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Hydrodynamics of three-dimensional skyrmions in frustrated magnets

Ricardo Zarzuela, Héctor Ochoa,” and Yaroslav Tserkovnyak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

We study the nucleation and collective dynamics of Shankar skyrmions [R. Shankar, Journal
de Physique 38, 1405 (1977)] in the class of frustrated magnetic systems described by an SO(3)
order parameter, including multi-lattice antiferromagnets and amorphous magnets. We infer the
expression for the spin-transfer torque that injects skyrmion charge into the system and the Onsager-
reciprocal pumping force that enables its detection by electrical means. The thermally-assisted
flow of topological charge gives rise to an algebraically decaying drag signal in nonlocal transport
measurements. We contrast our findings to analogous effects mediated by spin supercurrents.

I. INTRODUCTION

The recent years have witnessed a growing inter-
est in the transport properties of frustrated (quantum)
magnets' ™ since they provide a powerful knob to explore
unconventional spin excitations in phases characterized
by a highly degenerate ground state. Spin glasses, """
spin ices'” and spin liquids,'® to mention a few examples,
belong to this broad family. In the exchange-dominated
limit for magnetic interactions,'* long-wavelength exci-
tations around a local free-energy basin are generically
described by the O(4) nonlinear o —model,"”'" whose ac-
tion reads

S= % / 437 dt (XTr [atRTatR} —ATr [akRTakR]). (1)

The order parameter R(F,t) represents smooth and
slowly varying proper rotations of the initial noncopla-
nar spin configuration;' """ y and A denote the spin sus-
ceptibility and the order-parameter stiffness of the sys-
tem, respectively. Phase-coherent precessional states sus-
tain spin supercurrents,” manifested as a long-range spin
signal decaying algebraically with the propagation dis-
tance. This form of spin superfluidity'’ gives rise to a
low-dissipation channel for spin transport that could be
probed via nonlocal magnetotransport measurements.”"

The SO(3) order parameter can also host stable three-
dimensional solitons akin to skyrmions in chiral mod-
els of mesons.”’ In condensed matter physics, these
textures are known as Shankar skyrmions and ap-
pear, e.g., in the A-phase of superfluid 3He’>”’ and
in atomic Bose-Einstein condensates with ferromagnetic
order.”*~?° These objects are characterized by a dif-
ferent topological number than other three-dimensional
textures arising in materials characterized by vecto-
rial order parameters.”’?" Like chiral domain walls in
one dimension’’ and baby skyrmions in two-dimensional
magnets,”’ suitable spin-transfer torques at the inter-
face bias the injection of Shankar skyrmions into the
frustrated magnet, which diffuse over the bulk as stable
magnetic textures carrying quanta of topological charge.
Robustness against structural distortions and moderate
external perturbations, along with their particle-like be-
havior, make skyrmions attractive from the technological
standpoint due to their potential use as building blocks

FIG. 1:
tion and detection of skyrmions in frustrated magnets.

Two-terminal geometry for the electrical injec-

Inset: Imaginary component of the wersor parametriza-
tion of the rigid hard cut-off ansatz for skyrmions, q =
(cos(f(F)/2),sin(f(F)/2)é,) (see main text for details).
Length and color of the arrows correspond to the magnitude
of the vector field.

for information and energy storage.’”** Frustrated mag-
nets offer a possible realization of these objects, which
were originally proposed in low-energy chiral effective de-
scriptions of QCD?"»** and also appear in cosmology”’
and string theory.””

In this work, we construct a hydrodynamic theory
for skyrmions in the (electrically insulating) bulk, com-
plemented with spin-transfer physics at the interfaces
with adjacent heavy-metal contacts. Figure 1 depicts
the device (open) geometry with lateral terminals usu-
ally utilized in nonlocal transport measurements. For
suitable reduced symmetries (Rashba-like systems), mag-
netic torques can pump skyrmion charge into the frus-
trated magnet, whose diffusion over the bulk and subse-
quent flow across the right interface sustains a pumping
electromotive force in the second terminal. The resul-
tant drag of spin current is positive and thermally ac-
tivated, in sharp contrast to the case of spin superfluid



transport. The structure of the manuscript is as follows.
In Sec. II, we introduce the winding number describ-
ing SO(3) skyrmions and construct a continuity equation
for the associated topological current. Appendix A con-
tains some useful mathematical identities. The expres-
sion of the spin-transfer torque favoring skyrmion nucle-
ation and its reciprocal electromotive force are deduced
in Sec. III. We obtain the expression for the spin-drag
resistivity of a proptotypical device in Sec. IV. Some de-
tails of the derivation are saved for Appendix B. Finally,
we compare the spin-drag signals mediated by skyrmions
and spin supercurrents in Sec. V.

II. TOPOLOGICAL CHARGE AND
CONTINUITY EQUATION

The order-parameter manifold, SO(3), is topologi-
cally equivalent to the four-dimensional unit hypersphere
with antipodal points identified. =~ Unit-norm quater-
nions (so-called versors), q = (w,v), provide a conve-
nient parametrization of rotation matrices: the three-
dimensional vector v lies along the rotation axis, whereas
the first component w parametrizes the rotation angle,
see Appendix A. Skyrmions are topological objects asso-
ciated with the nontrivial classes of the homotopy group
3 (SO(3)) = Z, which are labeled by an integer index re-
ferred to as the skyrmion charge. The latter is the multi-
dimensional analog of a winding number and admits the
following simple expression in terms of versors:

klm

= ﬁ det [q7 8kq7 8lqa 6’mq] ) (2)

o [arp.
where k,1,m € {z,y, 2} are spatial indices, €5 * is the
Levi-Civita symbol, and det[-,-,-, -] denotes the deter-
minant of a 4 x 4 matrix formed by versors arranged
as column vectors. Our choice of prefactor ensures the
normalization to unity of the skyrmion charge when the
mapping q : S — 53 wraps the target space once.

Formulation of a hydrodynamic theory for skyrmions
requires the stability of these textures, which in turn
yields the local conservation of their charge. In this re-
gard, additional quartic terms (in the derivatives of the
order parameter) in the effective action given by Eq. (1),
which may have a dipolar/exchange origin in real sys-
tems, preclude the collapse of skyrmions into atomic-
size defects.”” We will assume this scenario in what fol-
lows and utilize the rigid hard cut-off ansatz for stable
skyrmions as a simple solution that suffices to estimate
the transport coefficients of our theory:

R(7) = exp | —if(F) & L], (3)

where [La]spy = —i€ap, represent the generators of
SO(3), 7 = |F — R|, and & = (¥ — R)/7 is the unit
radial vector from the center R of the skyrmion. Here,

f(7) =27(1-7/R.)O(Rs — 7), ©(x) denotes the Heavi-
side theta function and the skyrmion radius reads R, =
¢(A/A4)Y?, where ¢ is a dimensionless prefactor and Ay
is the strength of the fourth-order term.”® Note that this
ansatz corresponds to the rotation around é; by the an-
gle f at each point of space. Figure 1 also depicts the
vector field v(7) = sin(f(7)/2)é, associated with the
versor parametrization of the rotation matrix (3), whose
skyrmion charge is Q@ = —1.

Topological invariance (i.e. global conservation) of the
skyrmion charge translates into a local conservation law
embodied in a continuity equation. More specifically, we
can cast the skyrmion charge density as the time compo-
nent of a topological 4-current defined per

_ 1
= @6““”‘2“3 det [q, 0, 4, 0,9, Opa],  (4)

which satisfies the continuity equation 0,j* = 0. Here,
W, 1 2,3 €{t,,y, 2} denote spatio-temporal indices. The
components of the associated topological flux read

v 1

klm
= (2 x Q
7 = s (X ), 5)

in terms of the angular velocity of the order param-
eter, w = iTr [RTf/ 9, R]/2, and the (spin) vectors
Q =4iTr [RTE 81R] /2 describing the spatial variations
of the collective spin rotation that defines the instan-
taneous state of the magnet.” Note that both scalar and
cross products (highlighted in bold characters) take place
in spin space and that, in the versor parametrization;
these quantities can be recast as the Hamilton product
20,9/ q" of the derivatives of the quaternion and its ad-
joint g*, see Appendix A. Similarly, the skyrmion charge
density takes the form

o 1

It is worth noting here that, contrary to the case of baby
skyrmions, the topological charge is even under time-
reversal symmetry, see Appendix A. Furthermore, the
skyrmion flux ; is a pseudovector in real space.

III. SPIN-TRANSFER TORQUES AND
ELECTROMOTIVE FORCES

In the device geometry considered in Fig. 1, the mag-
net is subject to spin-exchange and spin-orbit coupling
with adjacent heavy-metal contacts. In what follows we
invoke a minimal symmetry reduction in the bulk, which
allows the existence of magnetic torques 7 that couple
to the skyrmion flux in Eq. (5), and assume that they
also operate at the interface. Thus, for our purposes, in-
terfaces serve merely as a medium for the charge current
to flow. These torques are only effective in a volume of
width A (along x) in contact with the metal, where this



distance characterizes the spatial extension of the prox-
imity effect between the metal contact and the insulating
magnet.

In order to inject a skyrmion flux j by a transverse
charge current density J, we wish to establish the follow-
ing work (per unit of volume and time) by the magnetic
torque:

PET-(.«.:z—f-(Jﬂxf)7 (7
2e

where 5 is a special vector (with units of length) and the
scalar and cross products in the right-hand side of the
equation (in normal characters) take place in real space.
Note that mirror reflection symmetry must be broken
along 5 for P to be a scalar, i.e. we restrict ourselves
hereafter to Rashba-type magnets with 5 being the cor-
responding principal axis. The latter should ideally be
oriented parallel to the interface. Let us consider the sit-
uation depicted in Fig. 1, where the principal axis lie
along the perpendicular to the basal plane (5 = (é,).
As can be inferred from Eq. (7), we are interested in
the magnetic torques that produce work in favor of the
skyrmion motion along the longitudinal direction (z axis)
when they are induced by a charge current density flow-
ing along the transverse direction (y axis). With account
of Eq. (5), we obtain from Eq. (7) that the spin-transfer
torque providing such a work is given by

h

T:m(j‘ﬁ)x(f'ﬁ)- (8)

This torque involves two spatial derivatives of the order
parameter and is dissipative, implying that the injection
of skyrmion charge requires a strong spin-orbit interac-
tion. Heavy-metal contacts like platinum contain this
basic microscopic ingredient, and the effect is likely to
be enhanced by the application of a perpendicular elec-
tric field (E o ¢) just due to the conventional Bychkov-
Rashba effect.”” Spin torques of the form o J - € do not
couple to the topological flux ; and will thus be disre-
garded, along with other torques at the same order of
expansion, e.g. T X VE (ﬁ X ﬁ), that are irrelevant to
the skyrmion-injection physics.

Skyrmion diffusion over the magnet yields a pumping
electromotive force in the second terminal, whose expres-
sion can be obtained by invoking Omnsager reciprocity.
Currents and thermodynamic forces are related by the
following matrix of linear-response coefficients:

8,5R k- Cx- .A* . fR
at?’b =| % v XAB X L§q j",:1 , (9
T R T E

where fz = —6F/6R and fr, = —6F/0m = —m/x+vB
= —w are the thermodynamic forces conjugate to the or-
der parameter and the nonequilibrium spin density, re-
spectively, and E represents the electromotive force. For
our construction, we only need to focus on the charge and

3

spin sectors, which are related by ﬁsq, ﬁqs (other linear-
response coefficients, denoted by - -, are inconsequential
for our discussion); B is an external magnetic field, ~ is
the gyromagnetic ratio, and J is the conductivity ten-
sor that we assume symmetric (i.e., purely dissipative).
Note that it is not obvious whether Onsager reciprocal
relations can be applied to the order-parameter sector,
because the SO(3) matrices R are defined with respect to
the initial (mutual equilibrium) spin configuration defin-
ing a free-energy basin, and microscopic time-reversal
symmetry relates different (and possibly disconnected)
basins. However, the nonequilibrium spin density m does
not depend on the initial configuration and, therefore, the
situation for the spin-charge sectors is analogous to that
of bipartite antiferromagnets.”’ For the torque in Eq. (8)
we have

[qu] o T

and, since the off-diagonal blocks are related by the re-

ciprocal relation f/qs = —ﬁg;, the pumping electromotive

force £ = 19’1iq5 fm generated in the right terminal be-
comes:

h
Ton20 CaBY Vij Cr 258 Qs (10)

EZTZ%M. [ (¢-0)] = QE Fxi A

IV. SKYRMION DIFFUSION AND SPIN DRAG

Dynamics of the soft modes (center of mass) describing
stable skyrmions obey the Thiele equation

MALTHR=T, (12)

where M = 157 (72 + 3)x R, is the skyrmion inertia and

fz —0F/ R represents the thermodynamic force conju-
gate to the skyrmion center, see Appendix B. The fric-
tion coefficient I' = as M/ x is proportional to the Gilbert
damping constant o parametrizing losses due to dissipa-
tive processes in the bulk,"’ where s ~ hS/a®, S is the
length of the microscopic spin operators and a denotes
the lattice spacing. Local (quasi-)equilibrium within a
free-energy basin along with translational invariance in
the bulk yields Fick’s law for the topological flux:

;: -D 6j03 (13)

where the diffusion coefficient is related to the friction
coefficient via the Einstein-Smoluchowski relation, D =
kgT/T. Hereafter, we assume that the current is injected
into the frustrated magnet from the left contact in the
two-terminal geometry depicted in Fig. 1. We also as-
sume translational invariance along the transverse direc-
tions (i.e. the yz plane). The latter, combined with the
continuity equation for the topological 4-current, yields
the conservation of the longitudinal bulk skyrmion cur-
rent in the steady state. It reads j& . = D(j9 — j%)/Ls,



with j% /R and L; being the skyrmion charge density at
the left/right terminals and the distance between them,
respectively.

The topological current at the boundaries of the mag-
net can be cast as

YL (T)hCATL
ekBT

L = — ()i, (14a)

(14b)

where . (T) = v(T)e FPav/kBT i the equilibrium-
nucleation rate of skyrmions at the left interface,
v(T) and FEg., denote the attempt frequency and the
skyrmion energy, respectively,’” and 7 r(T) represents
the skyrmion annihilation rates per unit density."’ The
electrical bias in the left terminal favors the nucleation
of skyrmions with positive topological charge by lower-
ing the energy barrier in an amount equal to the work
carried out by the magnetic torque in Eq. (8); the ex-
pression in Eq. (14a) corresponds to the leading order
in the external bias.”! Continuity of the topological flux
sets the steady state, characterized, in linear response,
by the drag resistivity

ARY,
Ry + Rp, + RR’

Qdrag = (15)

defined per the ratio of the detected voltage per unit
length to the injected charge current density. Here,
Rg = h/2e? ~ 12.9 kQ is the quantum of resistance

and Rpuk, i1 /g denote the drag resistances of the bulk
and interfaces of the frustrated magnet, respectively,

R 27T2FLt
bulk = 5550 » L/R =
u 62C2]gq /

om2kpT

€22y r(T)’ (16)

where j& = vo,r(T)/7L,r(T) = poe For/kBT is the

skyrmion density at equilibrium.

V. DISCUSSION

The channel for spin transport rooted in the diffu-
sion of skyrmion charge becomes suppressed in the low-
temperature regime, as the proliferation of skyrmions
in the bulk of the magnet dies out with probability
o e~ Fsv/kBT  The frustrated magnet, however, sustains
stable spin supercurrents in the presence of additional
easy-plane anisotropies, the latter precluding the relax-
ation of the phase-coherent precessional state into the
uniform state. This coherent transport of spin may be
driven by nonequilibrium spin accumulations at the left
interface, which are induced by the charge current flowing
within the first terminal via the spin Hall effect.” Further-
more, in the absence of topological singularities in the
SO(3) order parameter (namely, Zo vortices) degradation
of the spin superflow only occurs via thermally-activated

phase slips in the form of 47-vortex lines.” These events

Odrag
s max
> erag
! 2 =
Spin O B
superfluid Skyrmion E
conductor L
=
0 kT
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o, L
" 4etastyLy

FIG. 2: Sketch of the thermal dependence of the total drag
resistivity Qdarag = ggfag + ijlzg for frustrated magnets with
weak easy-plane anisotropies.

are exponentially suppressed at low temperatures (com-
pared to the easy-plane anisotropy gap). On the other
hand, we can show through the analog of the Mermin-Ho
relation™* derived in Appendix A,

V x Jy = _(A/z)eaﬁvﬁﬁ X ﬁ’yv (17)

that skyrmions crossing streamlines in a planar section of
the magnet do not contribute to the generation of phase
slips in the superfluid.’” Here, J, = —A€, denotes
the a-component of the spin supercurrent. Therefore,
in magnetically frustrated systems with weak easy-plane
anisotropies, we expect to observe a smooth crossover
from a spin superfluid to a skyrmion conductor driven
by temperature, as depicted in Fig. 2. For a large sep-
aration between terminals, L, > 1/Typ g, hgr r/4mas
(g9r,r are the effective interfacial conductances), the drag
coeflicients for both transport channels reduce to

2 2y 0 2
gy = (B ea  por (B g
drag e) 2oL,  Cdms 2¢) astyl;’

where Y5 and tg denote the spin Hall angle in the metal
contacts and the thickness of the detector strip, respec-
tively. Note the algebraical decay gfllg’gSF o 1/L; and the
opposite sign of the drag resistivities in these two spin-
transport channels. The latter can be intuitively under-
stood as the manifestation of the different symmetries
under time reversal of the flavors encoding the informa-
tion and dragging of the electrical signal: while in the
case of the superfluid this is just the spin flow ascribed
to coherent precession, in the case of the skyrmion con-
ductor the signal is mediated by the flux of the associated
topological charge, which is even under time reversal. We
note in passing that, remarkably, skyrmions do generate
hopfions through the fibration S® — S2 described by a
given element of the internal spin frame.*® Finally, exper-
imental platforms well suited to host Shankar skyrmions




and observe the aforementioned crossover are amorphous
magnets, in particular amorphous yttrium iron garnett
(a-YIG), in which nonlocal spin transport measurements
have been recently reported.

In conclusion, we have established the hydrodynamic
equations governing the diffusion of skyrmion charge
within the bulk of frustrated magnetic insulators. Inter-
facial spin-transfer torques inject topological charge into
the system, whose steady flow sustains a spin drag sig-
nal between the metallic terminals. The algebraic decay
of the drag coefficient over long distances manifests the
topological robustness of Shankar skyrmions in the SO(3)
order parameter. We also remark that S? hopfions could
be pumped into the frustrated magnet by suitable spin-
transfer torques, therefore giving rise to a third channel
for low-dissipation spin transport. The program devel-
oped in this work can, in principle, be extended to S2
hopfions, with the caveat that the Hopf charge density is
nonlocal in the order parameter'’ and that it is unclear
whether these topological excitations are stable within
Skyrme-like models.
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Appendix A: Versor parametrization

In this Appendix we show that versors (i.e., unit-norm
quaternions) provide a convenient parametrization of ro-
tation matrices. To begin with, note that SU(2) is the
universal (double) covering of SO(3) and is also isomor-
phic to the unit hypersphere in R*. The latter means that
we can represent a generic SU(2) matrix U by means of
a 4-component (real) vector q = (w, v):

U=wl—iv-0=wl—iv,6, —ivydy —iv,6,, (Al)

where o = (6, 6y, 6,) is the vector of Pauli matrices and
v = (v, Uy, V) denotes the vector part of the quaternion
q. Note that the normalization condition w? 4+ v? =1
arises from the unitary character of SU(2) matrices. The
SO(3) matrix R associated with ¢ € SU(2) reads

Rop = (1 -2 \v|2) dap + 2008 — 2€0py WUy (A2)

Since q and —q parametrize the same rotation R7 we
conclude that SO(3) = RP?, namely the group of proper
rotations corresponds to the hypersphere S? with antipo-
dal points being identified. In this parametrization of ro-
tations, v lies along the rotation axis and the first com-
ponent w parametrizes the rotation angle.

The set {1,—i6,,—ié,, —i6,} defines the basis of
quaternions as a real vector space, where addition and

multiplication by scalars is as in R*. The algebra of
Pauli matrices defines a multiplicative group structure,
the Hamilton product,

q1 Az = (wiwe — vy - V2, w1V + Wav1 + V1 X V2).

(A3)

The adjoint of q = (w,v) is q* = (w,—v), so that the
norm /q* A q (=1 in the case of versors) is a real num-
ber. Note that the Hamilton product provides a con-
venient representation of the usual matrix product in
SO(3), since q* corresponds to RT and R; - Ry corre-
sponds to q; A qa.

Finally, the O(4) nonlinear c—model takes the follow-
ing simple form

£—9 / PR O ANa— Adiq* A D), (Ad)

in terms of versors. A simple spin-wave analysis of this
Lagrangian yields, akin to Néel antiferromagnets, three
independent linear dispersion relations characterized by

the sound velocity ¢ = v/ A/x.

1. Spin currents in versor parametrization

We first introduce the fields €2, = iTr [RTf/ GNR]/Q,
which describe time (g = t) and spatial (u = x,vy,2)
variations of the collective spin rotation defining the in-
stantaneous state of the magnet,

$0, U (t,7) = (R (4, 7) - S)U (t,7) . (A5)
Here, [Lo]gy = —i€ap, are the generators of SO(3) and
€ap~ is the Levi-Civita symbol. In particular, 2; = w is
the angular velocity of the order parameter R. The spin
current is given by J=-A ﬁ, as inferred from the Euler-
Lagrange equations, where Q= Quép + Qyé, + Q6.
With account of the versor parametrization, Eq. (A2),
we obtain the identity

Q, = 2wi,v — 2v0,w + 2v x v, (A6)
which is just €, = 20,9 A q* as deduced from the
definition of the Hamilton product, Eq. (A3). Note
that the scalar part of d,q A q* is identically zero,
wOw + Va0 v = 0.

The following identity holds in the absence of singu-
larities in the order parameter:

O Ry = Oy Ry =y X Qpuye 1, iz € {t, 2,9, 2}
(AT)

In terms of the a-component of the spin current, ja =
—AQ,, the above equation for spatial subindices can be
recast as

6 X j;,( = —éeaﬁfy ﬁg X ﬁfy, (AS)



which is analogous to the Mermin-Ho relation in *He-A.
Equation (A7) can be easily proved in versor notation
since

altlnuz - 6#2 Q/u =2 8H2q A 8#1 q* -2 8H1q A 8#2 q*
=Q, XQ,,, (A9)
so long as the order parameter is singe-valued and, there-
fore, 0,,,0,,9 = 0, 0,1, Q.

The internal spin frame of reference is defined locally
by the tetrad of vectors é, = R- &, a = z,y, z. By pro-
jecting Eq. (A7) onto these director vectors, we obtain

é, - (Ql X QJ) =é, - (Biéa X 8jéa). (AlO)
Furthermore, the projection of the spin current onto the
vectors { €, }, defines the components of the internal spin
current, namely the spin current measured in the internal
spin frame of the texture:

j(oz) =€y J= [RT *f:| (A11)
Equation (A7) can be recast as
- - A . . .
{V X J(a)}k = _EEijk €y (8iea X ajea), (A12)

which implies that the circulation of the a-component of
the internal spin current along a closed loop is propor-
tional to the solid angle subtended by the surface defined
by é, on the planar section enclosed by the loop. There-
fore, in the absence of singularities in the order parame-
ter, the spin current can only decay in multiples of 47.A4
because the solid angle is quantized in units of 47 (pro-
vided that é, points towards the same direction far away
from the phase-slip event).

2. Versors under parity and time-reversal
symmetries

The order-parameter manifold of magnetic systems
with frustrated interactions dominated by exchange is
generically built upon applying SO(3) rotations to a given
ground state GG, which corresponds to a classical solution
(a minimum) of the free-energy landscape.”'"'® These
rotations connect physically distinguishable spin configu-
rations with the same energy. Nonequilibrium deviations
within the free-energy basin are described by smoothly
varying (in space and time) elements of SO(3) in this
approach. .

Let P and T be the operators (in spin space) cor-
responding to the representations of parity and time-
reversal symmetry operations, respectively. Note that
the action of these symmetries on the ground state |G)
leads to isoenergetic states |G’) that belong in general
to other energy basins. The spin rotation operator u
acting on the whole set of spins is the direct sum of ir-
reducible representations of SU(2) acting on individual

spins S; (¢ labels here the spatial position). The identi-
ties |G') = TU|G) = UT|G) and |G”) = PU|G) = UP|G)
follow from

1
= _Si7

S, T
s, P =s,,

H)

(Al13a)
(A13b)

vl

so that ISZ/AIIAD_l =U and TU T_l = . With account of
Eq. (A1), we have the identities

PN P | IO BT |

e PUP =PwP —iPvP -PoP (A14)
:w—iv~0=a:>q»£>q,
P RS O PO

e TUT =TwT +:iTvT -ToT (A15)

. - T
=w—ivw-oc=U=q—q,

Thus, the quaternions that parametrize SO(3) rota-
tions (with respect to the new basin) remain invariant
under the inversion operations.

Appendix B: Collective-variable approach for
skyrmions

Time dependence of the SO(3)-order parameter for the
hard cut-off ansatz is encoded in the soft modes of the
skyrmion texture, namely its center of mass: R(t,7) =

I%[Ff ﬁ(t)] . At the same time, the canonical momentum
I conjugate to R reads

ﬁ:—/dgf’m-ﬁ. (B1)

With account of the equation of motion, m = yw, and of
R~ — (iﬁ . ﬁp)é for rigid skyrmions, we can write the
canonical momentum as II; = M;; R;, where the inertia
tensor takes the form:

M;; = X/d?’?? Q;-Q; = 4x/d37_" (O;wdjw + dyv - O;v)

= My, (B2)
with M = 187 (72 + 3)xR,. For the final result, we have
used the ansatz given in the main text.

We model dissipation by means of the Gilbert-Rayleigh
function

R[R] = % / d'rw? = / &7 T [0 BT O, R
(B3)
which provides the dominant term in the low-frequency

(compared to the microscopic exchange J) regime.
Within the collective-variable approach it becomes

RIR] = 3 = My

K.M)%, Ty = =,

(B4)

DN =



where T = x/sa represents a relaxation time. There-
fore, the Euler-Lagrange equations for the skyrmion cen-
ter (the so-called Thiele equation) turn out to be:

(o))

10

11

12
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14

15

16

17

18
19

M§+Mi§=f,

7 (B5)

where f = —d05F is the conservative force.
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