of wavepackets in distinct bands.
The first two integrands in Eq.(54) are gauge invariant

and are usually interpreted as velocity contributions of
electron wavepackets.53 The dipole velocity, on the other
hand, is not gauge invariant and hence is not a physical
velocity. The dipole current, on the other hand, is gauge
invariant and, in this context, the dipole velocity can
be given a the interpretation of the velocity of pairs of
wavepackets. As shown below, the dipole velocity gives
rise to the shift current contribution to the BPVE. In
summary, the intraband current unifies the well-known
semiclassical dynamics of wavepackets with the BPVEs.

Up to this point, the above formalism is valid for met-
als and insulators. We now focus on the short time
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response of insulators, discarding Fermi surface contri-
butions and momentum relaxation. By ‘short time’ we
mean shorter than momentum relaxation characteristic
time (∼100 fs) but longer than the period of light (∼2 fs).
The BPVE in this regime has been explored using ultra-
fast THz spectroscopy in various materials11,23,24,26–28.

VI. PERTURBATION THEORY

Let us define the single-particle density matrix

ρmn ≡ 〈a†nam〉, (56)

where the an operators are in the Heisenberg represen-
tation and the quantum average is over the ground state
defined in the infinite past. The ground state has all
the valence bands filled and all conduction bands empty.
Being noninteracting, the system is completely character-
ized by the single-particle density matrix. The amplitude
of the electric field is

Eb =
∑
β

Ebβe
−i(ωβ+iε)t, (57)

where β = 1, 2, ... labels the frequency components of the
field. The dipole Hamiltonian is treated as a perturba-
tion with the electric field being turned on slowly in the
infinite past so that all the transients effects have van-
ished. As usual, this is accomplished by taking the limit
ε → 0 at the end of the calculation. To find the density
matrix we first compute its EOM14

∂ρmn
∂t

+ iωmnρmn =
e

i~
∑
lb

Eb(ρmlr
b
ln − rbmlρln)

− e
~
∑
b

Ebρmn;b. (58)

The first term on the right comes from interband pro-
cesses as can be recognized by the presence of rnm. The
second term comes from the intraband processes which
involves the covariant derivative of the density matrix

ρmn;b ≡
[
∂

∂kb
− i(ξbmm − ξbnn)

]
ρmn, (59)

Only when the intraband and interband motion is con-
sidered on an equal footing, the EOM reduces to the
Boltzmann equation (in the one-band limit) with no col-
lision integral (or the standard semiclassical EOM in a
homogeneous electric field).

A. 0th order

If E = 0 the solution of Eq.(58) is simply ρ
(0)
mn = δnmfn,

where fn ≡ f(εn(k)) = 0, 1 is the Fermi occupation of
band n at zero temperature.

B. 1st order

Substituting the 0th order solution into the right-hand

side of Eq.(58) and solving for ρ
(1)
mn we obtain

ρ(1)
mn ≡

∑
bβ

ρ̄(1)bβ
mn Ebβe

−iωβt (60)

=
e

~
∑
bβ

rbmnfnm
ωmn − ωβ

Ebβe
−iωβt. (61)

where we defined fnm ≡ fn−fm. Note that to first order
only the interband processes are allowed in insulators.

C. 2nd order

To second order we have

ρ(2)
mn ≡

∑
bβ

∑
cσ

ρ̄(2)bβcσ
mn EbβE

c
σe
−iωΣt, (62)

where

ρ̄(2)bβcσ
mn =

ie

~(ωmn − ωΣ)

[
ρ̄(1)bβ
mn;c

+ i
∑
l

(
ρ̄

(1)bβ
ml rcnl − rcmlρ̄

(1)bβ
ln

)]
, (63)

and ωΣ = ωβ + ωσ. The covariante derivative of a quo-

tient in ρ̄
(1)bβ
mn;c is simply

(
ramnfnm
ωmn − ωα

)
;b

=
ramn;bfnm

ωmn − ωα
− ramnfnmωmn;b

(ωmn − ωα)2
(64)

D. nth-order

In the long-time limit, by which we mean longer than
the period of light, we expect harmonic solutions of the
form

ρ(n)
mn =

∑
a1α1,...

ρ̄(n)a1α1,..
mn Ea1

α1
· · ·Eanαne

−iω(n)
Σ t, (65)

where ω
(n)
Σ = ωα1

+ · · ·+ ωαn . Substituting into Eq.(58)

and iterating we obtain an equation for ρ̄
(n+1)
mn in terms

of ρ̄
(n)
mn. Omitting the supercripts a1α1, ... for clarity we

obtain

ρ̄(n+1)
mn =

ie

~(ωmn − ω(n+1)
Σ )

[
i
∑
l

(ρ̄
(n)
ml r

an+1

ln − ran+1

ml ρ̄
(n)
ln )

+ ρ̄(n)
mn;an+1

]
. (66)

Note that at every order in perturbation theory there
are interband (first term) and intraband (second term)
contributions. In general, the nth-order ρ(n) (n ≥ 1) has
2n−1 intraband and 2n−1 interband contributions.
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VII. PHYSICAL DIVERGENCES OF χ2

In the long-time limit, the susceptibility and conduc-
tivity response tensors to second order are defined by

P a(2) ≡
∑
bβcσ

χabc2 (−ωΣ, ωβ , ωσ)EbβE
c
βe
−iωΣt, (67)

Ja(2) ≡
∑
bβcσ

ςabc2 (−ωΣ, ωβ , ωσ)EbβE
c
βe
−iωΣt, (68)

where ωΣ = ωβ + ωσ. They are related by dP a(2)/dt =

Ja(2). χ2 can be split into interband and intraband com-
ponents χ2 = χ2e+χ2i using Eqs.(37),(54),(61), and (63).
The result is39

χabc2e

C2
= i

∑
nmk

ranmfnm
ωmn − ωΣ

(
rbmn

ωmn − ωβ

)
;c

−
∑
nlmk

ranm
ωmn − ωΣ

(
rbmlr

c
lnflm

ωml − ωβ
− rcmlr

b
lnfnl

ωln − ωβ

)
, (69)

χabc2i

C2
=

i

ω2
Σ

∑
nmk

ωnm;ar
b
nmr

c
mnfmn

ωnm − ωβ

+
1

iωΣ

∑
nmk

rcnm;ar
b
mnfnm

ωmn − ωβ
, (70)

where we defined C2 = e3/~2V . These expressions need
to be symmetrized with respect to exchange of indices
bβ ↔ cσ. We note that χ2i is easier to calculate from

J
(2)
i rather than directly from P

(2)
i .

The Taylor expansion of χ2i in Eq. 414,39 means that
χ2i diverges as ωΣ → 0 and that the injection η2 and shift
σ2 response tensors can be obtained from this expansion,
see Appendix B. Here we derive these tensors from a
slightly different perspective that exposes the analytic
properties of χ2i. Let us assume χ2i admits a Laurent
series

χ2i =
η2

z2
+
σ2

z
+ · · · (71)

where z = −iωΣ. Then η2 is given by

η2 =
1

2πi

∮
|z|=ρ

dz zχ2i, (72)

where ρ is the radius of convergence. All the frequen-
cies are parametrized in terms of ωΣ = iz. One such
parametrization is

ωβ = ω + nβωΣ (73)

ωσ = −ω + nσωΣ, (74)

where nβ + nσ = 1. The manifold where ωΣ = 0 is a line
of singular points (ωβ , ωσ) = (ω,−ω), parametrized by a
single frequency ω > 0. Symmetrizing χ2i with respect to

exchange of indices bβ ↔ cσ and using Eq. 72 we obtain
ηabc2 (0, ω,−ω) as

ηabc2 =
πe3

~2V

∑
nmk

fmn ωnm;ar
b
nmr

c
mnδ(ωnm − ω), (75)

or equivalently

ηabc2 =
πe3

2~2V

∑
nmk

fmnωnm;a(rbnmr
c
mn − rcnmrbmn)

×δ(ωnm − ω), (76)

which are both independent of the parameters nβ , nσ. In
calculating η2 we take the limit ρ → 0 before the limit
ε→ 0. This corresponds to the physical situation where
ωΣ = 0 in the infinite past. Similarly, σabc2 (0, ω,−ω) is
given by

σ2 =
1

2πi

∮
|z|=ρ

dz χ2i. (77)

An explicit integration gives

σabc2 =
iπe3

2~2V

∑
nmk

fmn(rcnm;ar
b
mn

− rcnmrbmn;a)δ(ωnm − ω).

(78)

In calculating σ2 we took nβ = nσ = 1/2 to eliminate a
resonant imaginary term which depends on nβ−nσ. This
term does not arise in the standard method14,39 because
there the prescription is to Taylor expand only the real
parts. Taking nβ = nσ means we are approaching the
line of singularities at right angle.

Eqs.(75) and (78) are the well-known injection and
shift current tensors. η2 is pure imaginary and antisym-
metric in b, c indices and hence vanishes for linear polar-
ization5. σ2, on the other hand, is real, symmetric in b, c
indices and hence vanishes for circular polarization. Fol-
lowing the standard convention,38 the injection and shift
currents are

J
a(2)
sh ≡

∑
bβcσ

σabc2 (−ωΣ, ωβ , ωσ)EbβE
c
σe
−iωΣt

d

dt
J
a(2)
inj ≡

∑
bβcσ

ηabc2 (−ωΣ, ωβ , ωσ)EbβE
c
σe
−iωΣt. (79)

Assuming a monocromatic source E(ω)e−iωt + c.c. and
performing the frequency sums keeping only dc terms
(ωΣ = 0), we obtain

J
a(2)
sh = 2

∑
bc

σabc2 (0, ω,−ω)Eb(ω)Ec(−ω) (80)

d

dt
J
a(2)
inj = 2

∑
bc

ηabc2 (0, ω,−ω)Eb(ω)Ec(−ω), (81)

where the factor of 2 is from the intrinsic permutation
symmetry of susceptibilities.38 Being quadratic in the
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fields they vanish for centrosymmetric systems. The
above expressions indicate the injection and shift cur-
rents vary as

|J(2)
inj(t)| ∼ η2t (82)

|J(2)
sh (t)| ∼ σ2 (83)

with illumination time in the absence of momentum re-
laxation and saturation effects.

A. Physical interpretation of injection and shift
current

In this section we show that the injection and shift
currents can be understood from simple semiclassical
wavepacket dynamics.

1. Injection current

The physical origin of the injection current is well
known. It arises from the asymmetry in the carrier injec-
tion rate at time-reversed momenta in the BZ5,32. To see
this, let us consider an electron wavepacket with velocity
van. The current is

Ja =
e

V

∑
nk

fnv
a
n, (84)

where fn ≡ ρ(0)
nn . The effect of an optical field is to inject

carriers into the current-carrying states in the conduction
bands. Taking a time derivative of the occupation we
obtain

d

dt
Jainj =

e

V

∑
nk

dfn
dt
van. (85)

For low intensity, the Fermi’s Golden Rule gives the one-
photon absorption rate32

dfv
dt

= −2πe2

~2

∑
c

|E(ω) · rcv|2δ(ωcv − ω)

dfc
dt

=
2πe2

~2

∑
v

|E(ω) · rcv|2δ(ωcv − ω), (86)

where c, v labels a conduction or a valence band respec-
tively. For complex fields, e.g, circularly polarized or
elliptically polarized light, the carrier injection rate at
time-reversed points ±k in the BZ is not the same

d

dt
fc(−k) 6= d

dt
fc(k), (87)

leading to a polar distribution of Bloch velocity states.
This is the microscopic origin of the injection current
and, as we show below, of many higher order injection

�m
e

space

Ex(t)

ω

Ex(t)

ρ(t)

momentum

ρ(t)

out of phase in-phase

conduction band

valence band

current

x

FIG. 1. Intuitive picture of microscopic generation of shift
current. The wiggle lines represent particle-hole oscillations
between the valence and conduction band centers of charge
(circles) which are spatially separated. The quantum inter-
ference between population oscillations ρnm(t) and dipole os-
cillations E(t) · rmn gives rise to a dc current.

currents. Substituting into Eq.(85) we obtain the injec-
tion current as

d

dt
J
a(2)
inj =

2πe3

~2V

∑
b′c′

∑
cvk

ωcv;ar
b′

vcr
c′

cvδ(ωcv − ω)

×Eb
′
(ω)Ec

′
(−ω), (88)

or

d

dt
J
a(2)
inj =

2πe3

~2V

∑
bc

∑
nmk

fmnωnm;ar
b
nmr

c
mnδ(ωnm − ω)

×Eb(ω)Ec(−ω),
(89)

which is the standard injection current shown in Eq.(81).

2. Shift current

Injection current is proportional to the momentum re-
laxation time and hence explicitly breaks time-reversal
symmetry. The shift current, on the other hand, does not
require the presence of momentum relaxation8 to break
time reversal symmetry. In this sense, shift current is
like the dissipationless Hall conductivity.54 In the quan-
tum Hall effect, time reversal symmetry is broken by a
magnetic field. How is time-reversal symmetry broken
in the shift current? It is broken at the time of photon
absorption which is an irreversible process.

Materials that exhibit shift current have valence and
conduction band centers spatially separated within the
unit cell and hence charge is shifted upon photon ab-
sorption. This process depends only on the off-diagonal
density matrix elements and hence it requires quantum
coherence as has been extensively documented. Here we
propose that shift current arises from the quantum in-
terference of two distinct microscopic processes involving
wavepacket oscillations in the presence of an electric field.
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To see this consider the dipole current in Eq.(54) to sec-
ond order

J
a(2)
dip = − e2

~V
∑
nmk

E(t) · rnm;a ρ
(1)
mn(t). (90)

The total current is the sum of dipole velocities for each
pair of wavepackets in bands n,m weighted by the prob-

ability ρ
(1)
mn of being occupied. From Eq. 61 we have

J
a(2)
dip = − e3

~2V

∑
bβcσ

∑
nmk

rbnm;ar
c
mnfnm

ωmn − ωσ
EbβE

c
σe
−iωΣt, (91)

where ωΣ = ωβ + ωσ. Symmetrizing with respect to
exchange of indices bβ ↔ cσ, assuming a monocromatic
field Eb = Eb(ω)e−iωt + c.c., and keeping only the dc
resonant terms we obtain

J
a(2)
sh =

iπe3

~2V

∑
bc

∑
nmk

fmn(rbnm;ar
c
mn + rcnm;ar

b
mn)

×δ(ωnm − ω)Eb(ω)Ec(−ω), (92)

Which is the standard expression for the shift current
in Eq. 80. This calculation suggests that the quantum
mechanical interference of population and dipole oscil-
lations is the microscopic origin of the shift current, see
Fig. 1. We note that electron oscillations between centers
of charge, alone, do not lead to a dc current. However,
the directionality of the electron oscillations combined
with an isotropic relaxation (due to, e.g., randomized
collisions) could, in principle, also lead to a dc current.

We now show how the injection and shift currents are
modified by the presence of a static electric field.

VIII. PHYSICAL DIVERGENCES OF χ3

In the long-time limit, the susceptibility and conduc-
tivity response tensors to third order are defined by

P a(3) =
∑
bβcσdδ

χabcd3 (−ωΣ, ωβ , ωσ, ωδ)E
b
βE

c
σE

d
δ e
−iωΣt,

(93)

Ja(3) =
∑
bβcσdδ

σabcd(3)(−ωΣ, ωβ , ωσ, ωδ)E
b
βE

c
σE

d
δ e
−iωΣt,

(94)

where ωΣ = ωβ+ωσ+ωδ. They are related by dP(3)/dt =

J(3). χ3 can be split into interband and intraband com-
ponents χ3 = χ3e + χ3i. An explicit calculation gives

(−iωΣ)3χ3i = ι3 + (−iωΣ)η3 + (−iωΣ)2σ3 + · · · . (95)

See Appendix D. The same expression was obtained in
Ref. 39. The difference is that we calculate the intraband

current Jai explicitly and use it to guide our physical intu-
ition about the singularities of χ3i. Eq.(95) is equivalent
to

χ3i =
ι3
z3

+
η3

z2
+
σ3

z
+ · · · (96)

where z ≡ −iωΣ. Since χ3e is regular, Eq. 96 implies that
the conductivity in the limit of no momentum relaxation
is

σ(3) =
ι3
z2

+
η3

z
+ σ3 + z(reg), (97)

where reg represents the remaining regular terms (as z →
0). The residues ι3, η3 and σ3 define various current
contributions as follows. The limit

limz→0z
2σ(3) = ι3, (98)

or equivalently

limωΣ→0
d2

dt2
Ja(3) ≡ d2

dt2
J
a(3)
jerk

=
∑
bβcσdδ

ιabcd3 (0, ωβ , ωσ, ωδ)E
b
βE

c
βE

d
δ ,

(99)

subject to ωΣ = 0 defines the jerk current. Similarly the
limits

limz→0z
[
σ(3) − ι3

z2

]
= η3, (100)

limz→0

[
σ(3) − ι3

z2
− η3

z

]
= σ3, (101)

define higher order injection and shift currents (respec-
tively) in the presence of a static electric field:

d

dt
J
a(3)
inj ≡

∑
bβcσdδ

ηabcd3 (0, ωβ , ωσ, ωδ)E
b
βE

c
βE

d
δ , (102)

J
a(3)
sh ≡

∑
bβcσdδ

σabcd3 (0, ωβ , ωσ, ωδ)E
b
βE

c
βE

d
δ , (103)

subject to ωΣ = 0. We now analyze each of these currents
in detail.

IX. JERK CURRENT

A. Hydrodynamic model

In an isotropic system the current is

Jaclas = enva, (104)
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where n is the carrier density. Taking two derivatives we
obtain

d2

dt2
Jaclas = e

d2n

dt2
va + 2e

dn

dt

dva

dt
+ en

d2va

dt2
. (105)

If the rate of carrier injection dn/dt = g and acceleration
eEa0/m

∗ are constant in time then

d2

dt2
Jaclas =

2e2gEa0
m∗

= constant, (106)

leads to a current varying quadratically with illumination
time. This effect has been extensively studied in the con-
text of the THz generation in bias semiconductor anten-
nas using semiclassical kinetic equations, see for example
Ref. 46. However, the static field modifies the carrier in-
jection rate giving rise to novel contributions. The sum
of all contributions is called the jerk current. We now
discuss this effect.

B. Susceptibility divergence

We find ι3 from the limit limωΣ→0(−iωΣ)3χ3i = ι3.
The details of the derivation are outlined in Appendix D.
ιabcd3 (0, ω,−ω, 0) is given by40

ιabcd3 =
2πe4

6~3V

∑
nmk

fmn
[
2ωnm;adr

b
nmr

c
mn

+ ωnm;a(rbnmr
c
mn);d

]
δ(ωnm − ω), (107)

where ωnm;ad = ∂2ωnm/∂k
d∂ka = ∂2ωn/∂k

d∂ka −
∂2ωm/∂k

d∂ka.
Assuming time-reversal symmetry in the ground

state we can choose rnm(−k) = rmn(k) to show
that ι3 is real, symmetric in the b, c indices, and
satisfies [ιabcd3 (0, ω,−ω, 0)]∗ = ιacbd3 (0, ω,−ω, 0) =
ιabcd3 (0,−ω, ω, 0). From Eq. 99, we see that ι3 controls
the current

d2

dt2
J
a(3)
jerk =

∑
bβcγdδ

ιabcd3 (−ωΣ, ωβ , ωγ , ωδ)E
b
βE

c
γE

d
δ e
−iωΣt,

(108)

subject to ωΣ = 0. Performing the sum over frequencies
we obtain

d2

dt2
J
a(3)
jerk = 6

∑
bcd

ιabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0 ,

(109)

where Ed0 is a static external field. The factor of 6 = 3!
is the number of pair-wise exchanges of field indices
(bβ), (cσ), (dδ).38 The jerk current vanishes for frequen-
cies smaller than the energy band gap. Eq.(109) indicates
that the jerk current grows quadratically with illumina-
tion time

|J(3)
jerk(t)| ∼ ι3t2, (110)

in the absence of momentum relaxation and saturation ef-
fects. In analogy with second derivative of velocity which
is called ’jerk’ we dub it jerk current. This should be
compared and contrasted with injection current which
grows linearly with illumination time (Eq. 82) and shift
current which is constant (Eq. 83).

Two terms contribute to the jerk current. The first de-
pends on the curvature difference of the bands involved,
or equivalently on inverse mass differences. This term is
related to the stiffness of the lattice and can also be inter-
preted as the electron acceleration in the static electric
field. The second contribution depends on the change of
transition probabilities due to the static field.

C. Materials

In general, the 81 components of ι3 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 4̄3m point group, with 21 nonzero
components and 4 independent components.38 However,
ι3 is symmetric under exchange of bc which reduces the
number of independent component to 3. In 2D materi-
als the number of components of ι3 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case ι3 has only six independent components.

In general, linear, circular or unpolarized light will pro-
duce jerk current along the direction of the static field.
Current transverse to the static field may not be gener-
ated with unpolarized or circular polarization.

D. Physical interpretation of jerk current

The terms in Eq.(107) are hard to interpret physically.
We now rederive the same result in a physically more
transparent way using a phenomenological model.40 Con-
sider an electron wavepacket in band n subject to a static
electric field Ed0 . The electron’s wavevector obeys

~
dk

dt
= −e∂A0

∂t
, (111)

where the vector potential A0 gives the static electric
field Ed0 = −∂Ad0/∂t. The Bloch velocity of the electron
vn(k − eA0/~) can be expanded in powers of A0. The
time derivatives of this expression have a simple form
as powers of the field. For example, the 1st and 2nd
derivatives are given by

dvan
dt

=
e

~
∑
d

ωn;adE
d
0 (112)

d2van
dt2

=
e2

~2

∑
de

ωn;adeE
d
0E

e
0 . (113)
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Now, taking two time derivatives of Eq.(84)

d2Ja

dt2
=

e

V

∑
nk

(
d2fn
dt2

van + 2
dfn
dt

dvan
dt

+ fn
d2van
dt2

)
.

(114)

and using Eq.(112), and (86) we have (to linear order in
Ed0 )

d2

dt2
J
a(3)
jerk =

2πe4

~3V

∑
bc′d

∑
cvk

2ωcv;adr
b
vcr

c′

cvδ(ωcv − ω)Eb(ω)Ec
′
(−ω)Ed0

+
2πe4

~3V

∑
bc′d

∑
cvk

ωcv;a
∂(rbvcr

c′

cv)

∂kd
δ(ωcv − ω)

× Eb(ω)Ec
′
(−ω)Ed0 . (115)

Since ω > 0 we can extend the sums over to all bands and
recover Eq.(109). An important point of this calculation
is to show that the physical origin of the first term in
Eq.(107) comes from the acceleration of carriers in the
static electric field. The second contribution comes from
changes in the carrier injection rate, d2fn/dt

2 which is
missing in the standard semiclassical approach.46

E. Jerk Hall current

In an isotropic medium, charge carriers move par-
allel to the electric field. The jerk current, on the
other hand, can flow transverse to the static electric
field in a rotationally symmetric medium. To see this,
let us assume a sample biased in the x-direction and
compute the current in the y-direction while an opti-
cal field E = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c., with
Ea(ω) = |Ea(ω)|e−iφa , is incident perpendicular to the
sample surface which defines the xy-plane. The current
in the y−direction is

d2

dt2
J
y(3)
jerk = ςyx3jHE

x
0 , (116)

where the effective jerk Hall (jH) conductivity is

ςyx3jH ≡ 6ιyxxx3 |Ex(ω)|2 + 6ιyyyx3 |Ey(ω)|2

+ 12ιyyxx3 |Ex(ω)||Ey(ω)| cos(φx − φy). (117)

In a simple relaxation time approximation jerk conduc-
tivity (see Eq. 97) is cut off by a relaxation time τ1 as

ι3
(−iωΣ)2

→ ι3

( 1
τ1
− iωΣ)2

(118)

Hence, the jerk current is

J
y(3)
jerk =

τ2
1

(1− iωΣτ1)2
ςyx3jHE

x
0 , (119)
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FIG. 2. (a) Band structure of single-layer GeS13,55 indicating
transitions near the band edge (red arrow). (b) crystal struc-
ture of single-layer GeS, (c) two-dimensional, two-band tight
binding model of single-layer GeS which reproduces the non-
linear optical response of near the band edge. The hopping
parameters considered are indicated. See main text for more
details.

where τ1 is the relaxation time of the diagonal density
matrix elements. In the dc limit the current is propor-
tional to the square of the momentum relaxation. For
frequencies larger than the Drude peak but smaller than
interband transitions the current is independent of the
scattering time and it is a measure of the geometry of
the Bloch wavefunctions.

The dependence on light’s polarization as cos(φx−φy)
and the square of the momentum relaxation are unique
characteristics of the jerk current which can be used to
distinguish it from η3 and σ3.

The symmetries of the crystal can also constrain the
contributions to the jerk current, e.g., if the crystal has
mirror symmetry y → −y the first and second terms
in Eq. 117 vanish. In addition, for circular polarization



13

2.0 2.5 3.0

0

2

4
ι 3

ab
cd

 (X
10

16
 A

m
/V

3 s
2 ) xxxx

xxyy (x10)

xyyx
yxxy

yyxx (x10)
yyyy

Photon energy (eV)
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The tensor vanishes for photon energies lower than the energy
band gap (∼ 1.9 eV13,56). The strongest component is along
the polar axis xxxx. The components yyxx, xxyy, describe a
Hall-like response and are an order of magnitude smaller. For
added clarity, these components are multiplied by 10 in the
figure.

φx − φy = ±π/2 the last term vanishes. An estimate of
the jerk current in realistic materials is given next.

F. Example: Jerk current in single-layer GeS

To get a sense of the magnitude of the jerk current in
real materials we now calculate it for single-layer GeS.
Single-layer GeS is of great interest for its predicted in-
plane spontaneous ferroelectric polarization, suitable en-
ergy band gap in the visible spectrum (∼ 1.9 eV) and
large nonlinear optical response11,13,57,58.

We consider a 2D, two-band tight-binding model of
single-layer GeS shown in Fig. 2c. The details of the
model are presented in Appendix G. The model has been
shown to reproduce the ab-initio shift and injection cur-
rent of single-layer GeS near the band edge,13,56,59 specif-
ically in the energy range 1.9-2.14 eV. Since the model
is 2D, we divide the model’s 2D current by the thickness
of the GeS layer (d ∼ 2.56Å) to obtain an effective bulk
value.

Because of the mirror symmetry y → −y of the model
(and of the crystal), only six tensor component are inde-
pendent. As seen in Fig. 3, the strongest is along the po-
lar (chosen along x-axis) of magnitude ∼ 1016 Am/V3s2.
The current transverse to the static electric field, de-
scribed by the component ιyyxx3 (see Eq. 116), is an order
of magnitude smaller.

The sample is rectangular of dimensions L × L and
thickness d = 2.56 Å and is biased by an external battery
of voltage V , as seen Fig. 2c. Let us assume the optical
field is incident perpendicularly to the plane of single-
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FIG. 4. Total jerk current induced by an optical field inci-
dent perpendicular to the plane of single-layer GeS. The inset
shows the top view of the setup.

layer GeS as

E(t) = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c. (120)

E0 = x̂Ex0 . (121)

where Ex(ω) = E0(ω) cos θe−iφx , Ey(ω) =
E0(ω) sin θe−iφy , θ is the angle with the x-axis.
The longitudinal and transverse currents are

I
x(3)
jerk = 6Aτ2

1 (ιxxxx3 |Ex(ω)|2 + ιxyyx3 |Ey(ω)|2)Ex0 , (123)

I
y(3)
jerk = 12Aτ2

1 ι
yyxx
3 |Ex(ω)||Ey(ω)| cos(φx − φy)Ex0 ,

(124)

where A = Ld is the transverse area of the sample. Note
that the current along the polar (x)-axis is independent
of the polarization of light. Hence, the polar component
of the current will not vanish even for unpolarized light.
The transverse component of the current, on the other
hand, vanishes for circularly polarized (and unpolarized)
light and is maximum for linearly polarized light.

The optical field is linearly polarized (φx = φy) at
an angle θ with the polar axis as shown in the inset to
Fig. 4a. The figure shows the total current induced as
a function of θ. We assumed semiconductor parameters
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ηabcd3 (0, ω,−ω, 0) = − πe4

6~3V

∑
nmk

fmn

(
Ωadnm[rbnm, r

c
mn] + i[rbnm, r

c
mn;a];d − 2iωnm;a

[( rdmn
ωnm

)
;b

, rcnm
])
δ(ωnm − ω)

− πe4

3~3V

∑
nmlk

fmnωnm;a
rdln
ωnl

[rbnm, r
c
ml]D−(ωnm, ω). (122)

typically found in the laboratory: L = 100µm, V = 1V,
Ex0 = V/L = 104 V/m, amplitude of the optical field
E0(t) = 105 V/m, and τ1 = 100 fs47.

First note that the magnitude of the current is of the
order of pA-nA which is within experimental reach. Ix is
maximum when the polarization of light coincides with
the polar axis and decreases monotonically as the polar-
ization turns away towards the y-axis. Iy, on the other
hand, is nonmonotonic; it is zero when the light polariza-
tion and the polar axis coincide, then rises to a maximum
at 450 and then decreases to zero for light polarized per-
pendicular to the polar axis.

In ultrafast pulsed experiments, the THz radiation
emitted by the currents can be analyzed to study the
nonlinear optical response of the system without need of
mechanical contact. In this scenario the system does no
have time to decay and the response is determined by
the laser pulse characteristics not by the momentum dis-
sipation mechanism. The above results indicate that the
crystal structure, the geometry of the setup and light po-
larization can be used to uniquely characterize the jerk
current tensor components. Injection and shift currents
has been reported in THz spectroscopy in various mate-
rials24,27,28,60–62.

X. 3RD ORDER INJECTION CURRENT

An explicit calculation of η3 is given in Appendix E.
The result is Eq. 122. We defined Ωadnm ≡ Ωadn −Ωadm as the
difference of Berry vector potentials. The Berry potential
is related to the Berry curvature by Ωadn =

∑
e εadeΩ

e
n.

The covariant derivative of rdmn/ωnm is with respect
to the gauge dependent rdmn (see for example Eq. D6).
The product rbnmr

c
mn;a is gauge invariant and hence its

covariant derivative reduces to the standard derivative (
see for example Eq. B1). To simplify notation we also
defined

[O(b), P (c)] ≡ O(b)P (c)−O(c)P (b) (125)

D±(ωnm, ω) ≡ δ(ωnm − ω)± δ(ωnm + ω), (126)

where O,P are arbitrary matrix elements which depend
on the cartesian indices b, c. For example

[rbnm, r
c
mn] ≡ rbnmrcmn − rcnmrdmn. (127)

One can see that η3 in Eq. 122 is manifestly anti-
symmetric under exchange of b, c. In addition, it is

easy to show that ηabcd3 (0, ω,−ω, 0) is pure imaginary
and satisfies [ηabcd3 (0, ω,−ω, 0)]∗ = −ηabcd3 (0, ω,−ω, 0) =
ηabcd3 (0,−ω, ω, 0). Similar to η2 the antisymmetry in the
b, c indices implies that η3 vanishes for linearly polarized
light. η3 represents the current

d

dt
J
a(3)
3i = 6

∑
bcd

ηabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0 ,

(128)

which varies as

|J(3)
3i | ∼ η3t, (129)

in the absence of momentum relaxation and saturation
effects.

A. Materials

In general, the 81 components of η3 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 4̄3m point group, with 21 nonzero
components and 4 independent components.38 However,
η3 is antisymmetric under exchange of b, c which reduces
the number of independent components to 1. In 2D ma-
terials the number of components of η3 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case η3 has only 2 independent components.

In general, circular or unpolarized light will produce
3rd order injection current along the direction of the
static field. Current transverse to the static field may
not be generated with unpolarized or linear polarization.

B. Physical interpretation of 3rd order injection
current

The presence of a static field gives rise to new physical
processes which we now describe in detail.
1st term .- The first term in Eq.(122) arises from the

asymmetric injection of carriers in anomalous velocity
states. To see this, let us consider an electron wavepacket
in band n subject to a static field Ed0 . The static field
induces an anomalous contribution to the electron’s ve-
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locity which generates a current given by (Eq. 54)

J3i,1 = − e2

~V
∑
nk

fnE0 ×ΩΩΩn, (130)

where we used fn = ρ
(0)
nn . Taking a time derivative of the

occupations we obtain (to 2nd order in the optical field
and 1st in the static field)

d

dt
J3i,1 = − e2

~V
∑
nk

dfn
dt

E0 ×ΩΩΩn. (131)

This expression means that when the optical field is
turned on electrons will be excited from the valence into
anomalous conduction states. To lowest order in the in-
tensity, Fermi’s Golden rule gives the one-photon injec-
tion rate shown in Eq.(86). Using Eqs.(86) we obtain

d

dt
J
a(3)
3i,1 = −2πe4

~3

∑
b′c′d

∑
vck

Ωadcv r
b′

cvr
c′

vcδ(ωcv − ω)×

Eb
′
(ω)Ec

′
(−ω)Ed0 .

(132)

Using the fact that ω > 0 we can extend the sum to all
bands and recover the 1st term in Eq. 122.

2nd term .- In the presence of a static field a
wavepacket drifts in the BZ giving rise to a current. Sim-
ilarly, a dipole of two wavepackets drift in the presence of
a static field giving rise to a current. To see this, consider
the dipole velocity contribution to the current in Eq. 91.
Writing explicitly the small imaginary part of the exter-
nal frequencies and taking the resonant we obtain

J
a(2)
3i,2 =− iπe3

~2V

∑
bc

∑
nmk

fnm
[
rbnm;ar

c
mnδ(ωmn + ω)

+ rcnm;ar
b
mnδ(ωmn − ω)

]
Eb(ω)Ec(−ω). (133)
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Taking a time derivative of the dipole matrix elements,
exchanging n,m indices and making k→ −k, we obtain

d

dt
J
a(3)
3i,2 =− iπe4

~3V

∑
bcd

∑
nmk

fnm
∂

∂kd
(
rbnm;ar

c
mn

− rcnm;ar
b
mn

)
δ(ωnm − ω)Eb(ω)Ec(−ω)Ed0 ,

(134)

which can be recognized as the 2nd term in Eq. 122.
3rd term .- The 3rd term takes into account the

change of the electron distribution due to the static field.
To see this, let us consider the current of an electron
wavepacket in band n to third order in the electric field.
From Eq. 54

J
a(3)
3i,3 =

e

V

∑
nk

vanρ
(3)
nn . (135)

Taking a time derivative of the density matrix gives

d

dt
J
a(3)
3i,3 =

e

V

∑
nk

van
∂ρ

(3)
nn

∂t
. (136)

From Eq. 58 the time derivative of the density matrix is

∂ρ
(3)
nn

∂t
=

e

i~
∑
bm

Eb(ρ(2)
nmr

b
mn − rbnmρ(2)

mn)− e

~
∑
b

Ebρ
(2)
nn;b.

(137)
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Now consider the intraband part of the second order den-
sity matrix obtained from Eq. 63

ρ
(2)
nm,intra =

ie

~
∑
bβcσ

ρ̄
(1)bβ
nm;c

ωmn − ωΣ
EbβE

c
σe
−iωΣt, (138)

where ωΣ = ωβ + ωσ. The first order density matrix in
the presence of a static field is (see Eq. 61)

ρ̄(1)d0
nm =

e

~
fmn

rdnm
ωnm

. (139)

Substituting the above equations into Eq. 137 and taking
the resonant part we recover the 3rd term in Eq. 122. The
factor of two in Eq. 122 is due to two possible choices for
the static electric field.

4th term .- This contribution arises from electrons ex-
cited from the valence to conduction bands via an inter-
mediate state l. These new states are generated by the
presence of static field.

C. 3rd order injection Hall current

Let us assume a static field is in the x-direction and
compute the current in the y-direction. An optical field
of the form E = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c. is
incident perpendicular to the sample surface which we
take to define the xy-plane. From Eq. 128 the current
transverse to the static field is

d

dt
J
y(3)
3iH = ςyx3iHE

x
0 (141)

where Ea(ω) = |Ea(ω)|e−iφa and the Hall coefficient is

ςyx3iH ≡ 12iηyyxx3 |Ex(ω)||Ey(ω)| sin(φx − φy). (142)

Similar to η2, η3 vanishes for linear polarization φx = φy
and is maximum for circularly polarized light. In a simple
relaxation time approximation, the dc singularity in the
conductivity (see Eq. 97) is cut-off by a phenomenological
relaxation time τ1 as

η3

−iωΣ
→ η3

1
τ1
− iωΣ

. (143)

The current is

J
y(3)
3iH =

τ1
1− iωΣτ1

ςyx3iHE
x
0 , (144)

If ωΣ = 0, the current is proportional to τ1 the relaxation
of the diagonal density matrix elements. For frequencies
larger than the Drude peak ωΣτ1 � 1 but smaller than
interband transitions the current is independent of the
scattering time and hence is a measure of the geometry
of the Bloch wavefunctions.

D. Example: 3rd order injection current in
single-layer GeS

To get a sense of the η3-injection current in real mate-
rials we now calculate it for single-layer GeS. We use the
same 2-band, 2D tight-binding model of single-layer GeS
and same sample geometry as in Sec. IX F.

Out of the 16 tensor components the antisymmetry in
the b, c indices and the mirror symmetry y → −y of the
model leaves only two independent components, yyxx
and xxyy. This means that the current flows only per-
pendicular to the static electric.

These tensor components are shown in Fig. 5. The
2nd term in η3 is the dominant term followed by the 3rd,
and the 1st which are one and two orders of magnitude
smaller respectively.

For concretes the optical field has circular polarization
and the static field is along the polar (x-) axis of the
sample as

E(t) = x̂E0(ω)e−iωt + ŷE0(ω)e−iωt + c.c., (145)

E0 = x̂Ex0 , or ŷEy0 , (146)

where φx − φy = π/2. The transverse currents are given
by

I
x(3)
3i = 12Aτ1iη

xxyy
3 |Ex(ω)||Ey(ω)|Ex0 sin(φy − φx)

(147)

I
y(3)
3i = 12Aτ1iη

yyxx
3 |Ex(ω)||Ey(ω)|Ex0 sin(φx − φy)

(148)

where A = Ld is the transverse area of the sample. Note
that the current vanishes for linearly polarized light but
is maximum for circular polarization.

The calculated total induced current is shown in Fig. 6.
The static field is shown in two configurations, namely,
parallel and perpendicular to the polar axis of single-layer
GeS. In both configurations the chirality of light is the
same. The induced current is of the order of pA which is
within experimental reach.

XI. 3RD ORDER SHIFT CURRENT

Explicit calculation of σ3 gives Eq. 140. For details see
Appendix F. In Eq. 140 we defined the anticummutator
with respect to the b, c indices only as

{O(b), P (c)} ≡ O(b)P (c) +O(c)P (b) (149)

where O,P are arbitrary matrix elements For example

{
(
rdmn
ωnm

)
;c

, rbnm;a} ≡
(
rdmn
ωnm

)
;c

rbnm;a +

(
rdmn
ωnm

)
;b

rcnm;a.

(150)
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σabcd3 (0, ω,−ω, 0) =
πe4

6~3V

∑
nmk

fmn
[
{
(
rdmn
ωnm

)
;c

, rbnm;a} − {
(
rdmn;a

ωnm

)
;c

, rbnm}
]
δ(ωnm − ω)

− iπe4

6~3V

∑
nmlk

fln
ωmn

[
{rcnl, (rdmnrblm);a} − rdmn{rcnl;a, rblm}

]
D+(ωnl, ω). (140)

D+ is defined in Eq. 126. Clearly, σ3 is symmet-
ric under exchange of b, c, pure real, and satisfies
σabcd3 (0, ω,−ω, 0) = σacbd3 (0,−ω, ω, 0). The tensor de-
fines the nonlinear current

J
a(3)
sh = 6

∑
bcd

σabcd3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed0 , (151)

which, in the absence of momentum relaxation and sat-
uration effects is constant with illumination time. Note
that this calculation assumes quantum coherance in the
solid.

A. Materials

In general, the 81 components of σ3 are finite in both
centrosymmetric and noncentrosymmetry crystal struc-
tures. In practice, the symmetries of the 32 crystal classes
greatly reduce the number of independent components.
For example, GaAs has 4̄3m point group, with 21 nonzero
components and 4 independent components38. However,
σ3 is antisymmetric under exchange of b, c which reduces
the number of independent components to 3. In 2D ma-
terials the number of components of σ3 is also small. For
example, single-layer GeS has mm2 point group which
contains a mirror-plane symmetry and a 2-fold axis. In
this case σ3 has only 6 independent components.

In general, linear, circular or unpolarized light will pro-
duce 3rd order shift current along the direction of the
static field. Current transverse to the static field may
not be generated with unpolarized or circular polariza-
tion.

B. Physical interpretation of the 3rd order shift
current

1st term .- The first term in σ3 arises from the quan-
tum interference of dipole and band coherence oscilla-
tions. To see this, note that an oscillating external field
creates an oscillating dipole which couples two distinct
bands. The dipole velocity is given by Eq. 55. If the
occupations of the bands oscillate 1800 out of phase with
respect to the dipole oscillations a dc (dipole) current can
be established. The process is mediated by the intraband
part of the (second order) density matrix as

J
a(3)
3sh,1 = − e2

~V
∑
nmk

E(t) · rnm;aρ
(2)
mn,i(t), (152)

where ρ
(2)
mn,i is the first term in Eq. 63 which clearly rep-

resents the intraband part of ρ
(2)
mn. Setting one of the

fields in ρ(2) to be static (say Edδ → Ed0 ) we have

J
a(3)
3sh,1 = − ie4

~3V

∑
bβcσd

∑
nmk

rbnm;a

ωmn − ωσ

(
rdmnfnm
ωmn

)
;c

×EbβEcσEd0e−iωΣt

(153)

where ωΣ = ωβ +ωσ. Symmetrizing with respect electric
field indices, substituting ωβ = ±ω and ωσ = ∓ω, and
keeping only resonant terms we recover the 1st term in
Eq. 140.
2nd term .- The second term in σ3 arises from the

quantum interference band coherence oscillations only.
To see this, note that a static external field creates a
static dipole which couples two distinct bands. The static
dipole together with a static occupation of the bands cre-
ate a dc (dipole) current. This process is also mediated
by the (static) intraband part of the (second order) den-
sity matrix as

J
a(3)
3sh,2 = − e2

~V
∑
d

∑
nmk

Ed0r
d
nm;aρ

(2)
mn,i. (154)

Following the same procedure as above and after an in-
tegration by parts it is easy to show that we recover the
2nd term in Eq. 140.
3rd and 4th term .- The 3rd and 4th terms in σ3 are

not easily derived from a simple model. These processes
involve virtual transitions to intermediate bands created
by the static external field and involve the interband part
of the second order density matrix.

C. 3rd order shift Hall current

Let us assume a static field is in the x-direction and
compute the shift current in the y-direction. An optical
field of the form E = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c.
is incident perpendicular to the sample surface which we
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FIG. 7. Shift current response tensor σabcd3 of single-layer GeS
near the band edges. The model parameters are the same as
in Sec. IX F. The largest response is along the polarization
axis x. The transverse response governed by xxyy and yyxx
is an order of magnitude smaller.

take as the xy-plane. The current transverse to the static
field is

J
y(3)
3shH = ςyx3shHE

x
0 (155)

where Ea(ω) = |Ea(ω)|e−iφa and the effective Hall con-
ductivity is

ςyx3shH ≡ 12σyyxx3 |Ex(ω)||Ey(ω)| cos(φx − φy). (156)

Similar to σ2, σ3 vanishes for circular polarization and
is maximum for linear polarization φx = φy at 450 with
respect to the x-axis. Contrary to injection current, the
shift current does not have a Drude-like dc divergence
but rather gives a finite contribution in this limit. Hence
we expect that while quantum coherence is maintained
in the solid the current is given by the above equation.

D. Example: 3rd order shift current in single-layer
GeS

To get a sense of the 3rd order shift current in real
materials we now calculate it for single-layer GeS. We
use the same setup and tight-binding model of single-
layer GeS as in Sec. IX F.

Because of the mirror symmetry y → −y of the model,
only six tensor components are independent. As seen in
Fig. 7, the strongest is along the polar axis of magnitude
∼ 5 × 10−15 Am/V3. The component transverse to the

static electric field σyyxx3 (see Sec. XI C) is an order of
magnitude smaller.

The sample is rectangular of dimensions L × L and
thickness d = 2.56 Å and is biased by an external battery
of voltage V as seen in Fig. 2c. For concreteness let us
assume the optical field is incident perpendicularly to the
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edge. (a) shows Ix and (b) Iy. Light is linearly polarized at
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plane of single-layer GeS as

E(t) = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c., (157)

E0 = x̂Ex0 . (158)

The longitudinal and transverse currents are

I
x(3)
sh = 6A(σxxxx3 |Ex(ω)|2 + σxyyx3 |Ey(ω)|2)Ex0 (159)

I
y(3)
sh = 6Aσyyxx3 |Ex(ω)||Ey(ω)| cos(φx − φy)Ex0 (160)

where Ex(ω) = E0(ω) cos θe−iφx , Ey(ω) =
E0(ω) sin θe−iφy , θ is the angle with the x-axis,
and A = Ld is the transverse area of the sample. Note
that the current along the polar x-axis is independent
of the polarization of light and hence, it will not vanish
even for unpolarized light. The transverse component of
the current, on the other hand, vanishes for circularly
polarized (and unpolarized) light and is maximum for
linearly polarized light.

We chose the optical field linearly polarized (φx = φy)
at an angle θ with the polar axis as shown in the inset
to Fig. 8. The figure shows the total current along x and
y-axis induced as a function of θ. We assumed the same
semiconductor parameters as before, e.g., L = 100µm,
V = 1V, Ex0 = V/L = 104 V/m, amplitude of the optical
field E0(t) = 105 V/m, and τ1 = 100 fs.

First note that the magnitude of the currents is of the
order of pA-fA. Ix is maximum when the polarization of
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light coincides with the polar axis and decreases mono-
tonically as the polarization turns away towards the y-
axis. Iy, on the other hand, is nonmonotonic: it is zero
when the polarization and the polar axis coincide, then
rises to a maximum at 450 and then decreases to zero
again for light polarized perpendicular to the polar axis.

XII. GENERALIZATIONS

A. Snap current

By power counting it is easy to see that the leading di-
vergence of χ4 is of order ω−4

Σ , and that it occurs when all
but two of the external frequencies are zero. Proceeding
as before we calculate the corresponding response tensor
ςabcde4 (0, ω,−ω, 0, 0). Taking three derivatives of Eq. 84
and using Eqs. 86,112, and 113 we obtain

ςabcde4 =
2πe5

4!~4V

∑
nmk

fmn
[
3ωnm;ader

b
nmr

c
mn

+ 3ωnm;ad(r
b
nmr

c
mn);e

+ ωnm;a(rbnmr
c
mn);de

]
δ(ωnm − ω). (161)

The tensor is symmetric in the b, c indices and represents
a third derivative of the nonlinear current

d3J
a(4)
sp

dt3
= 4!

∑
bcde

ςabcde4 (0, ω,−ω, 0, 0)Eb(ω)Ec(−ω)Ed0E
e
0 ,

(162)

where Ed0 , E
e
0 represent static fields. By analogy with a

particle’s third derivative of its velocity we dub it snap
current. The current grows as ∼ t3 with illumination
time in the absence of momentum relaxation and satura-
tion effects. Hence, it is proportional the third power of
the relaxation time τ1

Ja(4)
sp = τ3

1 4!
∑
bcde

ςabcde4 Eb(ω)Ec(−ω)Ed0E
e
0 . (163)

Note that the snap current could be thought of a sec-
ond order correction of the dark conductivity due to the
presence of the optical field.

B. Higher order singularities

One can show that the leading physical divergence of
χni represents, in general, the n− 1-th time derivative of
a current and that these occur when all but two of the
external frequencies are set to zero. They are obtained

from the leading term in the Taylor expansions

(−iωΣ)4χ3i = ι3 + (−iωΣ)η3 + (−iωΣ)2σ3 + ... (164)

(−iωΣ)4χ4i = ς4 + (−iωΣ)ι4 + (−iωΣ)2η4 + ... (165)

(−iωΣ)5χ5i = κ5 + (−iωΣ)ς5 + (−iωΣ)2ι5 + · · · (166)

(−iωΣ)6χ6i = $6 + (−iωΣ)κ6 + (−iωΣ)2ς6 + · · · .
(167)

...

These higher order analogs of the injection current are
named by analogy to a particle’s time derivatives of its
velocity, e.g.,jerk, snap, crackle, pop,...,etc. and denote
them by, ι, ς, κ, $,.. respectively. Their physical origin
is similar to the injection current namely the rate of car-
rier injection at current carrying states at time-reserved
points in the BZ is asymmetric creating a polar distribu-
tion. The charges are then accelerated by the external
field.

An alternative formulation is the Laurent series for χni
(or χn since χne ir regular) as

χni =

∞∑
l=−n

alz
l (168)

where z = −iωΣ and al = 0 for frequencies less than the
gap. The residues a−1 = η, a−2 = σ, a−3 = ι, etc., are
formally given by

al =
1

2πi

∮
|z|=ρ

χni dz

zl+1
, (169)

ρ is the radius of convergence of the 1/z series. In these
calculations the limit ρ → 0 is taken before the limit
ε→ 0.

In general, if more than two frequencies are dis-
tinct32,39,63 (but ωΣ = 0), the series starts from l > −n.

XIII. EXPERIMENTAL SIGNATURES

In real materials, the measured current will be limited
by momentum dissipation mechanisms due to collisions
with other electrons, phonons, or impurities. For weak
disordered insulators we expect the dc divergence of the
conductivity in Eq. 97 will be cut-off by a relaxation time
constant as

σ(3) =
ι3

( 1
τ1
− iωΣ)2

+
η3

1
τ1
− iωΣ

+ σ3 + · · · (170)

Note that σ3 relies on quantum coherence and hence its
current will decay on the coherence time scale of the solid
τ2. Calculation of τ2 requires a microscopic model of
dissipation which will be presented elsewhere.

We have estimated the current of each contribution
assuming that we can detect its signatures separately.
This is a challenge in itself as is well documented in the
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TABLE II. Summary of nonlinear Hall-like responses of single-layer GeS. A static electric field is present along the x−axis.
In addition, an optical electric field is incident perpendicular to the plane of the sample which defines the xy-plane. The Hall
current is in the y-axis. The sample geometry is shown in Fig. 2c and the details are in Sec. IX F. Polar axis of single-layer
GeS defines the x-axis. I ≡ inversion symmetry, no I ≡ no inversion symmetry. Order of magnitude of current are given for
frequencies near the band edge. Ix is the current along the x-axis. ∗For comparison, longitudinal current is given for η2 and
σ2 for the same parameters. w.r.t. stands for with respect to.

Current Momentum Dependence I vs. Hall current Hall current Hall current Sign of Hall current Ref.
Iy relaxation on Ex0 no I dependence on vanishes for maximum for Ix, Iy magnitude∗ Eq.

polarization polarization polarization

ι3-jerk τ2
1 linear I, no I cos(φx − φy) circular, linear at 450 +,- 10−8 A 124

linear E(t) ‖ x, y w.r.t. x-axis
η3-
injection

τ1 linear I, no I sin(φx − φy) linear circular +,+ 10−12 A 148

σ3-shift τ2 linear I, no I cos(φx − φy) circular, linear at 450 +,+ 10−14 A 160

linear E(t) ‖ x, y w.r.t. x-axis
η2-
injection

τ1 No no I 10−6 A∗

σ2-shift τ2 No no I 10−8 A∗

literature31. Here we propose to use ultrafast THz spec-
troscopy together with the symmetry of the crystal, the
geometry of the setup and the polarization of light to
isolate these components. In ultrafast experiments, mo-
mentum relaxation plays a minor role and the magnitude
of the current is given by the parameters of the lasers.
For example the shift current magnitude follows the enve-
lope of the pulse24–27. Recently, the 2nd order injection,
shift or both currents have been reported via THz ra-
diation24–28,60–62. In Table II we present a summary of
the jerk, injection and shift Hall current component for a
model of single-layer of GeS near the band edge. As we
can see, either the dependence on polarization, the lin-
earity of the static field, the order of magnitude of the in-
duced current, or the momentum dissipation dependence
can be used to distinguish them apart.

The jerk and σ3-shift Hall currents have τ2
1 , τ2 de-

pendence momentum relaxation time scale. But, mea-
suring this dependence can be difficult in THz experi-
ments27,28,60–62. Since they have the same dependence
on the polarization of light, the tie can be broken by the
signs of the longitudinal vs transverse currents as shown
in the 8th column of Table. II.

XIV. CONCLUSIONS

The 2nd order injection and shift currents are
archetypical examples of nontrivial carrier dynamics in
insulators and semiconductors. In this paper we revisited
the derivation of the intraband current and proposed a
microscopic interpretation of shift current based on the
coherent motion of pairs of wavepackets.

We also studied the photocurrents to 2nd order in an
optical and to 1st order in a static field from the per-
spective of the third order electric polarization suscepti-

bility dc divergence. Three new bulk photovoltaic effects
are found. We dub them jerk, 3rd order injection and
3rd order shift currents, respectively. The jerk current
and 3rd order injection currents can be thought of as a
higher order versions of the standard 2nd order injection
current and have essentially the same microscopic origin,
namely, the asymmetric rate of population of current-
carrying states at time-reversed points in the BZ. The
presence of the electric field, however, give rise the new
contributions which are absent in the 2nd order injection
current such as the anomalous and dipole velocity states.

The 3rd order shift current can be thought as a higher
order version of the 2nd order shift current. It involves
the coherent motion of pairs of wavepackets across the
BZ. We showed that all photocurrents can be understood
physically using semiclassical wavepacket dynamics. We
have shown that generalizations to higher orders are pos-
sible and gave an example. Explicit expressions for the
photocurrents amenable for first-principles computations
are given. Estimates for single-layer GeS show that ex-
perimental observation of these currents is possible.
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Appendix A: List of identities

Some definitions used in this paper are:
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vnn(k) = 〈un|v|un〉 ≡ vn(k) (A1)

fn ≡ f(εn(k)) (A2)

fnm ≡ fn − fm (A3)

ξξξnm(k) ≡ i 〈un|∇∇∇k|um〉 (A4)

rnm(k) ≡ ξξξnm(k), (m 6= n) (A5)

rnn(k) ≡ 0. (A6)

ωnm ≡ ωn − ωm. (A7)

They describe velocity matrix elements (A1), Fermi dis-
tribution (A2), Fermi function differences (A3), Berry
connection (A4) , off-diagonal (A5) and diagonal dipole
matrix elements (A6), respectively, and frequency band
differences (A7). un is the periodic part of the Bloch
wave function (spinor index contracted), and the covari-
ant derivative of the dipole matrix elements is defined
as

rnm;a ≡
[
∂

∂ka
− i(ξann − ξamm)

]
rnm, (A8)

or generally of any Bloch matrix element Onm as

Onm;b ≡
[
∂

∂kb
− i(ξbnn − ξbmm)

]
Onm. (A9)

We also defined the commutator and anticommutator
with respect to the Cartesian indices b, c as

[O(b),K(c)] ≡ O(b)K(c)−O(c)K(b) (A10)

{O(b),K(c)} ≡ O(b)K(c) +O(c)K(b) (A11)

where O,K are any Bloch matrix elements. Some iden-
tities used in this paper:

ωn(−k) = ωn(k) (A12)

ωn;a(−k) = −ωn;a(k) = − ∂

∂ka
ωn(k) (A13)

vnm(−k) = −vmn(k) = −[vnm(k)]∗ (A14)

rnm(−k) = rmn(k) = (rmn(−k))∗ (A15)

rnm;a(−k) = −rmn;a(k) = −(rnm;a(k))∗ (A16)

ωnm;a(k) = van(k)− vam(k) = −ωnm;a(−k)

= ωmn;a(−k) (A17)

ΩΩΩn(−k) = −ΩΩΩn(k) = −(ΩΩΩn(k))∗. (A18)

They arise from the hermicity of operators and the as-
sumptions of time-reversal invariance of the ground state.
~ωn and ΩΩΩn denote the band energy and Berry curvature
of band n.

Appendix B: Derivation of η2 and σ2 from Taylor
expansion of χ2

To compute ηabc2 (0, ω,−ω) and σabc2 (0, ω,−ω) from
Eq. 4, start from Eq. 70 and symmetrize (−iωΣ)2χ2i with
respect to pair-wise exchanges of electric fields indices
b, β and c, σ38. Then write explicitly the small imaginary
part of frequencies, ωβ → ωβ + iε, ωσ → ωσ + iε and let
1/(x−iε) = 1/x+iπδ(x). Next, set ωβ = ω+nβωΣ, ωσ =
−ω + nσωΣ, 1 = nβ + nσ, and Taylor expand real parts
up to first order in ωΣ. It is easy to show that the non-
resonant terms cancel and we obtain Eq. 75 and 78 as
claimed. In this calculation we used

(rcnmr
b
mn);a = rcnm;ar

b
mn + rcnmr

b
mn;a

=
∂

∂ka
(rcnmr

b
mn) (B1)

and some identities listed in Appendix A. Note that the
expression rcnmr

b
mn is gauge invariant and hence the co-

variant derivative reduces to the standard crystal mo-
mentum derivative.

Appendix C: Expansion of χ3i

Using Eqs. 37, 54, 63, and 66 the third order suscep-
tibility χabcd3 (−ωΣ, ωβ , ωσ, ω∆) can be written as χ3 =
χ3e + χ3i where
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χ3i  =   χ3i1  +  χ3i2  +  χ3i3  +  χ3i4  +   χ3i5  +  χ3i6

ι3 η3 σ3

1st 2nd 3rd

4th 1st

2nd
1st,2nd 3rd,4th

Bloch vel Anomalous vel Dipole vel

FIG. 9. Origin of the 1st, 2nd, ... contributions to the expressions for ι3-jerk (Eq. 107), η3-injection (Eq. 122) and σ3-shift
(Eq. 140) response tensors. Each of the 6 terms in the χ3i originates from either the Bloch velocity (first three), anomalous
velocity (4th) and the dipole velocity (5th and 6th). Due to the structure of the poles in these expressions shift current processes
also contribute to injection processes as shown by the 2nd term in η3.

χ3e

C3
= −

∑
nmk

ranm
ωmn − ωΣ

[
1

(ωmn − ω2)

(
rbmnfnm
ωmn − ωβ

)
;c

]
;d

− i
∑
nmpk

ranm
ωmn − ωΣ

[
1

ωmn − ω2

(
rbmpr

c
pnfpm

ωmp − ωβ
−
rcpmr

b
pnfnp

ωpn − ωβ

)]
;d

−i
∑
nmpk

ranm
ωmn − ωΣ

( rbmpfpm

ωmp − ωβ

)
;c

rdpn
ωmp − ω2

−
rbmp

ωpn − ω2

(
rbpnfnp

ωpn − ωβ

)
;c


−
∑
nmplk

ranm
ωmn − ωΣ

[
rdmp

ωpn − ω2

(
rbplr

c
lpflp

ωpl − ωβ
−
rcplr

b
lnfnl

ωlp − ωβ

)
−

(
rbmlr

c
lpflm

ωml − ωβ
−
rcmlr

b
lpfpl

ωlp − ωβ

)
rdpn

ωmp − ω2

]
(C1)

χ3i

C3
≡

6∑
r=1

χ3ir

=
1

ω2ω2
Σ

∑
nmk

ωnm;afmn

(
rbnmr

c
mn

ωnm − ωβ

)
;d

− 1

ω2
Σ

∑
nmk

ωnm;ar
d
mn

ωnm − ω2

(
rbnmfmn
ωnm − ωβ

)
;c

− i

ω2
Σ

∑
nmlk

ωnm;ar
d
mn

ωnm − ω2

(
rbnlr

c
lmfln

ωnl − ωβ
− rcnlr

b
lmfml

ωlm − ωβ

)
− i

ω2ωΣ

∑
nmk

Ωadnm
rbnmr

c
mnfmn

ωnm − ωβ

+
1

ωΣ

∑
nmk

rdmn;a

ωnm − ω2

(
rbnmfmn
ωnm − ωβ

)
;c

+
i

ωΣ

∑
nmlk

rdmn;a

ωnm − ω2

(
rbnlr

c
lmfln

ωnl − ωβ
− rcnlr

b
lmfml

ωlm − ωβ

)
. (C2)

We defined C3 ≡ e4/~3V , Ωadnm ≡ Ωadn − Ωadm , ωΣ ≡ ωβ +
ωσ + ω∆ and ω2 = ωβ + ωσ. These expressions still need
to be symmetrized with respect to pair-wise exchange
of electric field indices (b, β), (c, σ), (d,∆). It is easier
to calculate χ3i is calculated from the intraband current

rather than from P
(3)
i .

Eq. C2 has a distinguishable structure, see Fig 9. The

first three terms in χ3i are derived from the combination

vanρ
(3)
nn (Eq. 54). By analogy with χ2i (Eq. 70), we would

expect these terms to be injection current-type of contri-
butions with one caveat; the 1st term has no analog in
χ2i since it is proportional to three powers of frequency,
ω−2

Σ ω−1
2 and is the most divergent at zero frequency. The

second and third terms, proportional to ω−2
Σ , seem stan-
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dard injection coefficients similar to the 1st term in χ2i.

The 4th term is proportional to (ωΣω2)−1 and arises

from the anomalous velocity (E × ΩΩΩ)aρ
(2)
nn . It is an in-

jection current-type of coefficient. The fifth and sixth

terms, proportional to ω−1
Σ , originate from E · rnm;aρ

(2)
mn

and hence are expected to be shift current-type of con-
tributions.

The goal in the next sections is to calculate the coeffi-
cients ι3, η3, σ3 in the expansion

(−iωΣ)3χ3i = ι3 + (−iωΣ)η3 + (−iωΣ)2σ3 + · · · (C3)

To avoid cumbersome notation in the next three sections
(D,E,F) we write the susceptibilities with the additional
factors as

(−iωΣ)3χabcd3i

C3
→ χ3i (C4)

The strategy is to parametrize (the real part of) the ex-
ternal frequencies as

ωβ = ω + nβωΣ,

ωσ = −ω + nσωΣ,

ω∆ = 0, (C5)

subject to nβ + nσ = 1. Fig. 9 summarize the result.

Appendix D: Derivation of ι3

ι3 derives from χ3i1 and χ3i2.

1. 1st term of ι3

Integrate by parts χ3i1 and symmetrize it with respect
to pair-wise exchange of electric field indices (b, β), (c, σ),

(d,∆) 38 to obtain

χ3i,1 ≡
3∑
l=1

χ3i,1,l

= − iωΣ

6

∑
nmk

ωnm;adfmnr
b
nmr

c
mn

(ωnm − ωβ)(ωnm + ωσ)

− iωΣ

6

∑
nmk

ωnm;acfmnr
b
nmr

d
mn

(ωnm − ωβ)(ωnm + ω∆)

− iωΣ

6

∑
nmk

ωnm;abfmnr
d
nmr

c
mn

(ωnm − ω∆)(ωnm + ωσ)
(D1)

The 2nd and 3rd terms will cancel against other terms
as we show later, but the first term will contribute to ι3.
By partial fractions and writing explicitly the imaginary
parts of the frequencies, the first term gives

χ3i,1,1 =
−iωΣ

6(ωβ + ωσ)

∑
nmk

ωnm;adfmnr
b
nmr

c
mn

(ωnm − ωβ − iε)

− iωΣ

6(ωβ + ωσ)

∑
nmk

ωnm;adfmnr
c
nmr

b
mn

(ωnm − ωσ − iε)
. (D2)

Using Eq. C5, 1/(x− iε) = 1/x+ iπδ(x), and expanding
in powers of ωΣ to 1st order we obtain

χ3i,1,1 =
2π

6

∑
nmk

ωnm;adfmnr
b
nmr

c
mnδ(ωnm − ω)

− iωΣ

6

∑
nmk

ωnm;adfmnr
b
nmr

c
mn

∂

∂ω

(
1

ωnm − ω

)
(D3)

The first term is independent of ωΣ and vanishes for fre-
quencies smaller than the energy band gap. This is the
first term of ι3 in Eq. 107. The second nonresonant term
will cancel against other terms.

2. 2nd term of ι3

This contribution is obtained from χ3i2. To see this,
let us symmetrize the 2nd term in Eq. C2. After two
integration by parts we obtain
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χ3i2 ≡
8∑
l=1

χ3i2,l =
iωΣ

6

∑
nmk

ωnm;acr
d
mnr

b
nmfmn

(ωnm − ωβ − ωσ)(ωnm − ωβ)
+
iωΣ

6

∑
nmk

ωnm;ar
b
nmfmn

ωnm − ωβ

(
rdmn

ωnm − ωβ − ωσ

)
;c

+
iωΣ

6

∑
nmk

ωnm;abr
d
mnr

c
nmfmn

(ωnm − ωβ − ωσ)(ωnm − ωσ)
+
iωΣ

6

∑
nmk

ωnm;ar
c
nmfmn

ωnm − ωσ

(
rdmn

ωnm − ωβ − ωσ

)
;b

− iωΣ

6

∑
nmk

ωnm;ar
c
mnfmn

ωnm − ωβ − ω∆

(
rbnm

ωnm − ωβ

)
;d

− iωΣ

6

∑
nmk

ωnm;ar
b
mnfmn

ωnm − ω∆ − ωσ

(
rdnm

ωnm − ω∆

)
;c

− iωΣ

6

∑
nmk

ωnm;ar
b
mnfmn

ωnm − ωσ − ω∆

(
rcnm

ωnm − ωσ

)
;d

− iωΣ

6

∑
nmk

ωnm;ar
c
mnfmn

ωnm − ω∆ − ωβ

(
rdnm

ωnm − ω∆

)
;b

. (D4)

There are 8 terms. To O(ωΣ), the l = 1, 3 terms cancel
with identical 2nd and 3rd terms in Eq. D1. The terms
l = 2, 6 and l = 4, 8 combine to give the third term of
η3 in Eq. 122 (see next section). The l = 5, 7 terms
contribute to ι3.

Note that we can set ωβ + ωσ = 0 (or ω∆ = 0) (where
this combination appears) since the pair of poles of the
expression are distinct. This is not true in l = 5, 7 and we
consider them separately. After differentiation the l = 5
term we obtain

χ3i2,5 = − iωΣ

6

∑
nmk

ωnm;ar
c
mnr

b
nm;dfmn

(ωnm − ω2)(ωnm − ωβ)

+
iωΣ

6

∑
nmk

ωnm;ar
c
mnr

b
nmfmnωnm;d

(ωnm − ω2)(ωnm − ωβ)2
(D5)

here ω2 = ωβ + ω∆ and we used(
rdnm

ωnm − ω∆

)
;c

=
rdnm;c

ωnm − ω∆
− rdnmωnm;c

(ωnm − ω∆)2
. (D6)

Now obtain simple poles via partial fractions. The term
with a square of frequencies in denominator can be han-
dled by

ωnm;d

(ωnm − ω∆)2
= − ∂

∂kd
(ωnm − ωβ)−1 (D7)

and a partial integration. Next, write the imaginary part
of frequencies, use 1/(x−iε) = 1/x+iπδ(x), and set ωβ =
ω+nβωΣ, ωσ = −ω+nσωΣ, and 1 = nβ +nσ. Note that
with these definitions ω2 = ω+ (1 +nβ)ωΣ. Now expand
to second order in ωΣ and set (without expanding) ω∆ =
ωΣ. After some algebra we obtain

χ3i2,5 =
iωΣ

6

∑
nmk

rcmnr
b
nm;dfmn

∂

∂ka

(
1

ωnm − ω

)
+
iωΣ

12

∑
nmk

∂

∂kd
(ωnm;ar

c
mnr

b
nm)fmn

∂

∂ω

(
1

ωnm − ω

)
+
π

6

∑
nmk

∂

∂kd
(ωnm;ar

c
mnr

b
nm)fmnδ(ωnm − ω) (D8)

In this calculation we have used the identity

∂

∂ω

(
1

ωnm − ω

)
= − ∂

∂ωnm

(
1

ωnm − ω

)
. (D9)

Note that the 3rd term in (D8) contributes to ι3. The
other two nonresonant terms which will eventually can-
cel. A similar calculation for the l = 7 terms gives

χ3i2,7 =
iωΣ

6

∑
nmk

rbmnr
c
nm;dfmn

∂

∂ka

(
1

ωnm + ω

)
− iωΣ

12

∑
nmk

∂

∂kd
(ωnm;ar

b
mnr

c
nm)fmn

∂

∂ω

(
1

ωnm + ω

)
+
π

6

∑
nmk

∂

∂kd
(ωnm;ar

b
mnr

c
nm)fmnδ(ωnm + ω) (D10)

Combining the l = 5 and l = 7 terms above and using
B1 we obtain

χ3i2,5+χ3i2,7 =

iωΣ

6

∑
nmk

ωnm;adr
c
mnr

b
nmfmn

∂

∂ω

(
1

ωnm − ω

)
+

2π

6

∑
nmk

∂

∂kd
(ωnm;ar

c
mnr

b
nm)fmnδ(ωnm − ω) (D11)

The 1st term is nonresonant and will cancel against the
2nd term in Eq. D3. The 2nd term combined with the
first term in Eq. D3 gives ι3 in Eq. 107.

Appendix E: Derivation of η3

We now derive each of the contributions to η3 in
Eq. 122.
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1. 1st term of η3

The first term in η3 comes from χ3i4. Symmetrizing
χ3i4 in Eq. D4 and after partial fractions we obtain

χ3i,4 ≡
3∑
l=1

χ3i,4,l (E1)

=
ω2

Σ

6(ωβ + ωσ)

∑
nmk

Ωadnmfmnr
b
nmr

c
mn

[
1

ωnm − ωβ

− 1

ωnm + ωσ

]
+
ω2

Σ

6

∑
nmk

Ωacnmfmnr
b
nmr

d
mn

(ωnm − ωβ)(ωnm + ω∆)

+
ω2

Σ

6

∑
nmk

Ωabnmfmnr
d
nmr

c
mn

(ωnm − ω∆)(ωnm + ωσ)
(E2)

Only the 1st term contributes to η3. Writing the imag-
inary parts of the frequencies, setting ωβ = ω + nβωΣ,

ωσ = −ω + nσωΣ, and Taylor expanding, we obtain to
leading order in ωΣ

χ3i,4,1 =
2iπωΣ

6

∑
nmk

Ωadnmfmnr
b
nmr

c
mnδ(ωnm − ω)

+
ω2

Σ

6

∑
nmk

Ωadnmfmnr
b
nmr

c
mn

∂

∂ω

(
1

ωnm − ω

)
(E3)

Adding 1/2 of the first term to 1/2 of itself and letting
k→ −k in the 2nd term we obtain the first contribution
of η3 in Eq. 122. The 2nd term cancels against other
nonresonant contributions.

2. 2nd term of η3

This term arises from χ3i5. Symmetrizing we obtain

χ3i5 ≡
6∑
l=1

χ3i5,l =
iω2

Σ

6

∑
nmk

rdmn;afmn

ωnm − ωβ − ωσ

(
rbnm

ωnm − ωβ

)
;c

+
iω2

Σ

6

∑
nmk

rdmn;afmn

ωnm − ωβ − ωσ

(
rcnm

ωnm − ωσ

)
;b

+
iω2

Σ

6

∑
nmk

rcmn;afmn

ωnm − ωβ − ω∆

(
rbnm

ωnm − ωβ

)
;d

+
iω2

Σ

6

∑
nmk

rbmn;afmn

ωnm − ω∆ − ωσ

(
rdnm

ωnm − ω∆

)
;c

+
iω2

Σ

6

∑
nmk

rbmn;afmn

ωnm − ωσ − ω∆

(
rcnm

ωnm − ωσ

)
;d

+
iω2

Σ

6

∑
nmk

rcmn;afmn

ωnm − ω∆ − ωδ

(
rdnm

ωnm − ω∆

)
;b

. (E4)

Let us consider χ3i5,3 first

χ3i5,3 =
iω2

Σ

6

∑
nmk

rcmn;afmn

ωnm − ω2

(
rbnm

ωnm − ωβ

)
;d

, (E5)

where ω2 = ωβ + ω∆. Performing a partial fraction ex-
pansion, a substitution 1/(x−iε) = 1/x+iπδ(x), followed
by a Taylor expansion (to 2nd order) in ωΣ of the real
part about (ωβ , ω2) = (ω, ω) using ωβ = ω+ nβωΣ, ωσ =
−ω + nσωΣ such that ω2 = ω + (1 + nβ)ωΣ, we obtain

χ3i5,3 =
iω2

Σ

6

∑
nmk

rcmn;ar
b
nm;dfmn

∂

∂ω

(
1

ωnm − ω

)
− iω2

Σ

12

∑
nmk

(rcmn;ar
b
nm);dfmn

∂

∂ω

(
1

ωnm − ω

)
+
iωΣ(iπ)

6

∑
nmk

(rcmn;ar
b
nm);dfmnδ(ωnm − ω) (E6)

the first two terms are nonresonant contributions which

cancel against other terms. A similar analysis of χ3i5,5

gives

χ3i5,5 = − iω
2
Σ

6

∑
nmk

rbmn;ar
c
nm;dfmn

∂

∂ω

(
1

ωnm + ω

)
+
iω2

Σ

12

∑
nmk

(rbmn;ar
c
nm);dfmn

∂

∂ω

(
1

ωnm + ω

)
+
iωΣ(iπ)

6

∑
nmk

(rbmn;ar
c
nm);dfmnδ(ωnm + ω) (E7)

the first two terms are nonresonant contributions which
cancel against other terms. After changing indices n,m
and k→ −k we see that the 3rd term in Eq. E6 plus the
3rd term in Eq. E7 gives the 2nd term of η3 in Eq. 122.

3. 3rd term of η3

The third contribution to Eq. 122 arise from χ3i2,2 +
χ3i2,6 + χ3i2,4 + χ3i2,8 in Eq. D4.
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Note that we can set ωβ + ωσ = 0 from the outset
since the poles in these expressions are distinct. Setting
1/(x − iε) = 1/x + iπδ(x) and Taylor expanding about
(ωβ , ωσ) = (ω,−ω) we see that to leading order the non-
resonant parts vanish and we obtain

χ3i2,2 + χ3i2,6 =

− ωΣπ

3

∑
bmk

ωnm;a

(
rdmn
ωnm

)
;c

rbnmfmnδ(ωnm − ω). (E8)

Similar manipulations lead to vanishing nonresonant
terms and to

χ3i2,4 + χ3i2,8 =

− ωΣπ

3

∑
bmk

ωnm;a

(
rdmn
ωnm

)
;b

rcnmfmnδ(ωnm + ω). (E9)

Relabeling of indices n,m, setting k → −k, and adding
to Eq. E8 we recover the 3rd term of η3.

4. 4th term of η3

The 4th term arises from χ3i3. Let us label the 12
terms obtained after symmetrization of χ3i3 as

χ3i3 ≡
12∑
l

χ3i3,l

=
ωΣ

6

∑
nmok

ωnm;ar
d
mn

ωnm − ωβ − ωσ

[
rbnor

c
omfon

ωno − ωβ
− rcnor

b
omfmo

ωom − ωβ

]
+
ωΣ

6

∑
nmok

ωnm;ar
d
mn

ωnm − ωσ − ωβ

[
rcnor

b
omfon

ωno − ωσ
− rbnor

c
omfmo

ωom − ωσ

]
+
ωΣ

6

∑
nmok

ωnm;ar
c
mn

ωnm − ωβ − ω∆

[
rbnor

d
omfon

ωno − ωβ
− rdnor

b
omfmo

ωom − ωβ

]
+
ωΣ

6

∑
nmok

ωnm;ar
b
mn

ωnm − ω∆ − ωσ

[
rdnor

c
omfon

ωno − ω∆
− rcnor

d
omfmo

ωom − ω∆

]
+
ωΣ

6

∑
nmok

ωnm;ar
b
mn

ωnm − ωσ − ω∆

[
rcnor

d
omfon

ωno − ωσ
− rdnor

c
omfmo

ωom − ωσ

]
+
ωΣ

6

∑
nmok

ωnm;ar
c
mn

ωnm − ω∆ − ωβ

[
rdnor

b
omfon

ωno − ω∆
− rbnor

d
omfmo

ωom − ω∆

]
.

(E10)

We analyze the structure of χ3i3 by dividing its terms
into two groups. The first group composed of the l =
1, 2, 3, 4 terms can be added together to give a simple
result (see Eq. E15). The second group is composed of
the l = 5-12 terms. The l = 5, 6, 9, 10 terms have pair of
poles separable by partial fractions and can be combined
with the l = 12, 11, 8, 7 terms (respectively). Since we
are interested in results to linear in ωΣ, it is useful to
note we can set ωβ + ωσ = 0 or ω∆ = 0 in all terms
from the outset. This is because the pair of poles in each
term are always distinct and separable by simple partial
fractions. This should be contrasted with the l = 5, 7
terms of Eq. D4, or the l=3,5 terms in Eq. E4, where the
poles collide and they have to be treated separately.

The sum of the l = 1, 2 terms can be written as

χ3i3,1 + χ3i3,2 =

=
ωΣ

6

∑
nmok

ωnm;ar
d
mnr

b
nor

c
omfon

ωnm
F+(ωno, ωβ), (E11)

where F+ is defined as

F+(ωno, ωβ) ≡ 1

ωno − ωβ − iε
+

1

ωno + ωβ + iε

= H+(ωno, ωβ) + iπD−(ωno, ωβ), (E12)

and

H±(ωno, ωβ) ≡ 1

ωno − ωβ
± 1

ωno + ωβ

D±(ωno, ωβ) ≡ δ(ωno − ωβ)± δ(ωno + ωβ). (E13)

Similar manipulations for the sum of the l = 3, 4 terms
leads to

χ3i3,3 + χ3i3,4 =

=
ωΣ

6

∑
nmok

ωnm;ar
d
mnr

c
nor

b
omfon

ωnm
F+(ωno, ωσ) (E14)

Adding the l = 1-4 contributions we find



27

4∑
l

χ3i3,l =

=
ωΣ

6

∑
nmok

ωnm;a
rdmn
ωnm

(rbnor
c
om + rcnor

b
om)fonH+(ωno, ω)

+
iπωΣ

6

∑
nmok

ωnm;a
rdmn
ωnm

(rbnor
c
om − rcnorbom)fonD−(ωno, ω)

(E15)

The first term will cancel against other nonresonant con-
tributions.

Next we consider the group of l = 5, 6, 9, 10. It is easy
to show these terms can be written as

χ3i3,5 ≡
4∑
l

χ3i3,5,l =
ωΣ

6

∑
nmok

ωnm;ar
c
mnr

b
nor

d
omfon

ωmo

[
1

ωnm − ω
+ iπδ(ωnm − ω)− 1

ωno − ω
− iπδ(ωno − ω)

]
, (E16)

χ3i3,6 ≡
4∑
l

χ3i3,6,l =
ωΣ

6

∑
nmok

ωnm;ar
c
mnr

d
nor

b
omfmo

ωno

[
1

ωnm − ω
+ iπδ(ωnm − ω)− 1

ωom − ω
− iπδ(ωom − ω)

]
, (E17)

χ3i3,9 ≡
4∑
l

χ3i3,9,l =
ωΣ

6

∑
nmok

ωnm;ar
b
mnr

c
nor

d
omfon

ωmo

[
1

ωnm + ω
+ iπδ(ωnm + ω)− 1

ωno + ω
− iπδ(ωno + ω)

]
, (E18)

χ3i3,10 ≡
4∑
l

χ3i3,10,l =
ωΣ

6

∑
nmok

ωnm;ar
b
mnr

d
nor

c
omfmo

ωno

[
1

ωnm + ω
+ iπδ(ωnm + ω)− 1

ωom + ω
− iπδ(ωom + ω)

]
. (E19)

We now combine them with the resonant (r) and non- resonant (nr) parts of the l = 12, 11, 8, 7 terms (respec-
tively). The result is

χ3i3,5,1 + (χ3i3,12)nr = −ωΣ

6

∑
nmok

ωnm;ar
c
mnr

b
nor

d
omfmn

ωom(ωnm − ω)
, (E20)

χ3i3,5,2 + (χ3i3,12)r = − iπωΣ

6

∑
nmok

ωnm;ar
c
mnr

b
nor

d
omfmn

ωom
δ(ωnm − ω), (E21)

χ3i3,6,1 + (χ3i3,11)nr =
ωΣ

6

∑
nmok

ωnm;ar
c
mnr

d
nor

b
omfmn

ωno(ωnm − ω)
, (E22)

χ3i3,6,2 + (χ3i3,11)r = − iπωΣ

6

∑
nmok

ωnm;ar
c
mnr

d
nor

b
omfmn

ωon
δ(ωnm − ω), (E23)

χ3i3,9,1 + (χ3i3,8)nr = −ωΣ

6

∑
nmok

ωnm;ar
b
mnr

c
nor

d
omfmn

ωom(ωnm + ω)
, (E24)

χ3i3,9,2 + (χ3i3,8)r = − iπωΣ

6

∑
nmok

ωnm;ar
b
mnr

c
nor

d
omfmn

ωom
δ(ωnm + ω), (E25)

χ3i3,10,1 + (χ3i3,7)nr =
ωΣ

6

∑
nmok

ωnm;ar
b
mnr

d
nor

c
omfmn

ωno(ωnm + ω)
, (E26)

χ3i3,10,2 + (χ3i3,7)r =
iπωΣ

6

∑
nmok

ωnm;ar
b
mnr

d
nor

c
omfmn

ωno
δ(ωnm + ω). (E27)

Now we want to show that to O(ωΣ) the resonant part of the sum of the l = 1-4 and l = 5-12 groups gives the
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4th term of η3 and the nonresonant part vanishes. First
the resonant contributions.

a. Resonant contributions

Let n↔ m and k→ −k in χ3i3,6,4 and add to χ3i3,5,4

to obtain

χ3i3,6,4 + χ3i3,5,4 =

− iπωΣ

6

∑
nmok

ωnm;a
rcmnr

d
omr

b
nofon

ωmo
D−(ωno, ω). (E28)

Similar manipulations on χ3i3,10,4 and χ3i3,9,4 give

χ3i3,10,4 + χ3i3,9,4 =

iπωΣ

6

∑
nmok

ωnm;a
rbmnr

d
omr

c
nofon

ωmo
D−(ωno, ω). (E29)

Adding Eq. E28 and E29 gives

χ3i3,6,4 + χ3i3,5,4 + χ3i3,10,4 + χ3i3,9,4 =

iπωΣ

6

∑
nmok

ωnm;a
rdom
ωmo

(rbmnr
c
no − rcmnrbno)fonD−(ωno, ω).

(E30)

Performing analogous manipulations add Eq. E21 to
Eq. E23 and Eq. E25 to Eq. E27 to obtain

χ3i3,5,2 + (χ3i3,12)r + χ3i3,6,2 + (χ3i3,11)r =

− iπωΣ

6

∑
nmok

ωnm;a
rcmnr

b
nor

d
omfmn

ωom
D−(ωnm, ω), (E31)

and

χ3i3,10,2 + (χ3i3,7)r + χ3i3,9,2 + (χ3i3,8)r =

iπωΣ

6

∑
nmok

ωnm;a
rbmnr

d
omr

c
nofmn

ωom
D−(ωnm, ω). (E32)

respectively. After n ↔ l, and k → −k in Eq. E30 add
to Eq. E15 to obtain

(

4∑
l

χ3i3,l)r + χ3i3,6,4 + χ3i3,5,4 + χ3i3,10,4 + χ3i3,9,4 =

iπωΣ

6

∑
nmok

ωnl;a
rdmn
ωnm

(rbnor
c
om − rcnorbom)fonD−(ωno, ω).

(E33)

Now add Eq. E31 and Eq. E32 to obtain

χ3i3,6,2 + (χ3i3,11)r + χ3i3,5,2 + (χ3i3,12)r

+ χ3i3,10,2 + (χ3i3,7)r + χ3i3,9,2 + (χ3i3,8)r =

iπωΣ

6

∑
nmok

ωno;a
rdmn
ωnm

(rbnor
c
om − rcnorbom)fonD−(ωno, ω).

(E34)

Finally, the sum of all resonant terms in χ3i3 to linear
order in ωΣ amounts to adding Eq. E33 to Eq. E34. The
result is

E33 + E34 =

2iπωΣ

6

∑
nmok

ωno;a
rdmn
ωnm

(rbnor
c
om − rcnorbon)fonD−(ωno, ω)

(E35)

which is the 4th term in η3.

b. Nonresonant contributions

The sum the nonresonant third term of Eqs. E16, E17,
E18 and E19 give

χ3i3,6,3 + χ3i3,5,3 + χ3i3,9,3 + χ3i3,10,3 =

− ωΣ

6

∑
nmok

ωnm;a
rdom(rcmnr

b
no + rbmnr

c
no)fon

ωmo
H+(ωno, ω).

(E36)

Next, the sum of Eqs. E20 and E22 and of Eq. E24 and
E26 gives

χ3i3,5,1 + (χ3i3,12)nr + χ3i3,6,1 + (χ3i3,11)nr =

− ωΣ

6

∑
nmok

ωnm;a
rcmnr

b
nor

d
omfmn

ωom
H+(ωnm, ω), (E37)

χ3i3,9,1 + (χ3i3,8)nr + χ3i3,10,1 + (χ3i3,7)nr =

− ωΣ

6

∑
nmok

ωnm;a
rbmnr

c
nor

d
omfmn

ωom
H+(ωnm, ω). (E38)

After l ↔ n and k → −k in Eq. E36 combined with the
nonresonant part of Eq. E15 we obtain

(

4∑
l

χ3i3,l)nr + χ3i3,6,3 + χ3i3,5,3 + χ3i3,9,3 + χ3i3,10,3 =

ωΣ

6

∑
nmok

ωno;a
rdmn(rcomr

b
no + rbomr

c
no)fon

ωnm
H+(ωno, ω).

(E39)
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Adding Eq. E37 and Eq. E38 we obtain

E37 + E38 =

− ωΣ

6

∑
nmok

ωnm;a
rdom(rcnor

b
mn + rbnor

c
mn)fmn

ωom
H+(ωno, ω),

(E40)

which after l↔ n and n↔ m, is seen to cancel Eq. E39.
This concludes the proof that to linear order on ωΣ the
nonresonant terms vanish.

Appendix F: Derivation of σ3

1. 1st and 2nd terms in σ3

Consider χ3i5,1 and χ3i5,2 in Eq.E4. In these terms we
can set ωβ + ωσ = 0 since the real part of the denomi-
nators never vanishes. Setting 1/(x− iε) = 1/x+ iπδ(x)
and using

∂

∂kc

(
rdmn;ar

b
nm

ωnm

)
=

(
rdmn;a

ωnm

)
;c

rbnm +

(
rdmn;a

ωnm

)
rbnm;c

(F1)

the resonant parts are

(χ3i5,1 + χ3i5,2)r =

πω2
Σ

6

∑
nmk

fmn
[(rdmn;a

ωnm

)
;c
rbnm +

(rdmn;a

ωnm

)
;b
rcnm

]
δ(ωnm − ω)

(F2)

Similar manipulations on χ3i5,4 and χ3i5,6 in Eq. E4 yield
the rest of the terms in the square brackets in σ3. The
nonresonant parts can be shown to vanish.

2. 3rd and 4th terms in σ3

This contributions to σ3 arises from χ3i6 in Eq. C2. It
can be shown that the nonresonant parts vanish and the
resonant part gives the 3rd and 4th term in σ3. Since the
algebraic steps are very similar to those used in finding
the third term in η3 we omit the derivation.

Appendix G: two-band model of single-layer GeS

We consider a two-band, 2D model of single-layer GeS.
The Hamiltonian is

H = f0σ0 + faσa, (G1)

where σa, a = x, y, z are the standard Pauli matrices and
σ0 is the 2 × 2 identity matrix. In this section, summa-
tion over repeated indices is implied. The functions fa
are given by the hopping integrals of the model. The
Hamiltonian has eigenvectors given by

uc = A

(
fx − ify
ε− fz

)
(G2)

uv = A

(
fz − ε
fx + ify

)
, (G3)

where A−2 = 2ε(ε−fz) is the normalization and eigenval-
ues by Ec,v = f0± ε where ε =

√
fafa and c, v denote the

conduction and valence band respectively. An arbitrary
phase factor has been omitted, since the final expressions
are independent of this phase. The Bloch wave functions
are constructed as

ψnk =
∑
R

eik·R[u(1)
n φ(r−R)

+ eik·r0u(2)
n φ(r− r0 −R)], (G4)

where u
(i)
n denotes the eigenvector corresponding to

eigenvalue n = v, c (valence, conduction) and i = 1, 2
denotes the first and second components. r0 = (a0, 0)
is the position of site B with respect to site A which is
taken to be the origin. φ(r) are pz-orbitals and R runs
over all lattice positions. Notice that the phase of the
wave function at site B is different than that at site A.

The hopping parameters of the Hamiltonian are56

f0 = 2t′1[cosk · a1 + cosk · a2]

+ 2t′2 cosk · (a1 − a2), (G5)

fx − ify = eik·r0(t1 + t2Φk + t3Φ∗k), (G6)

fz = ∆, (G7)

where Φk ≡ e−ik·a1 + e−ik·a2 , ∆ is the onsite potential
and t1, t2, t3, t

′
1, t
′
2 are hopping matrix elements as indi-

cated in Fig. 2(c). a1 = (ax,−ay),a2 = (ax, ay) are the
primitive lattice vectors. Note that f0 and hence t′1, t

′
2

do not enter into the injection current.

For single-layer GeS the parameters are: (ax, ay, d) =

(4.53/2, 3.63/2, 2.56) Å, where d is the thickness of
the slab, a0 = 0.62 Å, and (t1, t2, t3, t

′
1, t
′
2,∆) =

(−2.33, 0.61, 0.13, 0.07,−0.09, 0.41) eV. It was shown
that these parameters reproduce the band structure and
geometry of the wavefunction in the vicinity of the
Gamma point56. To compare with bulk values the re-
sults are multiplied by 2/d. The factor of 2 accounts for
the smaller TB unit cell.
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