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We demonstrate a possibility of using geometry to deterministically control non-local correlation
of waves undergoing mesoscopic transport through a disordered waveguide. In case of non-dissipative
medium, we find an explicit relationship between correlation and the shape of the system. Inverting
this relationship, we realize inverse design: we obtain specific waveguide shape that leads to a pre-
determined non-local correlation. The proposed technique offers an approach to coherent control of
wave propagation in random media that is complementary to wavefront shaping.
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INTRODUCTION

Diffusion is a common description of the typical wave
propagation[1–4] in a scattering medium that disregards
the phase and, thus, the effects of interference. Per-
sistent interferece phenomena lead to universal conduc-
tance fluctuations, weak localization corrections, en-
hanced backscattering and non-local mesoscopic correla-
tions [5–8] that can be captured using the diagrammatic
perturbation technique [3, 9–11]. The perturbation build-
ing block, which describes an interference of two scatter-
ing paths, is known as “quantum crossing”, or Hikami
box [12, 13]. The crossing, see Fig. 1, is a local object
confined to a volume ℓd, where ℓ is the transport mean
free path and d is the dimensionality of the system. This
locality of the interference event means that it is inde-
pendent of the exact shape of the considered geometry.
In contrast, propagation between the source of waves to
the interference site and on to the detector does depend
on the geometry of the system, as seen from Fig. 1. It is
described in terms of the ladder propagator, which is in
essence a Green’s function G(r,R) of the diffusion equa-
tion for the disorder-averaged intensity. Consequently, to
describe the wave interference effects, the knowledge of
G(r,R) in the particular geometry is crucial.
In this work, we derive expressions for the Green’s

function in the two- and three-dimensional disordered
waveguides with an arbitrary shape in order to obtain
the non-local long-range mesoscopic correlations [9, 14–
21]. We adapt the projection technique, developed in
physical chemistry for the particle diffusion in confined
geometries [22, 23], to describe wave diffusion. We reduce
the problem to one-dimension and obtain analytical so-
lution. We further extend the projection technique to
include the effects of absorption commonly encountered
in experiments with the electromagnetic waves.
Spatial light modulator and related technologies have

enabled manipulation of light propagation in scattering
media via shaping the incident wavefront field to tai-
lor it to the specific configuration of scatters in the
sample[8, 24, 25]. This brought the renewed attention

to the non-local correlations as they were found to be re-
lated to such transport parameters as focusing contrast
inside the medium [26] and energy deposition [20, 23, 27–
35]. The long-range correlation also affects total trans-
mission via an optimized wave front with a limited de-
gree of input control [21], it is also a key factor determin-
ing the broadband transmission achievable in wavefront
shaping [36]. Our derived analytical relation between the
long-range correlation and the shape of the waveguide en-
ables the inverse design: selecting the specific waveguide
to obtain the desired correlation profile. Therefore, our
work opens up additional avenues for coherent control
of wave propagation in diffusive scattering media. In re-
cent works [20, 35, 37, 38], we fabricated two-dimensional
disordered photonic waveguides with various geometries,
which can be used to experimentally test the presented
results.

FIG. 1. Schematic depiction of a disordered waveguide with
varying diameter. In diagrammatic description of wave trans-
port, the long-range correlation between intensities at r1
and r2 arises when two propagation paths, described by the
Green’s function of diffusion equation, intersect allowing a
swap of field amplitudes.

PROJECTION TECHNIQUE

In this section we outline the projection technique that
allows one to reduce the two- or three-dimensional diffu-
sion problem to one-dimension (1D). For completeness,
in this section we will consider time-dependent diffusion
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and will also include the effect of absorption.

We define Green’s function G(r, r′) of the diffusion
equation via the equation

∂G(r, r′, t)

∂t
−D0∇

2
r
G(r, r′, t)+

G(r, r′, t)

τa
= S0(t)δ(r−r

′),

(1)
where D0 is the diffusion constant and τa is absorption
time. Note, that unlike the more conventional defini-
tion, we retain a generic expression for intensity S0(t)
at the point source at r

′. In context of light scatter-
ing, G(r, r′) represents an ensemble-averaged intensity
at r in the medium with the source at r

′. The ge-
ometry of the 3D system is schematically depicted in
Fig. 1, with 0 ≤ z ≤ L, x2 + y2 ≤ [W (z)/2]2 in
3D or −W (z)/2 ≤ y ≤ W (z)/2 in 2D, where W (z)
is the diameter of the waveguide. The corresponding
cross section area A(z) is πW 2(z)/4 in 3D and W (z) in
2D. The boundary conditions consist of reflection (zero
flux) condition ∂G(r, r′, t)/∂n = 0 at the walls of the
waveguide and open boundary conditions at the two ends
(z = 0, L), [z0∂G(r, r′, t)/∂z∓G(r, r′, t)]z=0,L = 0, where
z0 = (π/4)ℓ is extrapolation length [1]. We note that the
above description of wave propagation implicitly assumes
that diffusion description is applicable. This assumption
involves the following conditions [3, 11]: (i) k × ℓ ≫ 1,
where k is the wave number and ℓ is the transport mean
free path; (ii) W (z), L ≫ ℓ; and (iii) g ≫ 1, where g is
the dimensionless conductance of the system, which will
be related to k, ℓ,W (z) and L below. The condition (i),
known as Rayleigh criterion, allows one to avoid effects of
Anderson localization [10]. (ii) stems from the fact that
diffusion cannot adequately describe processes on scales
comparable to ℓ [3]. Finally, (iii) precludes quasi-1D lo-
calization [6].

In defining a projection to 1D, it is instructive to take
a step back by writing Eq. (1) as a combination of the
diffusive flux J(r, r′, t) and the continuity equations:

J(r, r′, t) = −D0∇rG(r, r′, t), (2)

∂G(r, r′, t)

∂t
+ ∇r · J(r, r

′, t) +
1

τa
G(r, r′, t)

= S0(t)δ(r − r
′). (3)

As the first step, we will perform an average over the po-
sition of the source r′ in the cross-section plane at a fixed
depth z′ asA−1(z′)

∫

A(z′)
dρ′×, where ρ′ is the transverse

coordinate at z′:

J(r, z′, t) = −D0∇rG(r, z′, t), (4)

∂G(r, z′, t)

∂t
+ ∇r · J(r, z

′, t) +
1

τa
G(r, z′, t)

= S0(t)δ(z − z′)/A(z′). (5)

G(r, z′, t) represents the ensemble-averaged intensity at
point r with a planar source S0(t)/A(z

′) at z′.

Divergence operator in Eq. (5) presents a challenge
while performing averaging over the cross-section coordi-
nate ρ in r ≡ (ρ, z). Instead, we accomplish this task by
performing integration over volume sandwiched between
cross-sections at z and z + ∆z, see Fig. 1. Using Gauss
theorem, the volume integration is reduced to surface in-
tegration

∮

V

∇r · J(r, z
′, t)dr =

∫

S

J(r, z′, t) · ndσ. (6)

In the next step we separate the surface integral into
three parts: a ring over the surface of the waveguide, and
two cross-sections: at z and z+∆z. The first contribution
vanishes due to absence of the normal component of the
flux at the boundary. The remaining two contributions
to Eq. (6) are computed as follows

−

∫

A(z)

Jz(ρ, z, z
′, t)dρ+

∫

A(z+∆z)

Jz(ρ, z +∆z, z′, t)dρ

≃
1

A(z)

∂

∂z
[A(z)Jz(z, z

′, t)]×A(z)∆z, (7)

where subscript z denotes the longitudinal component (of
flux) and Jz(z, z

′, t) ≡ A−1(z)
∫

A(z)
Jz(ρ, z, z

′, t)dρ the

cross-section average. In Eq. (7) we accounted, in the
leading order of ∆z, for two possible sources of change
in the value of the integral – one due to ∂Jz(z, z

′, t)/∂z
and the other due to variability of the waveguide shape
dA(z)/dz. Lastly, the volume integration of remaining
terms in Eq. (5) does not pose problems, reducing them
to the cross-sectional averages, e.g.

∮

V
G(r, z′, t)dr ≃

∆z ×
∫

A(z)
G(ρ, z, z′, t)dρ ≡ G(z, z′, t)× [A(z)∆z].

Examining Eq. (7), we see that completion of our
task of reducing the higher-dimensional problem to 1D
requires expression for the longitudinal flux Jz(z, z

′, t).
Cross-sectional (surface) integration of the z-component
of Eq. (4) yields Jz(z, z

′, t) ≃ −D0∂G(z, z′, t)/∂z assum-
ing W ′(z) is small. Upon substitution into Eqs. (7,5) we
obtain

∂G(z, z′, t)

∂t
−

1

A(z)

∂

∂z

[

D0A(z)
∂G(z, z′, t)

∂z

]

+
1

τa
G(z, z′, t) =

S0(t)

A(z)
δ(z − z′), (8)

The above expression, together with similarly ob-
tained boundary conditions [z0∂G(z, z′, t)/∂z ∓
G(z, z′, t)]z=0,L = 0, represents the final result of
this section.

We would like to finish this discussion by putting our
result in context of the available literature. Particle dif-
fusion in confined geometries is a common problem in
physical chemistry, see for example Ref. [22] for a review.
In this problem, it is convenient to define cross-section
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integrated quantity, as opposed to the cross-section av-
eraged G(z, z′, t) in Eq. (8), representing linear density
c(z, t) of e.g. a solute. The governing equation

∂c(z, t)

∂t
−

∂

∂z

[

D0A(z)
∂

∂z

c(z, t)

A(z)

]

= 0, (9)

is known as Fick-Jacobs equation. It has been derived
by Jacobs [39] heuristically based on the particle con-
servation argument, Zwanzig [40] via reducing higher
dimensional Smoluchowski equation to 1D, and by oth-
ers [41, 42]. Without the additional source and absorp-
tion terms in case of the wave diffusion, Eqs. (8,9) agree.
We are not aware of reports of derivation such as the one
presented above, in particular, in context of wave diffu-
sion where there is no particle conservation constraint.

In context of particle diffusion, there was a consid-
erable effort to evaluate the validity of the projection
(reduction) to 1D via Eq. (9). It has been found [40–
43] that even for rapidly varying channel profiles with
dW (z)/dz ∼ 1, a reliable solution can be obtained from
a modified Fick-Jacobs equation with D0 → D0 × (1 +
W ′2(z))−α, where α = 1/3, 1/2 in 2D and 3D respec-
tively. Hence, we surmise that similar substitution should
extend the validity of Eq. (8) as well.

A stationary version of the diffusion equation reduces
to a generic Poisson equation, which is common in dif-
ferent branches of physics. As such, it can describe
eigenmodes of sound in an ideal fluid in a rigid tube
(e.g. a horn or a gramophone), transverse vibrations of a
string of varying cross-section, etc [44]. Reduction to 1D
in these problems, known as the Webster equation [45],
has a long history with the original contributions due
to Bernoulli, Lagrange, Euler, Heaviside, Rayleigh, see
Ref. [46] for a historical review of early works. Such a re-
duction works well in the “low-frequency” limit [47, 48],
i.e. solutions which vary sufficiently slowly in space. This
is consistent with approximations in Fick-Jacobs equa-
tion, where the very process of diffusion tends to smooth
out any rapid variation of concentration/intensity. In
acoustics, the reduction to 1D has been extended to in-
clude processes of dissipation [48] and the inverse de-
sign [46] considered in different context in this work.

Having completed the derivation of Eq. (8), in the re-
mainder of this work we will consider its static version
(i.e. without the time-derivative term) to compute the
long-range spatial correlation of intensity.

INTENSITY CORRELATION IN DISOREDERED

WAVEGUIDES WITH VARYING CROSS

SECTION

Intensity correlations originate from interference in
wave scattering and propagation. It was first considered
for electronic waves in mesoscopic physics [9, 14, 49, 50].

The electromagnetic waves, such as visible light or mi-
crowaves, offer a convenient testbed for study of correla-
tion with numerous practical applications [3, 11, 16, 17,
51, 52]. For incident plane wave, the spatial correlation
is defined as

C(r1, r2) =
〈δI(r1)δI(r2)〉

〈I(r1)〉〈I(r2)〉
, (10)

where 〈...〉 denotes the ensemble average and δI(r) =
I(r) − 〈I(r)〉 is the deviation of intensity from its aver-
age at r. This arrangement implies adding contributions
from all trajectories originating from the front surface,
i.e. at all possible R1,2 in Fig. 1.
Three universal, i.e. independent of the microscopical

details of the disorder, contributions to C(r1, r2) have
been identified [3, 9, 53]: short-rangeC1 decribing speckle
pattern, long-range C2 leading to e.g. fluctuations of to-
tal transmission, and an infinite range C3 underlying the
universal conductance fluctuation [11, 54, 55]. Diagram-
matically, interferences between waves scattered along in-
dependent paths give rise to C1, one crossing of paths
shown in Fig. 1 generates C2 , and two crossings cause
C3. The spatial correlation term C1(r1, r2) has unit mag-
nitude at r1 = r2 but decays quickly when |r1 − r2| ex-
ceeds the speckle size. C2(r1, r2) ∝ 1/g but decays much
more slowly, while C3(r1, r2) ∝ 1/g2 is a constant value.
The dimensionless conductance g is assumed to be large
in diffusive systems considered here.
Serendipitously, averaging over cross-section of the

waveguide, such as that performed by the projection tech-
nique in the previous section, allows one to obtain the
long-range correlation in the leading order of 1/g [19, 20].
Indeed, averaging over cross-section reduces the contri-
bution of the short-range C1 correlation by the factor
1/N (N is the number of waveguide modes), whereas
the contribution of C2 ∝ 1/g remains unaffected because
it is present at any value of the transverse coordinate.
The ratio of their magnitudes is g/N ∝ ℓ/L ≪ 1 for a
strongly scattering system, where L is the length of the
waveguide. Meanwhile, the contribution of the C3 term
remains smaller, at the level of 1/g2. Therefore, we con-
clude that

C2(z1, z2) ≃
〈δI(z1)δI(z2)〉

〈I(z1)〉〈I(z2)〉
, (11)

As seen above, the projection technique is perfectly
suited for calculation of the long-range correlation, which
we undertake next. We begin with an expression first
obtained with the Langevin approach [15, 56]:

C2(r1, r2) = adD
2
0

∫

V

〈I(r)〉2∇rG(r1, r) · ∇rG(r2, r)dr

〈I(r1)〉〈I(r2)〉
.

(12)
Here, G(r, r′) is the Green’s function of the static ver-
sion of the diffusion equation (1) with a constant source
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S0(t) ≡ 1. a2 = 4/kℓ and a3 = 6π/k2ℓ is the
dimensionality-dependent coefficient. Eq. (12) has a
transparent diagrammatic interpretation. In this expres-
sion, 〈I(r)〉2 represents two diffusive paths connecting
the input surface of the waveguide to a crossing point at
r; Green’s functions G(r1,2, r) describe the diffuse prop-
agation from r to the detectors at r1,2; and the gradient
operators together with the constant prefactors originate
from the interference (i.e. Hikami box) at r. Finally, vol-
ume integration over r signifies averaging over all possible
locations of interference.

Cross-sectional average of 〈I(r1,2)〉 terms in the de-
nominator of Eq. (12) does not present challenges due
to their weak dependence on the transverse coordinates,
i.e. 〈I(r)〉 ≃ 〈I(z)〉. To proceed with the analyti-
cal calculation of Eq. (12), we average the nominator
over the transverse components of r1 and r2. Although
∇rG(z1, r)·∇rG(z2, r) includes derivatives of the Green’s
functions with respect to both longitudinal and trans-
verse coordinates, the former makes the dominant con-
tribution. Indeed, because the arguments of a Green’s
function can be swapped, ∇rG(z1,2, r) can be viewed as
∇rG(r, z1,2). In this form, G(r, z) represents intensity at
point r with a uniform planar source at the cross-section
z. Such a source should not produce large transverse
variation of intensity as long as the cross-section is not
changing too rapidly, i.e. dW (z)/dz < 1. Hence, we
obtain

C2(z1, z2) ≃ adD
2
0

∫ L

0

∂G(z1, z)

∂z

∂G(z2, z)

∂z
〈I(z)〉2A(z)dz

〈I(z1)〉〈I(z2)〉
,

(13)
where G(z, z′) is the solution of the static version of the
diffusion equation (with a constant source S0(t) ≡ 1)
we obtained previously using projection technique, c.f.
Eq. (8). 〈I(z)〉 is the solution of the same equation with
S0(t) ≡ 0, and a constant value at z = 0, as will be dis-
cussed in the next section. Eq. (13) together with the
static version of Eq. (8) have rather broad applicability,
for example, they can incorporate the effects of absorp-
tion or gain on the correlations [20, 57].

In Fig. 2, we test the applicability of the projection
technique for lossless (a-c) and absorbing (d-f) cases in
four different 2D wavaguides, schematically shown in in-
set of panel (a). First, the intensity and Green’s func-
tion were obtained via direct numerical solution of the
2D diffusion equation using Comsol Multiphysics solver.
The long-range correlation was obtained by averaging the
nominator and denominator of Eq. (12) over the cross-
section as in Ref. [20]. These 2D results are shown as
solid lines in Fig. 2. In the second method, we employed
the projection technique by using Eq. (8) (without time
dependence) to compute 1D intensity and Green’s func-
tion. By substituting these into Eq. (13) we obtained the
projection (1D) results, shown as dashed lines in Fig. 2.

We used the following system parameters: L/ℓ ≃ 35,
Wmin/L = 1/8 and Wmax/L = 3/4 and kℓ ≃ 26. For
absorbing systems in Fig. 2(d-f), we used diffusion ab-
sorption length ξa ≃ L/3. As it can be seen from Fig. 2,
projection technique works well for both cross-section av-
erage intensity and the long-range correlation with and
without absorption.

ANALYTICAL RESULT FOR LONG-RANGE

CORRELATIONS IN LOSSLESS DISORDERED

WAVEGUIDES

In this section we demonstrate that, without absorp-
tion, the long-range intensity correlation can be ob-
tained in a closed form for an arbitrary slow-varying
(dW (z)/dz < 1) waveguide geometry. To that end, we
introduce a change of spatial variable

ζ(z) =

z0
A(0)

+

∫ z

0

dz̃

A(z̃)

z0
A(0)

+

∫ L

0

dz̃

A(z̃)
+

z0
A(L)

. (14)

In terms of this variable, the defining equation for Green’s
function takes a simple form

−
∂2G(ζ, ζ′)

∂ζ2
= δ(ζ − ζ′) (15)

with constant factors absorbed in the definition of the
Green’s function to make it dimensionless. Furthermore,
extending the region of applicability of ζ from ζ0 ≤ ζ ≤
ζL to 0 ≤ ζ ≤ 1 allows to simplify boundary conditions
to G(ζ, ζ′)|ζ=0,1 = 0. Here ζ0 and ζL are defined by
inserting z = 0 and L in Eq. (14) respectively. Eq. (13)
for the long-range correlation takes form

C2(ζ1, ζ2) ≃ ãd

∫ ζL

ζ0

∂G(ζ1, ζ)

∂ζ

∂G(ζ2, ζ)

∂ζ
〈I(ζ)〉2dζ

〈I(ζ1)〉〈I(ζ2)〉
, (16)

where 〈I(ζ)〉 satisfies homogeneous version of Eq. (15)
with 〈I(ζ0)〉 = I0 and 〈I(1)〉 = 0 boundary conditions;

and ãd = ad × [z0/A(0) +
∫ L

0
A−1(z)dz + z0/A(L)].

The final expression for the long-range correlation can
now be obtained substituting the solution of Eq. (15)

G(ζ, ζ′) =

{

ζ(1 − ζ′), ζ < ζ′

ζ′(1− ζ), ζ > ζ′
(17)

and the corresponding intensity as 〈I(ζ)〉 = I0(1−ζ)/(1−
ζ0) into Eq. (16). We obtain

C2(ζ1, ζ2) =
2

3g

[

ζ1(2− ζ1) +
ζ1

1− ζ1
(1− ζ2)

2

]

, (18)
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FIG. 2. Intensity and the long-range correlation computed using 2D calculations (solid lines) and projection to 1D technique
(dashed lines). Line color corresponds to one of the four waveguide shapes depicted in the inset of panel (a). Passive/absorbing
waveguides are shown in (a-c) and (d-f) respectively, see text for system parameters.

where ζ1,2 ≡ ζ(z1,2) as defined by Eq. (14), and the
dimensionless conductance is introduced via g = 2/ãd.
When ζ1 = ζ2, Eq. (18) yields

C2(ζ, ζ) =
2ζ

g

(

1−
2ζ

3

)

. (19)

This quantity corresponds to the leading non-Rayleigh
contribution to the fluctuation of intensity and originates
in non-locality of wave transport. Both Eqs. (18,19) re-
duce to known expressions for waveguides with constant
cross-section, in this case ζ(z) = (z+z0)/(L+2z0), which
can be found from Eq. (14).
We would like to point out several general properties

of Eqs. (18,19) that are common to all waveduides irre-
spective of their shape. For the sake of simplicity, we
will assume that small corrections z0/L ∼ ℓ/L ≪ 1 can

be neglected. We find that g = (2/ad)/[
∫ L

0
A−1(z)dz];

C2(L,L) = 2/(3g); the maximum value of the correla-
tion max[C2(ζ1, ζ2)] = C2(ζmax, ζmax) = (9/8)× 2/(3g),
where ζmax = 3/4. C2(ζ, ζ) is a monotonically increas-
ing function of ζ between 0 and ζmax and a monoton-
ically decreasing between ζmax and 1. Furthermore,
C2(ζ, ζ) ≤ 2/(3g) for 0 ≤ ζ ≤ (1/2) and 2/(3g) ≤
C2(ζ, ζ) ≤ 3/(4g) in the interval for (1/2) ≤ ζ ≤ 1. Re-
markably, C2(ζ, ζ) varies by less than 12% in the second
interval. The long-range correlation between the output
intensity at ζ2 = 1 and that in the interior of the sample is
C2(ζ, 1) = 2/(3g)ζ(2− ζ). It decays monotonically with

distance from the output surface, however, the rate of
the decay is determined by the ζ(z), which is set by the
shape of the waveguide. In a waveguide with constant
cross-section, C2(z, L) ≃ 2/(3g)z/L[2 − z/L] in agree-
ment with Ref. [56].

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

FIG. 3. Solid line in the main panel depicts C2(z, z) in a 3D
expanding disordered waveguide shown in the inset, see text
for system parameters. The dashed line depicts the same
quantity for a 3D cylindrical waveguide of constant width.
The inset plots the long-range correlation C2(z, L) for the
two cases in the main plot.

Eq. (18) also predicts correlation between intensities
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at z = 0, L surfaces. In this case, z0 terms cannot
be neglected as they make the leading contribution to
ζ0 and, therefore, have to be retained. Evaluation of
C2(ζ0, ζL) gives 2/(3N0) in both two and three dimen-
sitons, where N0 is the number of waveguide modes at
the input cross-section z = 0. Correlation between the
transmitted and reflected intensities has been studied the-
oretically [58, 59] and experimentally [60]. It was found
to be negatively correlated at the level of −2/(3N0). Be-
cause an increase of intensity at the front surface (pos-
itive correlation) corresponds to a reduction (negative
correlation) of the reflected intensity, our results are in
agreement with Ref. [59]. In addition, the maximum
value of C2(zmax, zmax) = (9/8) × 2/(3g), is indepen-
dent of the extrapolation length z0. The leading term for
C2(0, 0) ≃ 1/N0 corresponds to addition of N0 uncorre-
lated modes. In contrast, at output surface, the leading
correction is C2(L,L) ≃ 2/(3g) + 1/(3NL), where NL is
the number of modes at the output.

Fig. 3 illustrates the dependence of the correlation
on the shape of the waveguide by plotting C2(z, z) and
C2(z, L) for an expanding disordered waveguide, in which
the diameter W (z) is a linear function of z. We used
the following parameters L = 100ℓ, kℓ = 10, A(0) =
100ℓ2, A(L) = 1000ℓ2, z0 = (2/3)ℓ, that correspond to
g ≃ 33. For comparison, we also plot with dash line the
same quantities for the waveguide of constant width equal
to A = 550ℓ2, in this case g = 58. We can clearly see that
the shape of the waveguide can have a significant effect
on the correlation. Specifically, the reduced width at the
front end led to a steeper increase of both C2(z, z) and
C2(z, L) for small z. This dependence can be deduced
e.g from Eq. (19) as dC2(z, z)/dz ∝ ζ′(z) ∝ A−1(z) for
ζ ≪ 1. Therefore, narrower opening of the linearly ex-
panding waveguide leads to a steeper increase of correla-
tion in the first half of the sample in Fig. 3. Since the
maximum correlation is bounded from above by the value
3/4g, a rapid increase at the beginning of the waveguide,
inadvertently leads to to a weaker dependence towards
z = L. In case of C2(z, z), as was discussed above, once
the maximum value of 3/4g is reached at zmax, in the
remainder of the system the function varies in only a
narrow range 2/3g ≤ C2(z, z) ≤ 3/4g, see Fig. 3.

To conclude this section, we note that since ζ(z) is
determined by A(z) via Eq. (14), one can exploit the
freedom of choice in the shape of the waveguide in or-
der to predictably manipulate the correlation, within the
constraints imposed by the general properties above. We
tackle this task below.

INVERSE DESIGN OF THE LONG-RANGE

CORRELATION

The compact-form analytical expression given in
Eq. (18) establishes a relation between shape of the dif-

fusive waveguide and correlation C2(z1, z2) of the cross-
section averaged intensity, thus enabling the predictive
(inverse) design. Two comments are in order. First,
C2(z1, z2) is the function of two variables (z1 and z2)
whereas A(z) is of one, so the mapping cannot generally
be defined. To circumvent this problem, we are going to
consider two possible mappings: one from the diagonal
(fluctuation) C2(z, z), and the other from the off-diagonal
(correlation) C2(z, L) functions. The second comment
concerns the constraints imposed on possible C2(z, z) and
C2(z, L). Indeed, as discussed in previous sections, see
also Fig. 3, neither of the two mappings allow an arbi-
trary function form. For example, neglecting z0, C2(z, z)
has to be monotonically increasing from 0 to a maximum
and then monotonically decreasing to 8/9 of the maxi-
mum value at the output. Likewise, C2(z, L) has to be a
monotonically increasing function of z. Below, we obtain
such constrained mappings.
Solving Eq. (19) for ζ and then inverting ζ(z) with the

help of Eq. (14) we obtain

A(z) = ad

√

1−
4g

3
C2(z, z)

∣

∣

∣

∣

dC2(z, z)

dz

∣

∣

∣

∣

. (20)

The structure of this relationship is intimately related to
the constraints we imposed on C2(z, z). Indeed, the 4g/3
factor ensures that the expression under the square root
remains positive or zero. The latter case corresponds
to the maximum of the function at zmax, where both
the nominator and denominator of Eq. (20) turn to zero
simultaneously. To prevent A(z) from turning to zero or
having a singularity, we need to ensure that C2(z, z) has
a parabolic behavior in the vicinity of its maximum.
Following steps similar to those used to arrive at

Eq. (20), we find

A(z) =
2ad
3

√

1−
C2(z, L)

C2(L,L)
∣

∣

∣

∣

dC2(z, L)

dz

∣

∣

∣

∣

. (21)

Unlike Eq. (20), where the maximum value of the input
function was related to conductance using a simple rela-
tionship, the maximum value of C2(z, L) at z = L is only
approximately equal to 2/(3g) with additional (smaller)
corrections due to the finite extrapolation length z0.
Hence, normalization by C2(L,L) guarantees that the
expression under the square root does not fall below zero.
Similar to Eq. (20), the vanishing of dC2(z, L)/dz in
Eq. (21) at z = L coincides with a zero of the nominator,
preventing a singularity.
Equations (20,21) open a possibility of inverse design.

As an example, we design a waveguide where the diago-
nal term C2(z, z) is a (nearly) piece-wise linear function.
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As discussed in previous sections, a choice of model cor-
relations has several constraints. Therefore, we set out
to find a functional form of A(z), such that

C2(z, z) =











z

zc
×

3

4g
, z < zc

L− z

L− zc
×

1

12g
+

2

3g
, z > zc

(22)

where we neglected the small corrections at z = 0, L due
to the extrapolation effect. This function has chosen to
satisfy the following constraints: (i) it monotonically in-
creases in 0 < z < zc; (ii) it monotonically decreases in
zc < z < L; (iii) it maximum value is 3/4g at zc; and (iv)
its value is 2/3g at z = L. However, the model function
does not have a vanishing derivative at its maximum at
zc. This should result in an artifact to be corrected at a
later step. Substitution of Eq. (22) into Eq. (20) gives

A(z) =
4gad
3

{
√

(zc − z)zc, z < zc
3
√

(z − zc)(L − zc), z > zc
(23)

We observe that Eq. (23) predicts a zero cross-section at
zc. To avoid this artifact, related to a cusp in the input
function in Eq. (22), we add a condition that A(z) does
not fall below a certain minimum value of Amin.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

FIG. 4. Thick solid line in the main plot depicts C2(z, z) in a
two-dimensional expanding disordered waveguide defined by
Eq. (23). Thin line is the result of numerical simulation. The
inset plots the shape of the considered waveguide.

To test the above prediction we substitute Eq. (23) into
Eqs. (14,18) to compute the long-range correlation in a
two-dimensional disordered waveguide with parameters
quoted below. Thick solid line in Fig. 4 shows that the
C2(z, z) is indeed close to a piece-wise linear function.
The deviations from the design in Eq. (22) can be seen
at z ∼ 0 and ∼ zc. The former is due to the fact that
the model equation did not explicitly account for the ex-
trapolation length z0. Replacement of a cusp-behavior
at zc with a smooth parabolic maximum is related to

the structure of Eq. (20) as well as our requirement that
A(z) to be always greater than Amin. One can see from
Fig. 4, however, that this did not cause significant devia-
tion from linearity away from the maximum.

To further verify the predictions of our inverse-design
procedure, we performed numerical simulations. We con-
sider a two-dimensional waveguide where A(z) = W (z),
and use the following parameters: N0 = 125, L/ℓ ≃ 30,
W (0)/ℓ ≃ 5, Wmin/W (0) = 1/3, zc = L/3 and g ≃ 7.
The simulation were performed using method described
in detail in our previous works [23, 32, 61]. Cross-section
averaged intensity was obtained numerically by solving
wave equation and then was used to compute C(z1, z2)
using Eq. (11). The angular brackets represent average
over 1000 disorder realizations. The transport mean free
path was obtained by computing the dimensionless con-
ductance for a rectangular waveguide and then using rela-
tionship g = (π/2)Nℓ/(L+2z0), where N is the number
of waveguide modes. This allowed us to express all length
scales in terms of ℓ, with the numerical values quoted
above.

Equation (11) holds only approximately, because aver-
aging over cross-section of the waveguide does not fully
remove other contributions. In order to compare the nu-
merical simulation with our theoretical prediction, which
only accounts for C2 contribution, we removed the fol-
lowing two residuals. The first is related to C1 contribu-
tion and can be evaluated by noticing that cross-sectional
averaging of intensities in W−2(z)

∫∫

〈δI(z1, y)δI(z2, y +
∆y)〉dyd∆y has a small but z-dependent contribution,
which can be computed as

C1(z, z) ≃
1

W (z)

∫ W (z)

0

C1(∆y)d∆y. (24)

Away from boundaries z ∼ 0, L, the short-range correla-
tion [18, 49] C1(∆y) can be evaluated in two dimensions
in terms of Bessel function [62] as J2

0 (k∆y). The second
residual related to another type of correlation, C0 [63],
which is non-universal. This contribution has been re-
lated to the variance of the local density of states [64],[65],
which we compute directly in our numerical simulations.
The magnitudes of the two contributions are determined
by 1/(kW ) and 1/(kℓ), respectively. Therefore, in larger
systems and, particularly in three-dimensional systems,
these residuals are expected to be negligible.

Thin line in Fig. 4 shows the results of the numerically
computed C2(z, z) after subtracting the two residual con-
tributions described above. As predicted by Eq. (22),
C2(z, z) exhibits nearly linear dependence in both 0 <
z < zc and zc < z < L intervals. We attribute deviation
in the z ∼ 0 region to the remaining ballistic intensity of
the incident waves.
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CONCLUSIONS

In this work, we first present a method to compute
the Green’s function of the diffusion equation in two-
and three-dimensional disordered waveguides with slow-
varying shape. This is accomplished by reducing the
dimensionality of the problem to 1D. Because geome-
try dependence of the long-range intensity correlations
arises from such dependence in Green’s functions, the
complexity of the problem of determining the correlations
is greatly reduced. Furthermore, in case of lossless media,
we are able to obtain close-form analytical expression for
both Green’s function and the long-range correlation in
arbitrary geometry. This relationship allows us to design
specific waveguide shapes with unusual pre-determined
non-local correlations, which we confirm with the direct
numerical simulations. We refer to this approach as an
inverse design. It is worth noting that the possibility
of inversion of the non-local long-range correlations via
rather simple Eqs. (20,21) is not trivial.

Experimental measurement of the long-range correla-
tion in our previous work [20] in photonic disordered
waveguides already showed shape dependence. The
results agreed with theoretical predictions based on
Eq. (12). In waveguides other than rectangular, we
had to resort to numerical calculation of the full two-
dimensional Green’s function. Although samples in
Ref. [20] exhibited absorption and our analytical results
for passive systems in the last section do not apply,
Eq. (13) does. Therefore, results of this work offer a much
simpler approach based on the projection technique.

Our technique of studying geometry dependence of in-
tensity correlations can be extended to studying other
interference phenomena such as localization-induced
position-dependent diffusion, transmission eigenchannels
etc, see e.g. Refs. [8, 23, 66]. Our results are applicable
to electronic, acoustic, electromagnetic and other types
of waves and can incorporate the effect of absorption or
optical gain.
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