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We investigate the interplay between coherent gap dynamics and damping in superconductors
taken out of equilibrium by strong optical pulses with sub-gap terahertz frequencies. A semi-
phenomenological formalism is developed to include the damping within the electronic subsystem
that arises from effects beyond Bardeen-Cooper-Schrieffer (BCS) mean-field theory, such as inter-
actions between Bogoliubov quasi-particles and decay of the Higgs mode. These processes, conve-
niently expressed as longitudinal T1 and transverse T2 relaxation times in the standard pseudospin
language for superconductors, cause the gap amplitude to be suppressed after the pulse is turned
off, but before the time scale where thermalization occurs due to coupling to the lattice. We show
that our model quantitatively captures the experimental gap dynamics reported here of NbN and
Nb3Sn through the picosecond time scale.

I. INTRODUCTION

The coherent control of non-equilibrium states of in-
teracting quantum matter promises far-reaching capa-
bilities by turning on (or off) desired electronic ma-
terial properties. A particular focus in this field has
been the manipulation of superconductivity by non-
equilibrium probes. While earlier works showed that mi-
crowave pulses could be used to enhance the supercon-
ducting transition temperature Tc of thin superconduct-
ing films,1–3 recent advances in ultrafast pump-and-probe
techniques opened the possibility of investigating super-
conductivity in the pico- and femto-second timescales by
coherent light pulses.4–13 Such coherent pulses have been
employed to manipulate the electronic and lattice prop-
erties of quantum materials, resulting in transient behav-
iors that are consistent with the onset of non-equilibrium
superconductivity above Tc.

14–16 Alternatively, coherent
pulses have also been employed to assess the coherent
dynamics of the superconducting state.7,9,17–26

In Ref. 7, a single-cycle intense THz pulse resonant
with the superconducting gap ∆ was applied to a thin
film of the conventional s-wave superconductor NbN,
reporting coherent gap oscillations with frequency 2∆.
This was followed by a slow decrease of the gap, possibly
associated with thermalization of the energy absorbed
from components of the pump with frequencies larger
than 2∆. To maintain coherence and avoid excess heat-
ing, it is thus advantageous to apply longer, multi-cycle
pulses with exclusively sub-gap frequency components,8,9

where Cooper pairs cannot be broken into quasi-particle
Bogoliubov excitations via single photon absorption pro-
cesses. In the absence of pair-breaking and on sufficiently
short timescales before thermalization effects with the
environment set in, the electronic state is then expected
to evolve in the manifold of Bardeen-Cooper-Schrieffer
(BCS) states. This coherent time evolution can be con-
veniently recast in terms of Anderson pseudospins27 pre-
cessing around a pseudo-magnetic field that is modified

by the optical pulse.

Here, we report such an experimental study of su-
perconducting gap dynamics in thin films of NbN and
Nb3Sn using intense, multi-cycle sub-gap THz pulses in
a hitherto unexplored regime of large THz field ampli-
tudes of up to 109 kV/cm. This allows for substantial
light-control of the gap, even for initial temperatures far
below the superconducting transition temperature Tc,
where initial thermal quasi-particle excitations are ab-
sent. We focus our study on the regime of coherent gap
dynamics, which occurs on timescales less than 20 pi-
coseconds. This is complementary to an interesting ear-
lier study by Beck et al. in Ref. 8 using ultra-narrow sub-
gap terahertz pulses with GHz linewidths that focused
on longer timescales of hundreds of picoseconds. That
study reported an enhancement of the gap at interme-
diate temperatures due to a redistribution of thermally
excited quasi-particles.

We complement our experimental work with detailed
theoretical modeling that can phenomenologically cap-
ture all the salient features observed experimentally. This
includes damping and decoherence effects that arise from
residual, integrability-breaking interactions within the
electronic system, which are not captured within the
BCS approximation. In particular, our results shed light
on the two different relaxation timescales that are in-
herent to the observed dynamics. We show that these
are markedly shorter than lattice relaxation rates, but
consistent with rapid relaxation that occurs within the
electronic subsystem.

Specifically, we study superconducting gap dynamics
in thin films of NbN and Nb3Sn subjected to intense
THz fields with sub-gap spectra. Our data reveals that
while the pump is on, the gap oscillates at a frequency
equal to twice the pump frequency. This previously ob-
served behavior is well-described by the solution to the
time-dependent BCS equation, which naturally gives rise
to gap oscillations.18–21,28–40 When the pump is turned
off, however, the gap oscillations quickly disappear in the
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experiment, yet the gap amplitude continues to be sup-
pressed, while remaining finite. These behaviors, particu-
larly the latter one, are at odds with the non-equilibrium
BCS dynamics, which predicts the gap to display coher-
ent oscillation with slow collisionless relaxation around a
constant average value.18,28,31,32,41 We want to emphasize
that our experimental observations are consistent with
previous studies7 employing single-cycle pulses, but they
are more pronounced at the large pump fluences that we
employ.

To elucidate this behavior, we develop a semi-
phenomenological model that captures not only the co-
herent evolution of the gap function in the picosecond
time scale, but also damping and decoherence effects in
the time scale of tens of picoseconds. Because this time
scale precedes the thermalization with the lattice degrees
of freedom, the relevant relaxation processes must arise
solely within the electronic subsystem from effects not
captured by BCS. These include interactions between
Bogoliubov quasi-particles and the coupling between the
Higgs (amplitude) mode and the continuum. In the pseu-
dospin notation, we identify two types of relaxation pro-
cess: the longitudinal relaxation T1, corresponding to re-
laxation of quasi-particles, and the transverse relaxation
T2, corresponding to relaxation of the gap. While the
main effect of T2 is to suppress the gap oscillations af-
ter the pump is turned off, the main impact of T1 in this
regime is to decrease the average gap value. We show that
the previously observed gap dynamics in NbN for single-
cycle pulses, reported in Ref. 7, can also be quantitatively
described within our semi-phenomenological model. To
get similar quantitative agreement for multi-cycle pulse
experiments in both NbN and Nb3Sn, we need to intro-
duce an additional phenomenological parameter η that
describes the dissipation of heat out of the electronic
subsystem into the environment. We find that for off-
resonant multi-cycle pump pulses, where the amount of
energy that is deposited by the pump is large, about 30%
of the energy is rapidly dissipated to the environment.

The paper is organized as follows: we first summarize
the experimental results in Sec. II. Then, we introduce
our theoretical modeling and present a thorough analysis
it in Sec. III. In Sec. IV, we perform a detailed theory-
experiment comparison, before drawing our conclusions
in Sec. V. Details about the experimental setup and pseu-
dospin formalism are provided in Appendices A and B,
respectively.

II. EXPERIMENTAL RESULTS

We probe the superconducting gap dynamics in NbN
and Nb3Sn using intense THz pump, weak THz probe ul-
trafast spectroscopy. Our NbN sample is a 120 nm thick
NbN film grown on (100)-oriented MgO single crystalline
substrates via pulsed laser deposition, as previously re-
ported in Ref. 42. An interesting study of the non-linear
optical response in NbN can also be found in Ref. 43.

(C)

(D)

(E)

FIG. 1. (Color online) Experimental results of time-domain
THz pump-probe spectroscopy on NbN and Nb3Sn thin films.
Panels (A) and (B) show the real and imaginary parts of
the optical conductivity σ1 and σ2 in NbN. Gray curves are
equilibrium results at T = 4 K < Tc = 13 K (dark gray),
and T = 15 K > Tc (light gray). The red curve is taken
tpp = 10 ps after a strong multi-cycle THz pump with peak
electric field Epump = 109 kV/cm and duration τ = 10 ps
(shown in panel (C)). (C) Relative pump-induced change of
transmitted probe field strength ∆E/E (blue curve) in NbN
at fixed tgate. The red curve shows the pump profile. (D)
∆E/E versus tpp at fixed tgate in Nb3Sn (blue curve). The
red curve shows the pump profile, with a peak electric field
of Epump = 62 kV/cm. (E) Frequency spectrum of the multi-
cycle pump pulses. Most of the spectral weight lies below
the optical gap in both NbN and Nb3Sn (vertical lines). The
weight at ∆0, corresponding to the frequency of the Higgs
(amplitude) mode, is also small.

The Nb3Sn sample is a thinner film that is only 20 nm
thick and was grown by magnetron sputtering on a 1 mm
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Al2O3 (100) substrate.10 The superconducting transition
temperatures in equilibrium are Tc(NbN) ≈ 13 K and
Tc(Nb3Sn) ≈ 16 K, respectively. We extract the optical
conductivity in equilibrium and non-equilibrium from the
complex transmission using a scanning gate pulse delay
tgate. By varying the optical delay tpp between the pump
and the probe pulses, we track the ultrafast dynamics of
the superconducting gap ∆(t) on picosecond timescales.
Additional experimental details are given in Appendix A.

Let us first discuss the experimental results for NbN.
The behavior of the real and imaginary parts of the op-
tical conductivity, σ1(ω) and σ2(ω), of NbN is shown
in Fig. 1 (A)-(B). In equilibrium (gray curves), the on-
set of superconductivity below Tc(NbN) ≈ 13 K is sig-
naled by the opening of an optical gap in σ1 (ω) and by
a 1/ω dependence of σ2 (ω) at low frequencies. The gap
reaches a low-temperature value of 2∆(NbN) ≈ 4.6 meV
at T � Tc.

42 We then expose the sample to an in-
tense, multi-cycle THz pump shown in Fig. 1 (C), whose
spectral weight lies mostly below the optical gap (see
Fig. 1 (E)). The post-pump state (red curve in panels
(A, B)) exhibits larger values of σ1 (ω) within the 2∆
range, and slightly reduced values of σ2(ω), due to the
quench of the SC condensate.

To extract the ultrafast dynamics of the gap function
∆(tpp), we prepare the system in equilibrium at T = 4 K,
expose it to an intense multi-cycle THz pump pulse and
measure the relative change of the transmitted electric
field amplitude of a delayed THz probe pulse due to the
presence of the pump

∆E(tpp)/E ≡
[
E(pump on, tpp)− E(off)

]
/E(off) (1)

at a fixed gate time tgate. In equilibrium, the rela-
tive change of the probe field transmission ∆E(T )/E ≡
[E(T )−E(T0)]/E(T0) with fixed (variable) temperature
T0 (T ) was shown to faithfully reflect the behavior of the
superconducting gap ∆E(T )/E ∝ [∆(T ) − ∆0]/∆0,6,9

where ∆0 ≡ ∆(T0) and we use T0 = 4 K. It was shown
that this relationship also holds in non-equilibrium.6 We
determine the numerical value of the proportionality fac-
tor α in ∆E(tpp)/E = α

[
1 − ∆(t)/∆0

]
by extract-

ing the superconducting gap ∆(t) in non-equilibrium at
tpp = 10 ps from a fit of the optical conductivity in
Figs. 1(A, B) to a generalized Mattis-Bardeen theory.44

We find a numerical value of αNbN = 2.7.
In Fig. 1(C), we show the observed ultrafast time evo-

lution of ∆E/E = αNbN[1 − |∆(t)|/∆0] (blue curve),
with initial state ∆0 ≡ ∆(T0 = 4 K, t = 0) well in-
side the superconducting state. We also plot the applied
pump pulse (red curve) in order to show that the gap
∆(t) oscillates with twice the pump frequency while the
pump pulse is on. Interestingly, after the pump is turned
off, the oscillations disappear quickly, and, most impor-
tantly, ∆(t) continues to decrease on the time scale of
tens of picoseconds. This behavior continues before the
gap eventually returns to its initial equilibrium value on
nanosecond time scales via equilibration with phonons.
This latter regime is not discussed in this paper.

Let us now describe our experimental results of Nb3Sn,
which are shown in Fig. 1(D). We expose the 20 nm
thick Nb3Sn films, that are initially prepared at low tem-
peratures T0 = 4 K� Tc well inside the superconduct-
ing phase, to the same intense, multi-cycle THz pulse
that we used for NbN. As the optical gap in Nb3Sn is
even larger 2∆(Nb3Sn) = 5.1 meV,10 the spectral weight
of the pump pulse lies almost fully inside the gap (see
Fig. 1 (E)). As a result, pair-breaking (by single pho-
tons) can be safely neglected. As shown in Fig. 1(D), we
observe the same salient features as for NbN, which were
described above. The suppression of the gap oscillations
and the decrease of the average gap after the pulse has
passed, however, are now even more pronounced. We
note that we determine αNb3Sn from ∆E(T )/E and find
αNb3Sn = 0.75.

We would like to emphasize that although the pump
pulse we used has a temporal width of the order of the
inverse gap, the non-equilibrium dynamics is still far from
the adiabatic regime. This is due to the fact that, for
multi-cycle pulses, the characteristic time scale of the
perturbation is determined by the period of the cycle, and
the width of the pulse is less relevant. This is in sharp
contrast to single-cycle pulses, where the characteristic
time scale is determined by the pulse width.18 We will
theoretically analyze this issue systematically in the next
section.

We note that, although the ∆E/E curve in Fig. 1(C)
remains above the dashed line after the pump is off, the
data displays noticeable noise. Such a noise likely arises
from the high intensity of the pump used. Note, how-
ever, that using similarly high-intensity pumps, the data
on NbSn3 shown in Fig. 1(D) is much less noisy, and
displays the same decrease of the gap after the pump is
turned off. Importantly, a similar behavior was reported
previously in Ref. 7 for less intense single-cycle THz pulse
experiments on NbN films. Notably, after the single-cycle
pulse has passed, the average gap was reported to con-
tinue to decrease, an observation that was already men-
tioned explicitly in Ref. 7. Thus, the suppression of the
gap after the pump is turned off seems to be a much more
generic occurrence in pump-and-probe experiments

III. THEORETICAL MODEL AND ANALYSIS

To model and understand the experimental results
presented in Sec. II, we first resort to standard time-
dependent BCS theory. As shown in detail below, this
fully coherent approach, however, is unable to properly
describe the experimental results. In particular, it can-
not account for the rapid suppression of the gap oscil-
lations and the continuing decrease of the average gap
after the pump has passed. This motivates our new phe-
nomenological approach that introduces two relaxation
timescales T1 and T2 to include additional damping. This
yields a much more accurate, quantitative description of
the gap dynamics, for single-cycle pump pulses. To ob-
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FIG. 2. (A) Schematics of fully coherent pseudospin pre-
cession under the time-dependent pseudo-magnetic field Bk

(green). (B) Schematics of the pseudospin relaxation towards
the thermalized configuration S∗k showing the different effects
of T1 and T2 processes.

tain quantitative agreement between theory and experi-
ment for (off-resonant) multi-cycle pulses, we introduce
an additional parameter η describing dissipation of en-
ergy out of the electronic subsystem into the environ-
ment. The timescales T1,2 we extract from our “fit” turn
out to be of the order of the pulse width, consistent with
relaxation processes that occur within the electronic sub-
system.

A. Coherent dynamics from the BCS model

Let us now explain our theoretical modeling in more
detail. The starting point of our theoretical analysis is
the BCS Hamiltonian

HBCS =
∑
k,σ

ξk+eAc
†
k,σck,σ+

∑
k

(
∆c†k,↑c

†
−k,↓+h.c.

)
+
|∆|2

V0

(2)
with square-lattice dispersion εk = −2J(cos kx + cos ky).
Here, we have defined ξk = εk − µ, and the chemical
potential is set to µ = −1.18J , corresponding to approx-
imately quarter-filling. We note that the precise form
of the energy dispersion is not important in the follow-
ing, as we choose a filling sufficiently far away from the
van Hove point and a generic light polarization. The su-
perconducting order parameter obeys the self-consistency
equation

∆ = −V0

∑
k

〈c−k,↓ck,↑〉 , (3)

where V0 > 0 denotes an attractive interaction. In NbN
and Nb3Sn its origin is presumably rooted in electron-
phonon interactions. For the calculations in this paper,
we set V0 = 3J and the Debye frequency ωD = J/2,
yielding ∆0 = 0.08J and Tc = 0.048J . The electronic
density of states is almost constant in a window of size
of the Debye frequency around the Fermi energy.

The pump laser field is included in the Hamiltonian
via the vector potential A(t). In our experiment, it takes

FIG. 3. (Color online) Undamped BCS gap dynamics in-
duced by multi-cycle THz pulses of various amplitude A2

0/∆0.
The pump pulse has duration τ = 10π/∆0 = 8 ps, width
σ = τ/6, center frequency ωp = 1.65∆0 with ∆0 = 2.55 meV
= 2π × 0.62 THz. Its profile is shown at the bottom (red
dashed). During the pump, the gap exhibits oscillations
with multiples of 2nωp. While at lower amplitudes the
n = 1 component is dominant, higher order n > 1 com-
ponents (mainly n = 2) are non-zero for larger amplitudes
A2

0/∆0 = 3.2, 4.7. After the pump, the gap exhibits slowly
(algebraically) damped oscillations with frequency 2∆∞ and
increasing amplitude for increasing pump amplitude A0.

the form

A(t) = êpA0θ(t)θ(τ−t) exp

[
− (t− τ/2)2

2σ2

]
cos(ωpt) (4)

with linear polarization vector êp, center frequency ωp,
temporal width σ, and duration τ . The values of these
parameters in the various simulations we perform are
given in the figure captions.

To describe the gap dynamics, we introduce Anderson
pseudospins27

Sk = ψ†k
σ

2
ψk (5)

with ψ†k = (c†k,↑, c−k,↓) being a Nambu spinor and σ a

vector of Pauli matrices. The Hamiltonian (2) then reads

HBCS = −
∑
k

Bk · Sk +
|∆|2

V0
+
∑
k

ξ̄k,A (6)

with pseudo-magnetic field

Bk = −2(∆′,−∆′′, ξ̄k,A) (7)

where ∆ = ∆′+ i∆′′, and ξ̄k,A = 1
2 (εk+eA + εk−eA)−µ.

Note that the pseudo-magnetic field depends on the
state of the pseudospins via the gap equation: ∆ =
−V0

∑
k〈S

−
k 〉 (see Eq. (3)).

In the initial equilibrium state, all pseudospins are
aligned with the field direction Bk. Explicit expres-
sions of the equilibrium spin state, and further details on
the calculation are provided in Appendix B. The pump
pulse A(t) then drives the system out of equilibrium by
changing the band dispersion term via Bzk. Consider-
ing the time evolution governed by the standard BCS
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FIG. 4. (Color online) Final equilibrium temperature Tf (nor-
malized to Tc) as a function of gap quench amplitude ∆∞/∆0

for undamped BCS model (T1 = T2 =∞). Temperature Tf is
obtained from the energy deposited by the pulse [see Eq. (11)],
and different ∆∞ are obtained by changing A0. The different
pulse types are parametrized by (τ, σ, ωp) = (2π/∆0, τ/8, 0)
for the Gaussian pulse, (10π/∆0, τ/5, 1.3∆0) for the single-
cycle pulse, and (10π/∆0, τ/6, ωp) with ωp given in the figure
for the multi-cycle pulses. The polarization of the electric
field is along x̂.

Hamiltonian (6) only, the pseudospins coherently precess
around the new field direction Bk(t) according to the
Bloch equation (see also18,28,30,32,33,35–38):

d〈Sk〉
dt

= 〈Sk〉 ×Bk . (8)

We schematically depict the resulting coherent pseu-
dospin dynamics in Fig. 2(A). Importantly, the pseu-
dospin dynamics is immediately fed back into the pseudo-
magnetic field via the gap equation (3). Due to parity
symmetry, only even-order terms ofA(t) appear,27,45 and
the oscillation frequency of the gap during the pump is a
multiple of 2ωp. This can be clearly seen in Fig. 3, which
shows a numerical solution of ∆(t) for different ampli-
tudes A0. The dynamical behavior while the pulse is
turned on is in agreement with our experimental results
in Fig. 1, except for the highest amplitudes.

While the gap oscillations with frequency 2ωp in the
presence of the pump are correctly captured, there
are crucial, qualitative differences between the BCS-
theoretical and the experimental gap dynamics in Fig. 1.
One difference is that while the BCS-theoretical gap dis-
plays coherent, slowly decaying oscillations with an am-
plitude that is increasing with increasing A0, experimen-
tally the gap oscillations are absent once the pump is off
in our multi-cycle experiments.

The most important qualitative difference, however,
is that the average BCS-theoretical gap is completely
flat after the pump pulse has passed, while the gap am-
plitude continues to decrease in the experiment. The
long-time average (theoretical) gap is often denoted ∆∞,
and its value depends on the fluence A0 of the pulse.
The discrepancy between the theory and the data oc-
curs for both NbN and Nb3Sn thin films, which have
different thicknesses, driven by either multi- or single-

(A)

(B)

FIG. 5. (Color online) (A) Time evolution of the internal
energy E of the electronic system arising from the energy de-
posited by a multi-cycle pump pulse A2(t) (orange dashed)
with amplitude A2

0/∆0 = 1.1, duration τ = 10π/∆0, width
σ = τ/5, and center frequency ωp = 1.41∆0. The polariza-
tion of the electric field is along x̂ and we set η = 1. Differ-
ent curves correspond to T1 = T2 = ∞ (black dashed) and
T1 = 2T2 = 1.5τ (orange solid) as indicated. The energy is
normalized by Nf∆2

0, where Nf is the density of states at the
Fermi level. (B) The effective temperature after the pump is
turned off, Tf ≡ T ∗ (τ), normalized by Tc, as a function of
the pump intensity A2

0 for various T1 and T2. For finite T1,2,
the system will relax to the normal state once Tf > Tc, which
leads to an increased energy absorption, as indicated by the
change of slope of Tf when crossing the red dashed line. The
pulse parameters are identical to the ones in panel (A).

cycle pump pulses,7 and for different values of the pump
intensity (for instance, the pump intensity is one order
of magnitude smaller in the case of single-cycle pulses).
Given that the Nb3Sn sample is far cleaner than the
NbN films (elastic low-temperature scattering rates are
Γdis, Nb3Sn ≈ 7 meV10 and Γdis, NbN ≈ 70 meV), it is
rather unlikely that the origin of the described phenom-
ena lies in disorder-induced spatial gap inhomogeneities
in the post-pump state. In addition, we do not observe
the characteristic overshoot of the real part of the optical
conductivity σ1 in the post-pump state over the normal
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state, that is associated with spatial inhomogeneities and
can be reproduced using Brüggemann’s effective medium
theory.17

The diversity of experimental setups showing the same
effect suggests that it may have a common origin. One
possible culprit is pair-breaking promoted by the pump,
which is not included in the formalism above and would
naturally lead to a suppression of the gap. While one can-
not completely rule out this mechanism, particularly in
the single-cycle case, where the pump frequency is com-
parable to 2∆, our Fig. 1(E) shows that in the multi-cycle
experiments nearly all the spectral weight of the pump
is below 2∆. As a result, we search for a different mech-
anism that does not require pair-breaking.

B. Phenomenological account of damping in
pseudo-spin dynamics

To account for the experimental observations, we thus
go beyond the standard BCS description and include phe-
nomenologically damping in the pseudospin equations of
motion. The microscopic origin of these terms will be
discussed below. In analogy with the general problem
of spin precession, we introduce longitudinal (T1) and
transverse (T2) relaxation rates:

d〈Sk〉
dt

=〈Sk〉 ×Bk −
〈Sk〉 · ŝ∗‖,k − |〈S

∗
k〉|

T1
ŝ∗‖,k

−
2∑
i=1

〈Sk〉 · ŝ∗,i⊥,k
T2

ŝ∗,i⊥,k . (9)

Here,

〈S∗k〉
[
T ∗(t)

]
=

1

2
ŝ∗‖,k

[
T ∗(t)

]
tanh

(√ξ2
k + ∆2

∗
2T ∗(t)

)
(10)

is the thermalized pseudospin configuration at time t at
an effective temperature T ∗ with gap value ∆∗ ≡ ∆(T ∗).

The two vectors ŝ∗,i⊥,k with i = 1, 2 span the plane
perpendicular to the equilibrium pseudospin direction
ŝ∗‖,k

[
T ∗(t)

]
. This is schematically depicted in Fig. 2(B)

(see also Appendix B). Physically, the time scale T1 is
related to a redistribution of the quasi-particles, whereas
the time scale T2 is related to the dephasing of the
off-diagonal quasi-particle coherence, which governs the
damping of the gap oscillations. We note that the notion
of quasi-particles depends on the choice of Bogoliubov
transformation that one performs as the gap evolves in
time. Here, we refer to the transformation that diag-
onalizes the Hamiltonian for the thermalized gap value
∆(T ∗) at effective temperature T ∗.

To compute ŝ∗‖,k and the effective temperature T ∗, we

first consider that all the energy deposited in the elec-
tronic subsystem by the pump is converted into a change
in the internal energy (see also Ref. 41):

E(t) = 〈HBCS(t)〉A=0 − 〈HBCS〉init . (11)

FIG. 6. (Color online) Theoretical results for the gap dynam-
ics ∆(t)/∆0 for short single-cycle Gaussian pump pulses with
duration τ = 10/∆0 and width σ = τ/5. Here, ∆0 denotes
the initial equilibrium gap value at t = 0. In panel (A), we
keep T1 = 0.5τ fixed and change T2, whereas in panel (B)
we set T2 = 0.5τ and vary T1. The pump pulse shape A(t)
is shown at the bottom of panel (A) (dashed). We set the
pump amplitude to be A0 =

√
1.12∆0 in both panels. Inset

in panel (B) highlights the post-pump behavior of the gap.
One clearly observes deviations of the average gap value from
the horizontal black dashed lines for finite T1.

Here, the expectation value is calculated in the time-
evolved BCS state according to Eq. (9) and 〈HBCS〉init

is the initial ground state energy. From E(t), we extract
both T ∗(t) and ∆∗(t) ≡ ∆[T ∗(t)], which are themselves
function of time while the pump is turned on. Specifi-
cally, we use that the energy of the BCS state at temper-
ature T is given by

E(T ) =
∑
k

[
ξk −

(
1− 2nF [Ek(T )]

)
Ek(T )

]
+
|∆(T )|2

V0
,

(12)

where nF (E) = 1/(exp(E/T ) + 1) is the Fermi function,

Ek(T ) =
√
ξ2
k + |∆(T )|2 is the quasi-particle energy and

the equilibrium gap ∆(T ) is determined from the finite

temperature gap equation 1 = V0

∑
k

tanh(Ek/2T )
2Ek

. We

then obtain ∆∗ and T ∗ by setting E(t) = E(T ∗)−E(T =
0) and solving for these variables.31 Here we used that
〈HBCS〉init ≡ E(T = 0) in our simulation. Once the pump
is turned off, energy is no longer deposited in the elec-
tronic subsystem, and thus T ∗ (t > τ) = T ∗ (τ) ≡ Tf ,
and ∆∗(t > τ) ≡ ∆f .

We have calculated Tf for a variety of Gaussian pulse
shapes parametrized by τ, σ, ωp and amplitudes A0. In
Fig. 4, we present the resulting Tf/Tc as a function of
the long-time (average) non-equilibrium value of the gap
∆∞/∆0 for different pulse shapes. Clearly, the amount
of energy that is deposited into the system for a given
quench amplitude of the gap (1 −∆∞/∆0) strongly de-
pends on the pulse shape. Less energy is deposited if the
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pulse is resonant with the Higgs (amplitude) mode, which
occurs if it contains frequency components ωp ≈ ∆0.
The different behaviors can thus be grouped into two
classes corresponding to resonant and off-resonant driv-
ing. Resonant pulses are short Gaussian pulses and
single-cycle pulses with ∆0σ . 1, where σ is the width
of the pulse, and longer multi-cycle pulses with center
frequency ωp ≈ ∆0. On the other hand, if the center fre-
quency of the multi-cycle pulse is not resonant with the
Higgs (amplitude) mode, the deposited energy is much
larger. In order to quantitatively describe experimental
data for off-resonant multi-cycle pulses, we will therefore
introduce a third phenomenological parameter 0 < η ≤ 1,
where 1 − η describes the fraction of energy that is dis-
sipated from the electronic system into the environment.
Thus, η describes the fraction of the energy that remains
within the electronic subsystem. On short timescales,
this energy loss can occur via scattering with electronic
quasi-particles that are located outside the volume ex-
cited by the pump pulse. We found this time scale to be
consistent with T1.

Interestingly, the presence of relaxation also affects the
amount of energy that is deposited into the electronic sys-
tem during a pulse. In Fig. 5(A), we show the electronic
energy E(t) for a multi-cycle pulse with center frequency
ωp = 1.4∆0 with and without relaxation, i.e., for finite
and infinite T1 and T2. We observe that more energy is
deposited for finite T1,2. This occurs as the faster damp-
ing of the Higgs (amplitude) mode generates excess quasi-
particles that directly couple with light, which leads to
greater energy absorption. In Fig. 5(B), we show how the
final temperature Tf depends on the pump fluence A2

0.
As expected, for sufficiently strong pump pulses, the su-
perconducting state can be completely melted by heating
and Tf > Tc. Once this threshold is reached, the slope
of the curves Tf (A0) becomes steeper, corresponding to
a more rapid increase of Tf with increasing fluence in the
normal state.

To elucidate how T1 and T2 affect the gap dynamics,
and disentangle the contributions from these two relax-
ation processes, we systematically explore their effects in
Fig. 6. For concreteness and to make connection to ear-
lier experiments using single-cycle pulses,7 we consider a
resonant single-cycle Gaussian-shaped pulse of duration
τ = 10/∆0 ≈ 3 ps, width σ = τ/5 and center frequency
ωp = 1.3∆0. In Fig. 6(A), we fix T1 = 0.5τ and vary T2.
It is apparent that the main effect of T2 is to suppress
the post-pump gap oscillations, while the decay of the
average gap value after the pump is off is largely unaf-
fected by changing T2. Conversely, in Fig. 6(B), we keep
T2 = 0.5τ constant and vary T1. While for T1 = ∞ the
average gap value is essentially constant after the pump
is off, when T1 ∼ τ the average gap shows a clear and
continuous suppression at long times. This behavior is
highlighted in the inset. Note also that the amplitude
of the post-pump gap oscillations are little affected by
changing T1.

FIG. 7. (Color online) Comparison between theory (solid
lines) and single-cycle pump experiments on NbN published in
Ref. 7 (data points are for fluences 5.6, 6.4, and 7.2 nJ/cm2).
We set τ = 10/∆0, σ = τ/5 for the two lowest pump flu-
ences and σ = τ/7 for the highest one. We find good agree-
ment using the phenomenological parameters T1 = 1.5τ and
T2 = 0.3τ . The horizontal and vertical experimental axes
were rescaled as explained in the main text. Note that the
average gap value decreases after the pulse is off, which is
clearly seen by the deviation from the dashed horizontal lines.

IV. APPLICATION TO EXPERIMENTAL
RESULTS

We now apply our semi-phenomenological approach to
describe experimental results for both single and multi-
cycle experiments, and extract the damping timescales
T1 and T2 from experiment. The values of T1 and T2 de-
scribe characteristic timescales of integrability-breaking
interactions within the electronic subsystem. Using
the equations of motion (9), we are able to quantita-
tively describe the experimentally observed gap dynam-
ics in NbN for resonant single-cycle pulses. In order
to reach a quantitative description for experiments on
NbN and Nb3Sn using slightly off-resonant multi-cycle
pulses, we introduce an additional phenomenological pa-
rameter η, describing rapid energy dissipation out of the
electronic subsystem into the environment on picosecond
timescales. Technically, we use ηE(t) to calculate ∆∗ and
T ∗ and let the system relax towards the corresponding
pseudospin configuration according to Eq. (10).

A. Comparison to resonant single-cycle pulse
experiments

In Fig. 7, we demonstrate that our theory can quanti-
tatively describe experimental results on NbN for short
single-cycle pulses that were published in Ref. 7. Both
the rapid damping of the oscillations and the continuing
decrease of the average gap after the pump is off (shown
by the increasing deviation from the dashed gray lines in
the figure) can be quantitatively described by T1 = 1.5τ
and T2 = 0.3τ . These timescales are thus of the order of
the pump duration which is approximately τ ≈ 3 ps. We
do not need the additional parameter η, which is set to
η = 1 here.
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(A) NbN

(B) Nb3Sn

(C) Nb3Sn

FIG. 8. (Color online) Theory-experiment comparison for
slightly off-resonant multi-cycle pulses. Panel (A) is for
NbN and panels (B, C) are for Nb3Sn. The experimen-
tal trace of ∆E(t)/E is shown in blue and converted into
1 − |∆(t)|/∆0 = α−1∆E/E using the procedure described
in Sec. II with αNbN = 2.7 and αNb3Sn = 0.75. The gray
line is obtained using pure BCS theory without any relax-
ation terms, and the red line is our phenomenological theory
parametrized by relaxation parameters T1, T2 and η. In order
to make quantitative comparison, the experimental traces are
shifted to the right by 2.73 ps for NbN and 2.7 ps for Nb3Sn
to compensate the differences between the experimentally de-
termined and the theoretically determined tpp. The duration
and width of the Gaussian pump pulses (shown at the bot-
tom) are τ = 10π/∆0 and σ = τ/5 (τ/6) for NbN (Nb3Sn),
and the center frequencies are ωp = 1.83∆0 (1.65∆0) for NbN
(Nb3Sn), which are taken from experiment. The polarization
used in the theoretical calculation is along x̂. We used an en-
ergy dissipation factor η = 0.66, 0.72, 0.6 for panels A, B, C.
The other parameters T1,2 and pump amplitude A2

0 are given
in the figure. We notice that the thermalized gap value ∆(Tf )
is much smaller than the non-thermal BCS steady-state value
∆∞, even though we use η < 1.31

To make this comparison, we have rescaled the time
axis using the equilibrium gap value ∆0 = 0.36 THz
in the experiment. The experimental y axis in Ref. 7,
∆Eprobe ∝ 1−∆(t)/∆0, is given in arbitrary units, and

we have rescaled it by a factor of 0.345 (0.341) for the two
lowest (the highest) pump fluence. We note that these
rescaling factors yield the correct ∆∞ within error bars,
which were independently measured in the experiment.
We note that Ref. 7 includes results for ∆E, while we
report ∆E/E in our experiments to measure the gap.
There is thus a proportionality factor between the two
procedures, and we do not expect to find the same nu-
merical value for αNbN in the two cases. Finally, we have
shifted the origin of the experimental time tpp axis by
1.73 ps, 1.68 ps and 1.36 ps for the three pump fluences
5.6, 6.4 and 7.2 nJ/cm2, respectively, with respect to our
simulations. This reflects the fact that tpp is measured
from the peak of the approximately 3 ps broad pump
pulse, which occurs about halfway through the pulse.7

B. Comparison to slightly off-resonant multi-cycle
pulse experiments

A direct comparison of our theory to experimental re-
sults for the gap dynamics induced by multi-cycle THz
pump pulses in NbN and Nb3Sn is shown in Figs. 8
and 9. The pulse parameters are set to their experi-
mental values. Specifically, pulse durations and widths
are τ = 10π/∆0 and σ = τ/5 (τ/6) and the center fre-
quencies are ωp = 1.83∆0 (1.65∆0) for NbN (Nb3Sn).
The pump pulses are therefore slightly off-resonant with
the Higgs (amplitude) mode, which occurs at ω = ∆0.
Here, ∆0 = 2.3 meV = 2π × 0.55 THz for NbN, and
∆0 = 2.55 meV=2π × 0.62 THz for Nb3Sn. This re-
sults in a pump duration of τ = 9 ps (8 ps) for NbN
(Nb3Sn). The pump profiles are shown in the figures.
The pump pulse spectra are shown in Fig. 1(E), demon-
strating that both pulses only carry small spectral weight
at ∆0 and above the optical gap 2∆0. As shown in
Fig. 4, the amount of energy that is deposited in such
an off-resonant multi-cycle pulse within BCS theory in-
creases rapidly with an increasing gap quench amplitude
1 − ∆∞/∆0. It exceeds the condensation energy (such
that Tf > Tc) for 1 − ∆∞/∆0 & 0.75. In our theo-
retical analysis, we initially prepare the system in the
equilibrium state at the initial experimental tempera-
ture T = 4 K, which is much smaller than Tc of both
NbN and Nb3Sn samples. The redistribution of initially
present thermal quasi-particles due to the pump pulse,
which was shown to be an important factor at intermedi-
ate temperatures,8 is fully taken into account, but plays
a minor role in our case as T � Tc.

We can fit the gap dynamics for multi-cycle pulses
within our phenomenological model in two ways: (i) we
introduce an additional parameter η < 1, which describes
the fraction of the internal energy that remains in the
electronic subsystem pumped by the laser. In this case,
we find that the data can be well described using re-
laxation timescales T1 and T2 that are of the order of
the pulse duration τ . This is just like in the fit to the
resonant single-cycle pulses in Fig. 7, for which η = 1.
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Alternatively, we (ii) enforce energy conservation within
the electronic subsystem and set η = 1. To describe the
data, we have to then use values of T1 and T2 that are
about one order of magnitude larger than in the case of
the resonant pulse.

In Fig. 8, we show theory-experiment comparison in-
cluding the parameter η < 1. Besides the Nb3Sn data
shown in Fig. 1 (C), we also include data taken at a
higher pump fluence. We find excellent quantitative
agreement over the complete time interval and for all
pump strengths. In contrast to the case with no damp-
ing, T1 = T2 = ∞ (gray lines), we find that the oscilla-
tions of |∆(t)| are quickly suppressed after the pulse is
turned off, and, more importantly, that a continuous and
slow increase of 1 − |∆(t)|/∆0 takes place over the time
scale of tens of picoseconds. The numerical values we
obtain from comparing to the data are η ≈ 0.6 − 0.7,
and damping parameters that are of the order of the
pulse width: T1 = τ ≈ 2T2, where τ ≈ 10 ps. The
amplitude of the pulse is adjusted such that the final
value of the gap matches the experimental one. Since
the timescales T1, T2 . τ , thermalization sets in while
the pulse is on, and the undamped BCS result converges
to a much smaller gap value at long times than the solu-
tion in the presence of relaxation.

In Fig. 9, we enforce energy conservation within the
electronic subsystem by setting η = 1. Agreement is
then limited to the time after the pump pulse is off and
for not too large fluences. During the pulse and for large
fluence, our phenomenological theory with η = 1 predicts
gap oscillations with an amplitude that is larger than is
observed experimentally. As T1, T2 � τ , there is only
a small difference between the damped and undamped
gap dynamics while the pump is on. After the pulse, the
damped solution slowly approaches the thermalized gap
with a slope dictated by T1, while the undamped solution
is completely flat.

C. Summary of theory-experiment comparison

To summarize, using our phenomenological extension
of BCS theory, we can quantitatively describe gap dy-
namics in resonant single-cycle experiments, both during
and after the pump pulse (up to ≈ 20 ps, when additional
relaxation mechanisms with the lattice set in). The ex-
tracted relaxation timescales T1 and T2 are found to have
comparable values, which are of the order of the pulse
duration τ = 10/∆0 = 3 ps. This is consistent with our
assumption that the relaxation processes responsible for
the behaviors observed experimentally take place within
the electronic subsystem and are associated with the en-
ergy deposited in this subsystem while the pump is on.
Our theory accounts both for the absence of gap oscilla-
tions after the pump pulse, and the overall decay of the
average gap after the pump pulse has passed.

To describe off-resonant multi-cycle pulse experiments,
we have performed two different fitting procedures: (i) by

(A) NbN

(B) Nb3Sn

(C) Nb3Sn

FIG. 9. (Color online) Theory-experiment comparison for
slightly off-resonant multi-cycle pulses, enforcing energy con-
servation in the electronic subsystem by setting η = 1. Panel
(A) is for NbN and panels (B, C) are for Nb3Sn. Blue line
corresponds to experimental data (see Fig. 8 for details), red
line is the fit to the phenomenological theory with values for
T1 and T2 given in the panels and η = 1. Gray line is the
undamped BCS result. In order to make quantitative com-
parison, the experimental traces are shifted to the right by
2.41 ps for NbN and 2.1 ps for Nb3Sn to compensate the
differences between the experimentally determined and the
theoretically determined tpp. The values for the center fre-
quency ωp, pulse width σ and duration τ are equal to the
ones in the corresponding panels of Fig. 8. For η = 1, the re-
laxation parameters T1 and T2 have to be chosen much larger
than in Fig. 8, and the pump amplitude A0 has to be also
adjusted to a larger value. Good agreement between theory
and experiment is limited to times after the pump pulse is off
and to lower gap quench amplitudes (panels A and B). During
the pulse and for larger quench amplitudes, the theory with
η = 1 predicts gap oscillations that are too large compared to
our experimental observations. The fact that T1 and T2 have
to be set to much larger values than in Figs. 7 and 8 signals
the need to include the dissipation parameter η in our the-
ory to quantitatively describe gap dynamics for off-resonant
multi-cycle pulses.

introducing an additional energy dissipation parameter
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η < 1, we can quantitatively describe the experimental
gap dynamics using T1 ≈ 2T2 ≈ τ that are again of the
order of the pulse duration τ ≈ 8 ps. The dissipation pa-
rameter takes values of η ≈ 0.6−0.7 corresponding to the
fact that about 30% of the energy deposited by the pump
pulse is dissipated to the environment on a timescales of
τ . Alternatively, (ii) we have enforced energy conserva-
tion within the electronic subsystem by setting η = 1. In
this case, we find that T1 = T2 = 25τ need to be chosen
about an order of magnitude larger than before, and we
find a reasonable but less quantitative description of the
data. This suggests that rapid energy dissipation out of
the electronic subsystem occurs in the experiment when
off-resonant pumps are used, which must be taken into
account theoretically.

Although T1, T2 and η are phenomenological quan-
tities, it is important to discuss their possible micro-
scopic origins. The key point is that the T1,2 processes
arise within the electronic subsystem, before equilibra-
tion with the lattice sets in. Because the BCS Hamilto-
nian is integrable,32,46–49 any thermalization must arise
from non-BCS effects. Residual interactions between the
Bogoliubov quasi-particles, which are neglected in the
mean-field BCS approach, could provide a mechanism for
quasi-particle relaxation, which affects T1. Moreover, the
Higgs (amplitude) mode excited resonantly by the laser
pump disperses into the quasi-particle continuum.50,51 As
a result, one expects damping of the amplitude mode,
which should affect the T2 process. The parameter η de-
scribes rapid dissipation of energy out of the electronic
subsystem. One possible origin of this process is elec-
tronic scattering with electronic degrees of freedom that
are outside of the pump excitation volume. The lateral
focal size of the pump is 1.2 mm. Future work should
address a more microscopic derivation of damping effects
in non-equilibrium superconductors.

Our theory accounts both for the absence of gap oscil-
lations after the pump pulse, and the overall decay of the
average gap after the pump pulse has passed. As shown
in Figs. 8 and 9, although the behavior after the pump
is off is very well captured quantitatively by our model,
there are discrepancies between the theoretical and ex-
perimental curves while the pump is on. They are more
pronounced for stronger pump intensities. Whether they
originate from interference effects between the external
drive (with centering frequency ω0) and the tendency of
the (closed) system to oscillate with frequency ∆∞, or
are caused by a different non-linear effect, deserves fur-
ther attention. Here, our focus is on the behavior after
the pump pulse has passed.

V. CONCLUSIONS

In this paper, we established a semi-phenomenological
framework that allows one to incorporate damping be-
yond BCS theory in the picosecond time-evolution of the
gap function of an s-wave superconductor subject to an

intense THz pulse. In the pseudospin language, damping
arises from a longitudinal process T1, which is related to
quasi-particle relaxation, and from a transverse process
T2, which is related to dephasing of off-diagonal quasi-
particle coherence. We have found that T1 mainly affects
the post-pump average gap value, while T2 mainly affects
the post-pump gap oscillations. In addition, to account
for rapid dissipation of energy, which is deposited by the
pump, out of the electronic subsystem, we introduce a
third parameter η. We find that dissipation processes be-
come important for off-resonant multi-cycle pulses, where
the pump necessarily deposits a significant amount of en-
ergy in order to quench the gap.

We apply our theory to resonant single-cycle pump
pulse experiments on NbN thin films, and to off-resonant
multi-cycle pulse experiments on NbN and Nb3Sn films.
We find excellent quantitative agreement for T1 and T2

values that are comparable to the duration of the pump
pulse, τ = 3(8) ps for single-cycle (multi-cycle) exper-
iments. For off-resonant pump pulses, where the en-
ergy deposited exceeds the condensation energy, we find
that about 30% of the energy is rapidly dissipated out of
the electronic subsystem. Possible microscopic origins of
these phenomenologically introduced processes are scat-
tering of quasi-particles, interaction of the Higgs (ampli-
tude) mode with the quasi-particle continuum, and in-
teractions between quasi-particles inside and outside the
focal region of the pump pulse. Future work should de-
velop a microscopic underpinning of this phenomenolog-
ical framework.

While the picosecond evolution of the gap function in
NbN and Nb3Sn is different than that expected for co-
herent BCS-like dynamics, we show that it is consistent
with relaxation processes that arise within the electronic
subsystem and have a time scale much shorter than lat-
tice relaxation rates. Future application of this approach
to different superconductors will shed light on the rele-
vance of the distinct types of relaxation and dissipation
processes for each system.
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Appendix A: Experimental details

The schematic experimental setup is shown in Fig.
10. The Ti-sapphire laser with 3 mJ pulse energy, 40 fs
pulse duration, 1KHz repetition rate and 800 nm center
wavelength is split into three optical paths for the pur-
poses of pumping, probing and sampling, respectively.
The terahertz (THz) pump pulse has a larger intensity,
which is generated by tilted-pulse-front phase matching
through 1.3% MgO doped LiNbO3 crystal. In contrast,
the THz probe pulse, generated by optical rectification
through 1 mm thick (110)-ZnTe crystal, has a smaller
intensity. The pump and probe pulses are at orthogo-
nal polarizations. They focus on the sample at normal
incidence and the focal sizes are 1.2 mm and 0.8 mm
for the pump and the probe beam, respectively. After
the sample, the transmitted pump beam is blocked by
a wire grid polarizer while the transmitted probe E-field
is measured by the electro-optic sampling. The trans-
mitted E-field signal is integrated by a Boxcar integrator
and sent to the DAQ board together with the on-off sig-
nal from two synchronized choppers. Further details can
be found in Ref. 10, where the same experimental setup
and data analysis method were used. Comparing with
previous THz-pump-probe experiment on NbN thin film
(e.g. Ref. 9), the peak E-field of narrow band 1THz pump
can reach values as high as 109 kV/cm.

The ultrafast dynamics of the superconducting gap
∆(tpp) is tracked by fixing tgate at the peak of the pump-
induced change of the transmitted probe electric field,

∆E(tpp) = E(pump on, tpp, 4 K)− E(off, 4 K) , (A1)

and scanning the delay time tpp between pump and
probe. Here, E(pump on, tpp, 4 K) corresponds to the
transmitted probe electric field amplitude at fixed tgate

and variable tpp for a system that was initially prepared
at T = 4 K before it was exposed to the pump pulse.
We note that our choice of tgate corresponds to setting
tgate to the position of maximal contrast of the trans-
mitted probe field signal with and without pump. As
demonstrated in Refs. 6, 9, 10, and 17, the pump-probe
signal ∆E/E, where E ≡ E(off, 4 K), faithfully reflects
the transient behavior of superconducting order param-
eter ∆. In other words, it holds that

∆E(tpp)

E(off, T = 4 K)
= α

(
1− ∆(tpp)

∆(T = 4K)

)
(A2)

with approximately temperature-independent propor-
tionality factor α.

We obtain the proportionality constant αNbN = 2.7
for NbN as follows. We independently determine the
gap ∆ at tpp = 10 ps from the optical conductiv-
ity σ(tpp) shown in Fig. 1(a, b). We extract the gap
∆(tpp = 10 ps) = 3.9/2 = 1.95 meV from a fit of σ2(tpp)
using the expressions in Ref.44 derived for a BCS model
with general scattering time τ in equilibrium. We first
find the scattering rate τ−1

NbN = 72.8 meV from fitting

t
pp

t gate

FIG. 10. Schematic of THz-pump-THz-probe measurement.
Epu(t), Epr(t) and Etr(t) are the time domain E-fields of
the pump beam, the probe beam and the transmitted probe
beam, respectively. tgate is the relative time delay between
the probe and the gate pulse. tpp is the delay time between
the pump and the probe.

the equilibrium conductivity σ(T = 15 K) in the nor-
mal state to the same model. Comparing the value of
∆E/E = 0.41 and ∆(tpp)/∆(4K) = 3.9/4.6 = 0.85, we
find αNbN = 2.7.

For Nb3Sn, we find the proportionality constant
αNb3Sn = −0.75 by first relating the change of the probe
field transmission to the change of the gap in equilib-
rium:6,9,17

E(T )− E(T0)

E(T0)
= α

(
1− ∆(T )

∆(T0)

)
(A3)

with T0 = 4 K. We find E(4K) = −0.13 and E(18K) =
−0.03, which together with ∆(4K) = 5.1 meV and
∆(18K) = 0, yields αNb3Sn = −0.75. We assume that
the same relation also holds in non-equilibrium, as was
shown explicitly for optical pulses.6

Appendix B: Pseudospin formalism and
non-equilibrium dynamics

We start from the BCS Hamiltonian for superconduc-
tivity, which is written as Eq. (1) in the main text:

HBCS =
∑
k,σ

ξk+eAc
†
k,σck,σ+

∑
k

(
∆c†k,↑c

†
−k,↓+h.c.

)
+
|∆|2

V0

(B1)
where ξk = εk − µ is the electronic dispersion near the
Fermi level, e is the charge of the electron, which cou-
ples to an external electromagnetic field A, and V0 > 0
denotes the attractive superconducting interaction. The
superconducting gap, ∆, is determined self-consistently
via the gap equation:

∆ = −V0

∑
k

〈c−k,↓ck,↑〉 (B2)

In general, ∆ = ∆′ + i∆′′ is a complex number, with
∆′ and ∆′′ being the real and imaginary part of the gap
respectively. The phase is purely a gauge choice. There-
fore, in equilibrium, the superconducting gap is usually
chosen to be real for convenience.
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In the presence of parity symmetry (i.e. ξk = ξ−k
and nk = n−k), and using the pseudospin representation
introduced by Anderson27

S−k = c−k,↓ck,↑

S+
k = c†k,↑c

†
−k,↓ (B3)

Szk = nk −
1

2

with nk = c†k,↑ck,↑ + c†k,↓ck,↓, the BCS Hamiltonian can
be written as

HBCS = −
∑
k

Bk · Sk +
|∆|2

V0
+
∑
k

ξ̄k,A . (B4)

The gap is self-consistently determined by a collective
pseudospin coordinate

∆ = −V0

∑
k

〈S−k 〉 (B5)

The pseudo-magnetic field is given by Bk =
(−2∆′, 2∆′′,−ξk+eA − ξk−eA). In equilibrium (A = 0),
the pseudospins perfectly align with the pseudo-magnetic
field. Consequently, the expectation values of the pseu-
dospins have the following configuration at T = 0:

〈Sk〉T=0 = 1
2

Bk

|Bk| (B6)

We assume this to be the initial state before the THz
pump pulse. In equilibrium at finite temperature T , the
length of the pseudospins is reduced, but they still point
along the pseudo-magnetic field

〈Sxk〉T =
−∆′

2Ek
tanh

(
Ek

2T

)
〈Syk〉T =

∆′′

2Ek
tanh

(
Ek

2T

)
(B7)

〈Szk〉T =− ξk
2Ek

tanh

(
Ek

2T

)

where Ek(T ) =
√
ξ2
k + |∆(T )|2 is the quasi-particle dis-

persion, and the finite temperature gap ∆(T ) = ∆′+i∆′′

is determined by the gap equation

1 = V0

∑
k

tanh[Ek/(2T )]

2Ek
. (B8)

The pseudospin formalism of the BCS model is par-
ticularly convenient for the study of non-equilibrium dy-
namics of the superconducting gap, since the pseudospin
dynamics is described by the precession under the pseudo
magnetic field:

d

dt
Sk = i [HBCS,Sk] = Sk ×Bk (B9)

The complexity, however, is encoded in the self-
consistency condition of the pseudo-magnetic field. Since
the superconducting gap depends on the pseudospin con-
figuration in k-space, the pseudo-magnetic field will also
change over time.

The quench dynamics of the superconducting gap
has been thoroughly studied under the BCS frame-
work using a topological classification of the spectral
polynomial.31,32,48 Recently, such classification has also
been applied to the gap dynamics in THz-pump-probe
experiments.41

Once the system is driven out of equilibrium, the in-
ternal energy of the electronic system increases. One
can calculate the superconducting gap ∆∗ = |∆∗| eiφ
at the effective temperature T∗ corresponding to the
internal energy at a given time, which uniquely deter-
mines the thermalized pseudospin configuration 〈S∗k〉 =

1
2 ŝ
∗
‖,k tanh

(√ξ2k+|∆∗|2

2T∗(t)

)
, where

ŝ∗‖,k =

 − |∆∗| cosφ√
ξ2
k + |∆∗|2

,
|∆∗| sinφ√
ξ2
k + |∆∗|2

,
−ξk√

ξ2
k + |∆∗|2

 ,

(B10)
where ∆ = ∆′ + i∆′′ = |∆|eiφ. Note that since the
internal energy is changing over time, 〈S∗k〉 and ŝ∗‖,k
are also time dependent and generally not aligned with
the pseudo-magnetic field Bk. Without damping, the
pseudospin will simply precess around the self-consistent
pseudo-magnetic field, which itself is also oscillating.
Once damping is incorporated, the pseudo-spins tend to
relax towards the thermalized configuration 〈S∗k〉, which
is described by Eq. (9) in the main text.
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