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We study the effect of laser driving on a minimal model for a hexagonal two-dimensional material
with broken inversion symmetry. Through the application of circularly polarised light and coupling to
a thermal free electron bath, the system is driven into a nonequilibrium steady state with asymmetric,
nonthermal carrier populations in the two valleys. We show that, in this steady state, interband
superconducting correlations between electrons can develop independent of the sign of the electronic
interactions. We discuss how our results apply, for example, to transition metal dichalcogenides.
This work opens the door to technological applications of superconductivity in a range of materials
that were hitherto precluded from it.

The use of light to manipulate quantum matter, or
even induce phases not present in a given system in equi-
librium, is a long-standing area of research that has re-
ceived renewed attention due to recent theoretical and
experimental advances. Notable examples include ultra-
fast pump-probe spectroscopy [1] and periodic floquet
driving [2–4]. The investigation of superconductivity in
particular has often been at the forefront of these ef-
forts [5], beginning in the 1960s with the Wyatt–Dayem
effect: experiments on thin metallic films showed that
irradiation with sub-gap microwaves gives rise to an in-
crease in the superconducting gap, the critical current,
and the critical temperature [6, 7]. Eliashberg [8] showed
that these effects could be attributed to a redistribution
of quasiparticles in response to the driving. Subsequent
experiments showed that this mechanism could in fact
lead to superconducting gaps considerably in excess of
their equilibrium values [9–12]. In recent years, super-
conducting order has been shown to develop following
femtosecond laser pulses in the cuprates [13–16] and in
K3C60 [17] (for an overview, see Ref. [18]).

Photoinduced superconductivity in undoped semicon-
ductors, in which the phenomenon is absent in equilib-
rium, has been proposed for intraband [20–24] and in-
terband [25] pairing; in the former the superconducting
pairing is unstable, and in the latter a delicate fine tun-
ing and assumptions about the electronic dispersion are
needed. In this letter we propose a robust mechanism
for interband superconductivity which leads to nonzero
superconducting correlations without such restrictive re-
quirements, and irrespective of the sign of the interactions
between the constituent particles. The mechanism relies
only on a few simple ingredients: (i) a bandstructure
with two valleys that may be driven independently; (ii)
an interband pairing interaction; and (iii) some form of
dissipation to reach a nonequilibrium steady state.

These ingredients are naturally realised, for example,
in systems with a gapped graphene-like dispersion [26],
such as monolayer group-VI transition metal dichalco-
genides (TMDs) in the 2H phase. These materials host
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FIG. 1. Schematic illustration of the pairing mechanism. The
valley K+ is driven with σ+ polarised light of frequency ω0 ' δ,
the bandgap, leading to a nonthermal population of the single-
particle states near the centre of the valley. By virtue of
broken inversion symmetry, valley K− is left unaffected by
the laser. This induces a nontrivial population population
difference between the upper and lower bands at ±k. The
corresponding occupations of the two valleys, n(E), are illus-
trated qualitatively on their respective sides of the figure [19].
Our results show that one of the two pairing channels, ∆+ or
∆−, represented symbolically by the solid lines connecting the
open circles, is always nonvanishing for sufficiently large Ω.

two inequivalent but degenerate (due to time reversal
symmetry) valleys at opposite edges of their hexagonal
Brillouin zone (BZ) [27]. It was shown experimentally
that the carrier populations in the two valleys can be
tuned individually using circularly polarised light [28–30],
an effect known as circular dichroism. We argue that pho-
toinduced superconductivity is within reach of state of the
art experiments on TMDs and related materials, provid-
ing the enticing opportunity to realise it in an altogether
new setting where it is not present in equilibrium.

Model.—We focus on the relevant nearest-neighbour
tight-binding model on a hexagonal lattice with Hamilto-
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FIG. 2. The asymmetry, quantified by η(k), between absorp-
tion of light with circular polarisation σ+ (η = 1) and σ−
(η = −1). The valleys K±, centered on K± = ± 4π
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only to σ± polarisations, respectively. The plot is calculated
for hexagonal materials described by the Hamiltonian (1) (see
Supplemental Material).

nian

H(k) =

(
δ/2 h(k)
h∗(k) −δ/2

)
, (1)

where h(k) = −t
∑
i e
ik·di , the vectors d1,2 = a

2y±
√
3a
2 x,

d3 = −ay connect nearest neighbours [26], and δ > 0
represents a staggered chemical potential. We henceforth
set the distance between neighbouring atoms a = 1. The
band structure Ekα corresponding to (1) has two bands
(α = 1, 2, valence and conduction) separated by a gap δ.
The familiar Dirac cones of graphene, centred at K± =
± 4π

3
√
3
x, become gapped valleys in the presence of the

staggered chemical potential. At the Dirac points K±,
there is an exact selection rule for optical band-edge
transitions: circularly polarised light with polarisation
σ± couples only to transitions within the K± valley [31].
Hence, each valley can be driven independently.

This asymmetry between absorption of σ± polarisations
is quantified by the degree of circular polarisation [30, 31],

η(k) =
|P21

+ (k)| 2 − |P21
− (k)| 2

|P21
+ (k)| 2 + |P21

− (k)| 2
, (2)

where P21
± (k) = 〈ψ2k|p±|ψ1k〉 and p± = px± ipy describe

optical transitions between the two bands. The asymme-
try, calculated using (1), is plotted for various staggered
chemical potentials over the first BZ in Fig. 2. It is exact
(η = ±1) at K± [31], and spreads towards the centre of
the BZ for δ & t. The driving strength is parameterised
in terms of the Rabi frequency Ωk = (eE0/2mω0)P21

± (k),
which we take to be real. E0, e and m describe the
strength of the electric field and the electronic charge and
mass, respectively.

We study two limiting cases: (i) when relaxation occurs
exclusively through tunnel coupling to a three-dimensional
substrate, and (ii) when fast intraband relaxation estab-
lishes a local equilibrium in the upper and lower bands
separately. The latter case is important for its closer con-
nection to experiment, but the derivation of the results

uses a more phenomenological approach that is easier to
follow after exposure to the results of the former. Hence,
we focus first on case (i) where we are able to confirm our
results using two separate methods. The details of case
(ii) are presented in the Supplemental Material.

We assume a simplified driving pattern as a minimal
model of σ+ polarised driving in which Ωk = Ω in the
regions of the first BZ where η(k) > 0 in Fig. 2c, and
Ωk = 0 where η(k) < 0. These two regions will be
referred to as k ∈ K±, respectively. Although the Rabi
frequency in any real material depends continuously on
momentum, in practice this dependence may be neglected
since the dominant contribution to the superconducting
gap equation comes from the vicinity of the surface Sω0

=
{k : Ek2 − Ek1 = ω0} where the laser is resonant.

Our complete model Hamiltonian is composed of an
interacting system (S), a bath (B), and a system–bath
(S–B) interaction H = HS +Hint +HS–B +HB, where

HS =
∑
λ

Eλc
†
λcλ +

∑
k

Ωk(eiω0tc†k2ck1 + e−iω0tc†k1ck2) ,

(3)

Hint =
1

N

∑
k,k′

Vkk′c
†
k2c
†
−k1c−k′1ck′2 , (4)

HS–B =
∑
λ,n

tλ(c†λaλn + a†λncλ) , (5)

HB =
∑
λ,n

ωλna
†
λnaλn . (6)

The index λ = (k, α) labels the noninteracting system
modes, and N is the number of unit cells. Both the
system and the bath are composed of spinless fermions:
{cλ, c

†
λ′} = δλλ′ , and {aλn, a

†
λ′m} = δλλ′δnm [32]. The

system is driven by a laser of frequency ω0, and inter-
acts via the scattering of interband pairs [33]. Coupling
the system to a bath with which it can exchange both
energy and particles brings our system towards a unique
nonequilibrium steady state [34].
Born–Markov approximation.—The simplest possible

analysis of our time-dependent Hamiltonian can be per-
formed by moving into the frame rotating at ω0 and apply-
ing the Born–Markov approximation. In this approach, we
assume that the baths have a continuous density of states
νλ(ε), and that they interact weakly with the system:

|tλ|2νλ � δ. The dynamics of the system S, described by
its reduced density matrix ρS = TrB ρ, is then determined
approximately [35] by the Master equation [36]

dρS
dt

= −i[HS, ρS] +
∑
λ

Γλ
{
nF(ξλ)D[c†λ]ρS

+ [1− nF(ξλ)]D[cλ]ρS
}
, (7)

where nF(ξ) = (1+eβξ)−1 is the Fermi–Dirac distribution,

ξλ = Eλ − µ, and the rates Γλ = 2π|tλ|2νλ(ξλ) are given
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by Fermi’s golden rule. The Lindbladian dissipators D
are defined as D[X]ρ = (2XρX†−X†Xρ−ρX†X)/2. We
have neglected any Lamb shift corrections to (7) which
renormalise the bandstructure Eλ [37]. We will henceforth
assume that both bands are characterised by momentum-
independent rates Γλ → Γα, α = 1, 2.

After making a mean field approximation for the su-
perconducting order parameter in (4), we can write down
the equations of motion for the populations and corre-
lators, nαβk (t) = 〈c†kαckβ〉 and sαβk (t) = 〈c†kαc

†
−kβ〉, and

solve for the steady state in the long-time limit (typically,
t � Γ−11 ,Γ−12 ). One may then substitute the steady-
state value for the anomalous correlator s21k into the self-
consistency condition

∆k =
1

N

∑
k′

Vkk′ 〈c−k′1ck′2〉 . (8)

We make the following simplifying assumption about the
scattering amplitudes Vkk′ : there exist only two relevant
average scattering amplitudes V and V ′ = veiφ which,
respectively, correspond to intra- (K± → K±) and inter-
valley (K∓ → K±) scattering events. This in turn implies
that there are only two momentum components of the
gap, ∆±, corresponding to momenta in the vicinity of
valley K±. These two amplitudes will satisfy |V | � |V ′|;
since the two valleys are separated by a large momen-
tum transfer, intervalley scattering events are strongly
suppressed with respect to intravalley events [indeed, one
may show that V ′ = V

∑
d e

2iK·d/3 = 0 identically us-
ing the eigenstates of H(k) in (1) for scattering between
the valley centres]. Using the Born–Markov equations of
motion derived from (7), we obtain that

∆̄± =− ∆̄±
V

N

∑
k∈K±

Ek

E2
k + Γ2

(1− n22k − n11−k)

− ∆̄∓
ve±iφ

N

∑
k∈K∓

Ek

E2
k + Γ2

(1− n22k − n11−k) ,

(9)

which is to be contrasted with the standard BCS self-
consistency condition [38]; the equilibrium populations
have been replaced by their nonequilibrium counterparts.
We have defined Ek = ξk1 + ξk2, εk = ξk2 − ξk1 − ω0

and Γ = Γ1 + Γ2. Note that (9) reduces to the standard
self-consistency condition when Γ→ 0+, as it must.

In writing down (9), we have made the assumption that
the damping Γ is small. If Γ is increased in magnitude,
the gap parameters acquire an oscillatory time depen-
dence, i.e., a modification of the effective system chemical
potential [39, 40]. If Γ is made sufficiently large, super-
conducting order is eventually destroyed [41]. Driving the
valley K+ with circularly polarised light σ+, we find the
following steady-state populations for momenta k ∈ K+

and ∆± = 0

n22−k = n2F , n22k =
n2F + Ω̃2

k(n1F/γ2 + n2F/γ1)

1 + Ω̃2
k(1/γ2 + 1/γ1)

, (10)

n11−k = n1F , n11k =
n1F + Ω̃2

k(n1F/γ2 + n2F/γ1)

1 + Ω̃2
k(1/γ2 + 1/γ1)

, (11)

where nαF ≡ nF(ξkα), Ω̃2
k ≡ Ω2/(ε2k + Γ2), and γα = Γα/Γ.

That is, the valley K− is unaffected by the laser drive,
while the populations in the valley K+ are nonthermal.
We note that adding an intervalley scattering term to the
equations of motion (7), in which intervalley scattering
events occur with rate Γs, does not significantly alter the
nonequilibrium populations as long as Γs � Γ, as shown
in the Supplemental Material.

The nonequilibrium gap equation (9) may be written
in matrix form as(

∆+

∆−

)
=

(
V F+ veiφF−

ve−iφF+ V F−

)(
∆+

∆−

)
. (12)

Including further scattering amplitudes simply increases
the dimensionality of this matrix. To zeroth order in
|V ′/V |, the onset of superconductivity is determined
solely by the behaviour of the two functions F± with
increasing driving strength

F± ≡ −
1

N

∑
k∈K±

Ek

E2
k + Γ2

(1− n22k − n11−k) . (13)

The induced population differences 1 − n22k − n11−k for
k ∈ K+ and k ∈ K− have opposite sign, which is inher-
ited by the functions F+ and F−. Equation (13) justifies
our focus on interband pairing. In equilibrium, at tem-
peratures T � δ, the population difference 1− n22k − n11−k
approximately vanishes. Therefore the occupations, nααk ,
need only be modified slightly by driving in order to
change the sign of the nonequilibrium population differ-
ence, allowing for the possibility of superconductivity in
the presence of repulsive interactions [42]. Further, the
electronic bands satisfy the resonance condition Ek ' 0.
Substituting in the steady-state values of the populations
and defining γ̄−1 = γ−11 + γ−12 , we arrive at

F+ =
1

2γ2

−µ
µ2 + (Γ/2)2

∫
dEρ(E)

Ω2

ε(E)2 + Ω2/γ̄ + Γ2
,

(14)

F− = −γ2
γ1
F+ , (15)

for temperatures T � δ. The domain of integration ex-
tends over positive energies only. The density of states per
unit cell ρ(E) for hexagonal materials described by Eq. (1)
can be evaluated exactly in terms of the correspond-
ing gapless density of states ρ0: ρ(E) = (E/Ẽ)ρ0(Ẽ)/4,
where Ẽ =

√
E2 − (δ/2)2 [43] (the factor of 4 removes

spin and valley degeneracy). Hereafter we will simplify
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FIG. 3. (a) Critical coupling Vc, in units of the hopping integral t, as a function of driving strength, parameterised by the
Rabi frequency Ω. There are two branches; one positive and one negative, which means that superconductivity may develop
irrespective of the sign of interactions V . For sufficiently large driving (with respect to the damping Γ), the critical coupling
saturates to |V ′|, the intervalley scattering matrix element. V ′/t = 0, 1/2, 1 correspond to the solid, dashed and dotted lines,
respectively. If V ′ = 0 (the value used for the colourmap) then only one of ∆+ or ∆− is nonzero. A bandgap of δ/t = 5,
damping rates Γ1 = Γ2 = 10−3t and chemical potential µ = −Γ/2 were used for the plot. (b) The equivalent plot for the case of
fast intraband relaxation with rate Γ12. The population difference 1− n22

k − n11
−k is now controlled by µ2, an effective chemical

potential which determines the nonequilbrium populations of the K+ valley. The parameters used for the plot are δ/t = 1/4,
Γ12 = 10−3t and µ = −Γ12/2, implying that µ2/t ' 0.2 corresponds to 2.6% polarisation of the K+ valley.

to the symmetric choice γ1 = γ2, in which case we find
that F− = −F+. In the presence of a finite intervalley
coupling v = |V ′|, the equation determining the onset of
superconductivity reads

1 = (V 2 − v2)F 2
+ . (16)

This expression represents our central result: (16) is in-
sensitive to the sign of V , and therefore always has a
solution as long as the driving is sufficiently strong. This
result is illustrated by the phase diagram in Fig. 3a. The
two branches with opposite signs indicate that a solution
is possible for both attractive and repulsive V [44]. For
nonzero V ′, the critical |V | does not tend to zero in the
limit of large driving strengths, but instead saturates at a
value Vc = ±|V ′|. Evidently, then, it is desirable to have
|V ′| be as small as possible, which, as we have discussed,
is automatically the case in real materials.

Ideal parameters.—The benefit of the simplified Born–
Markov approach is that we are able to evaluate expres-
sions explicitly, which allows us to make concrete state-
ments about optimising the system parameters in order
to minimise Vc. It is evident from (14) that the chemical
potential should be chosen to be as close to ±Γ/2 as
possible. Assuming this optimal setup µ = −Γ/2, F± in
(14) evaluates approximately to

F± ' ±
Ac
36t

δ

t

(Ω/Γ)2√
1 + 4(Ω/Γ)2

, (17)

for t & δ � Ω, Γ, neglecting subleading corrections.
Ac = 3

√
3/2 is the area of one unit cell. This expression

suggests that one should (i) maximise the ratio δ/t, which
has the additional benefit of increasing the validity of
our assumption about the driving pattern (see Fig. 2);
and (ii) minimise Γ so that the physics of interest occurs
at a lower laser power. It should be noted however that
the magnitude of the gap also depends on Γ (through
∆/Γ ∼

√
Ω/Γ for Ω� Γ) so a smaller damping rate also

corresponds to a smaller superconducting gap.

Fast intraband relaxation.—When the interband relax-
ation rate is slow with respect to the intraband rate Γ12,
the upper and lower bands (in the valley K+) will sepa-
rately equilibrate to quasithermal distributions with ef-
fective chemical potentials µ2 and µ1, respectively. These
are determined by the driving strength in addition to the
intraband relaxation rate and particle number conserva-
tion. (The gap equations for this regime are presented
in the Supplemental Material.) The phase diagram for
this limiting case is shown in Fig. 3b, and is to be con-
trasted with its counterpart, Fig. 3a. Importantly, the
two branches for Vc with opposite sign persist in this limit.
Quantitatively, however, the critical coupling strengths
are significantly smaller by virtue of a larger induced pop-
ulation difference. Therefore, this regime where interband
relaxation is slower than intraband relaxation, which is
closer to the situation in real experiments, coincides with
the case where superconductivity with repulsive interac-
tions is most favorable.

Outlook.—We have shown that two-dimensional ma-
terials exhibiting circular dichroism can be driven to a
superconducting instability due to interband pairing, re-
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gardless of the sign of electronic interactions. We demon-
strated this mechanism for two limiting cases of dissipa-
tion. We also showed in the Supplemental Material that
qualitatively similar results are obtained using a more
complete Keldysh description of the problem. Our results
are of direct relevance to the monolayer transition metal
dichalcogenides, which satisfy the criteria outlined in this
letter.

This opens the possibility of turning a range of in-
sulating materials into superconductors at the flip of a
switch.
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