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 To describe all possible injection locking configurations of spin torque nano-oscillators (STNO), previous analytical descriptions are extended by introducing the most general form of the driving force: ࣠ ן  ߰ݏଵܿߝ  ~ ) We provide the expressions of the corresponding forcing functions ࣠ for the six basic conservative and dissipative forcing torques .߰ ݊݅ݏଶߝ݅ ൈ ࢛  and ~ ൈ  ൈ ݅ with  ࢛ ൌ ,ݔ ,ݕ ݖ ), and demonstrate at the example of a uniform in-plane magnetized STNO, that the general case (|ߝଵ| ≠ |ߝଶ|) as well as special cases, can occur depending on: (i) the nature of the forcing torque, (ii) the direction ࢛ with respect to the equilibrium direction, (iii) the harmonic order ݊ and (iv) the operation point (dc current). These relations provide a straightforward means to analyze more complex forcing torques such as a rotating field or the superposition of damping-like and field-like spin transfer torques. Besides the phase properties we also address in detail the power properties of the injection locked state for which two new parameters are introduced: the locking power range ߎ߂ and the power angle ߰. They can provide important complementary information on the driving forces from experiment. The general description presented here is not limited to STNOs and is valid for any non-isochronous auto-oscillator driven by an elliptical forcing of conservative or dissipative nature.  
 

I. INTRODUCTION 

Many studies1-9  have experimentally demonstrated the possibility to injection lock spin torque nano-oscillators (STNOs) to a spin polarized rf current or an rf field. Injection locked STNOs can serve to overcome the problems associated with signal stability, can be efficient rf frequency dividers10 or can enhance the efficiency of the conversion of rf power into a dc voltage signal for energy harvesting applications11,12. They are also the building blocks for the development of mutually synchronized STNOs13-19 which has made recently, for nanocontacts20,21 and nanopillars22,23, many progress in terms of experimental feasibility.  
The injection locked STNO can be studied numerically by solving the Landau-Lifshitz-Gilbert-Slonczewski equation (LLGS). For example, locking to a spin polarized rf current was addressed24-29 to investigate hysteresis and temperature effects of the locking range, the transient states, the phase slips or the role of the field like torque. Analytically injection locking was treated for several symmetrical cases and vortex STNOs by 
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linearization of LLGS to derive the locking range30-33 through the well-known Adler equation34. An alternative analytical approach is based on the Hamiltonian formalism for spin waves35,36 which consists in the transformation of the LLGS equation into a general non-isochronous auto-oscillator equation for a complex oscillator variable. This transformation was applied first to STNOs in the autonomous regime35,37,  then extended to the non-autonomous regime including external driving signals36. This framework can also explain many properties of the injection locked STNO such as the locked phase1,2,3, the non-Adlerian transients7,27,38, the general concepts of fractional synchronization3 and hysteretic behavior8.  
While most of these descriptions focused on the locking to an rf spin polarized current and on the phase dynamics in the stationary locked state, less has been reported on: (i) the locking to rf fields3,5,8,31 or several locking forces acting simultaneously25, (ii) the differences or common features of all different injection locking configurations for conservative (rf fields) or dissipative (rf currents) driving signals, (iii) the properties of the locked oscillation power in addition to the locked phase27,39 and (iv) the dependence of the locking properties on the free running oscillation power. All these issues should be addressed in order to significantly help defining efficient and robust injection locking schemes for various applications of signal generation or detection. 
In order to answer these questions, we have extended existing analytical descriptions based on the Hamiltonian formalism in section II.A. The main modification to describe the dynamics of the complex oscillator variable is the introduction of a general forcing function ࣠ ן  ߰ݏଵܿߝ  |ଵߝ| that is called elliptical, since the real and imaginary parts are unequal ߰ ݊݅ݏଶߝ݅ ് |ଵߝ|) ଶ|. This contrasts most descriptions of injection locked STNOs in literature that use circular forcingsߝ| ൌ ~) ଶ|). We provide the stationary solutions of the injection locked phase as well as the power for a general non-isochronous auto-oscillator under elliptical forcing. Notably, the discussion of the power is important because it provides a new powerful tool to characterize experimentally the injection locking properties. In section II.B, we summarize the transformation of the LLGS equation to the general oscillator equation following Ref35,36. Then, we provide the corresponding transformations of the six basic forcing torques, which are three conservative torquesߝ| ൈ ~) and three dissipative torques (࢛ ൈ  ൈ ݅ the direction of the spin polarization or driving field and ࢛ with (࢛ ൌ ,ݔ ,ݕ  Through this, we provide the corresponding expressions of the forcing .ݖ
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parameters ߝଵ and ߝଶ for the basic forcing torques in terms of the free running power and in the case of STNOs the ellipticity of the precession trajectory. Any other forcing torque can then be derived from this through a linear combination. In section III, the analytical results will be compared to numerical simulations for specific cases that are of interest for experiments and applications. We discuss the dependence of the power deviation ߜ vs detuning, the dependence of the synchronization properties as a function of dc current and also demonstrate that the derived expressions provide a straightforward means to analyze injection locking of more complex locking torques. 
 

II. THEORITICAL ANALYSIS 

A.  General non-isochronous auto-oscillator under elliptical forcing 

Stationary solutions. The dynamics of non-isochronous auto-oscillators is described by the oscillation power  and the angular frequency ߱ሺሻ ൌ ߱ሺ0ሻ  ݏ where ܰ is the non-linear frequency shift and ߱ሺ0ሻ the angular frequency at zero power. Under injection locking to an external driving signal of the form ܰ ൌ ܽ ܿݏ൫߶൯ (with amplitude ܽ  0 and the angular frequency ߱), the dynamics of the forced motion expressed in the rotating frame through the complex variable36,40 ݀ ൌ ඥݔ݁ ሺ݅߰/݊ሻ, is given by Eq. 1.  
ሶ݀ ൌ ݅ ቀ߱ሺሻ െ ݊߱ቁ ݀ െ ሻ݀ାሺ߁  ߁ି ሺሻ݀  ࣠ሺ, ߰ሻ݀                                                   ሺ1ሻ 

Here ߰ is the phase difference between the phase of the oscillator and that of the external generator ߰ ൌ  ݊߶ െ ߶ and n is the harmonic order defined by the ratio between the generator to the oscillator free running frequency ߱ ൎ ݊߱ሺሻ. 
The forcing function ࣠ሺ, ߰ሻ, given in Eq. 2, is written as a complex elliptical function, where the real forcing parameters ߝଵ  0 and ߝଶ respectively scale the real and imaginary part that act on the power respectively phase.  

࣠ሺ, ߰ሻ ൌ ܽሾߝଵሺሻܿݏሺ߰ െ ሻሻሺߠ  ሺ߰݊݅ݏሻଶሺߝ ݅ െ  ሻሻሿ                                               ሺ2ሻሺߠ
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The angle ߠ defines the orientation of the forcing in the complex plane. The exact expressions of ߝଵሺሻ, ߝଶሺሻ and ߠሺሻ depend on p and ݊ and, as in the case of STNOs, on the ellipticity of the trajectory (details see Sec. II B). They reflect the way the external signal source couples to the oscillator trajectory3,36,37, and therefore have to be derived for each type of oscillator and injection locking case separately. 
In order to obtain the stationary solution of the injection locked state, Eq. 1 is linearized around the free running state36 ሺ߱, ߜ is shifted by a small amount  ሻ assuming that ൌ  െ  ا 1. With this, one obtains the expressions given in Table I for the phase difference ߰ and the power deviation ߜ as a function of the frequency detuning ߜ ൌ ݊߱ െ ߱ and the locking range ߗ߂. As compared to Ref36, ߗ߂ and the phase difference ߰  at zero detuning ߜ ൌ 0 are generalized to the case of elliptical forcings ࣠ሺሻ, by rescaling  the normalized non-linear frequency shift parameter ߥ with the ratio ߝଵ/ߝଶ. This leads to a new factor λ ൌ ൌ ߥ is defined through36 ߥ ଶ.  Hereߝ/ଵߝ ߥ ,ଵߝ  scales with ݊, however sinceܽ/ߗ߂  given in Table I, it may be tempting to conclude thatܽ/ߗ߂ . It is noted, that from the expression߁  with the power damping rate߁/ܰ    .ଶ depend themselves on n this dependence is more complicated and an example will be discussed in Sec. III.C for spin torque oscillatorsߝ
TABLE I. Summary of the solutions and the synchronization parameters (λ ൌ  .ଶ) for a non-isochronous oscillator under elliptical forcingߝ/ଵߝߥ

 Phase  Power  

Solution ߰ ൌ ݊݅ݏܿݎܽ ൬െ ൰ߗ߂ߜ  ߰ ߜ ൌ ߎ߂ ݏܿ ൭߰ െ ݊ܽݐܿݎܽ ൬ ଶߗ߂√ߜ െ ଶ൰൱ߜ  
Range ߗ߂ ൌ ݊ ܽ |ߝଶ|ඥ1  λଶ ߎ߂  ൌ ܽ Γଵߝ                     
Angle ߰ ൌ ሺെλሻ ݊ܽݐܿݎܽ ߠ  ൜0, ݂݅ ଶߝ ൏ ,ߨ0 ݂݅ ଶߝ  0  ߰ ൌ ߰ െ ߠ ൌ ଶߝ ݂݅   ,ሺെλሻ  ൜0݊ܽݐܿݎܽ ൏ ଶߝ ݂݅   ,ߨ0  0  

 

 Table I provides the expression for the power deviation ߜ, introducing two new parameters: ߎ߂ the locking power range and ߰ the power angle. The power range ߎ߂ gives the maximum power deviation ߜ and depends on the generator amplitude ܽ as well as the ratio ߝଵ/߁. The latter dependence can be interpreted as 
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the competition between the power component of the forcing ߝଵ that tries to increase the power deviation ߜ and the restoring force proportional to ߁ that tries to bring the oscillation back to the free running limit cycle .  
The power angle ߰ influences strongly the shape of the power deviation ߜ within the locking range. This is demonstrated in Fig. 1 where the normalized power deviation ߎ߂/ߜ from Table I is plotted as a function of the normalized detuning ߗ߂/ߜ for different values of ߰. For  ߰ ൌ 0  ሺor ߨሻ, the power deviation describes a half circle in the positive (negative) plane, for ߰ ൌ 2/ߨ (or 32/ߨሻ it is linear and for any other value of ߰ the shape of the power deviation is a superposition of a half circle and a linear curve. Since ߰ is given by  λ  (see Table I) the shape of the power deviation ߜ within the locking range depends on λ and therefore contains many valuable information on the oscillator isochronicity and/or on the ratio ߝଵ/ߝଶ of the forcing parameters. The different limit cases of λ are discussed next for which the synchronization parameters simplify.  
 

 FIG.1. Normalized power deviations ߎ߂/ߜ as a function of the normalized detuning ߗ߂/ߜ for several values of ߰  for ߰ ߎ߂/ߜ as indicated on the figure. To obtain ߨ  ൫߰ߜ one has to use the axial symmetry ߨ  ,ߨ ൯ߜ ൌ െߜሺ߰, ߎ߂  periodicity in ߰.  The special solution of-ߨሻ, with a 2ߜ ൌ 0 leads to ߜሺߜሻ ൌ 0 (black dashed line).   (i) Non-isochronous oscillator and/or power forcing |ૃ| ≫ : This case occurs when the system is very non-isochronous |ߥ| ≫ 1 and/or when the power forcing is larger than the phase forcing parameter ߝଵ ≫ ଵߝ) ”ଶ. As a consequence, the forcing function Eq. 2 is approximated by a “power forcingߝ ് ଶߝ ,0 ൎ 0), i.e.: ෨࣠ ൎ ࣬݁ሺ࣠ሻ. Furthermore, ߰ takes only two possible values ߰  ൌ ሺfor ܰ>0) and ߰ 2/ߨ   ൌ ߜ and as shown in Fig. 1 the power deviation is linear and given by (for ܰ<0) 2/ߨ3  ൌ ሺߗ߂/ߎ߂ሻߜ ൌ  ሺ݊ܰሻ. This relation/ߜ
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expresses that in the locked regime the oscillator adapts its power ߜ to match the frequency detuning corresponding to the non-linear frequency-power dependence of the free running regime.  
(ii) Isochronous oscillator and/or phase forcing |ૃ| ا  : This case occurs when |ߥ| ا 1  and/or |ߝଵ/ߝଶ| ا 1. For |ߥ| ا 1, the oscillator is isochronous so that the phase difference ߰ and the power deviation ߜ will be decoupled. With ߰ ൌ െܽ݊ܽݐܿݎ ߣ ൎ 0  the dependence of ߜ ݏݒ ߜ describes a half circle, see Fig 1. For |ߝଵ/ߝଶ| ا 1, the forcing function Eq. 2 can be approximated by a “phase forcing” (ߝଵ ൌ ଶߝ ,0 ് 0) that only acts on the phase difference ߰: ෨࣠ ൎ ݅ ࣣ݉ሺ࣠ሻ. An important consequence is that in this case the variation of the power deviation ߜ is zero (0=ߎ߂). Both situations |ߥ| ا 1 and/or |ߝଵ/ߝଶ| ا 1 lead to a strong reduction of the locking range ߗ߂. It is emphasized that even for large |ߥ|, this limit case can occur when the ratio |ߝଵ/ߝଶ| ا 1 and an example will be given for STNOs in Sec. III. 
(iii) Special cases |ૃ|~ and |ૃ| ൌ since ߰ ߜ will be asymmetric with ߜ For the case of |λ|~1, the full elliptical forcing function Eq. 2 has to be considered, the locking range will be enhanced moderately by ~√2  and the power deviation :|ࣇ| ൎ |In the case of circular forcing |λ .(compare Fig. 1) ,4/ߨor 3 4/ߨ ൌ |ଵߝ| ଵ andߝthe external driving signal will drive the phase and power with the same amplitude (~ܽ ,|ߥ| ൌ   .the circular forcing also simplifies to the power forcing discussed above. As we will see in Sec II.B, the circular forcing is not the only possible form of driving signal for STNOs. There are situations when the driving remains elliptical or reduces to a phase or power forcing. The discussion of this section on the elliptical forcing function and its special cases will therefore be relevant for experiments on spin torque oscillators as shown next ,ߥ ଶ|). This forcing has been most often considered in the literature to discuss injection locking of STNOs27,36. Note that in the case of largeߝ|

B. Transformation of the LLGS equation using the Hamiltonian spin wave formalism  

In the following injection locking of STNOs is considered where the example of a uniformly magnetized in-plane oscillator of elliptical cross-section is chosen, see Fig. 2a. The dynamics of the free layer magnetization  ൌ ൫݉௫, ݉௬, ݉௭൯, subjected to a current spin polarized in the direction  ൌ ൫݉௫, ݉௬, 0൯, is governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation24,36,41,42,: 
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The right hand side terms are the precession torque, the Gilbert damping torque, the spin transfer torque (STT) (called here damping-like torque DLT) and  is the forcing torque.  is the modified gyromagnetic ratio with  = 2.21 105 m.A-1.s-1, the Gilbert damping constant,  the DLT constant and  the injected dc current density. The field-like torque (FLT)  with the FLT constant  is, for simplicity, neglected for the free running regime but its effect on the injection locking can be prominent and will be considered in Sec. III.E. The effective magnetic field , defines the equilibrium direction (Fig. 2a) with  the static applied field,  the demagnetizing field,  the saturation magnetization. is the demagnetizing tensor, its off-diagonal components are zero and its diagonal components obey the relation . Because of this, the motion of the free layer magnetization is strongly elliptical around the x-axis with a small out-of-plane component . The material parameters used are summarized in Fig. 2d and some trajectories are plotted in Fig.3a. 

  
 
     FIG.2. (a) Schematics of the in-plane uniform oscillator with ( , , ) the local coordinate system and  the equilibrium direction. (b) Frequency  as a function of the free running power  (N<0), for the full range of 

(d) LLGS equation Analytical model   (A/m) 106   -0.91  
 (A/m) 31831   (GHz) 6.441   0.02 N/(2π) (GHz) -5.030   (m) -2.5x10-8  (A/m²) -375x109 
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existence of the in-plane precession (IPP) mode defined by: 0 ൏  ൏ 0.52 or equivalently 1 ൏ ߞ ൏ 1.71 or |ܬ| ൏ |ௗܬ| ൏640. 10ଽ²݉/ܣ. The inset shows the conversion of power to current density. It is noted that for   0.52  the excitation mode changes to an out-of plane precession43,41 that is not considered here. (c) Normalized non-linear frequency shift |ߥ| (left scale) and power damping rate Γ/ߨ (right scale) vs power . Note that |ν|≫1 for the oscillator parameters considered here. (d) Table of parameters used for the numerical evaluations based on equations given in the Appendix A and with dimensions of the free layer (in nm) ݈௫ = 90, ݈௬ = 80, ݈௭ = 3.9, demagnetization factors ௫ܰ௫ = 0.0525, ௬ܰ௬ = 0.0594, ௭ܰ௭  = 0.880, ݉௫  = cos(165°), ݉௬  = sin(165°), ݉௭  = 0, linear damping Γீ /ሺ2ߨሻ ൎ 318 MHz, non-linear damping ܳଵ ൎ െ0.350. For a power of  ൎ 0.1 (corresponding to ߞ ൌ 1.07 and ܬௗ = -400x109 A/m²) one obtains: ݂ = 5.974 GHz, ߥ ൎ െ22 and Γ/42.36 = ߨ MHz.   Using the Hamiltonian formalism for spin waves described in Ref35,36, one can transform the LLGS equation Eq. 3, into the general oscillator equation Eq. 1 for the complex variable ݀ where each torque of Eq. 3 has its equivalent in Eq. 1. The details on the precession, damping and spin transfer torque as well as the expressions of the corresponding prefactors of ߱ሺ0ሻ, ܰ, ,ሻାሺ߁ ߁ି ሺሻ of Eq. 1 are given in Appendix A; It is noted that  ߱ሺ0ሻ, ܰ,  ௗ through36ܬ which is defined through ࣜ/ࣛ (with -1 ≤ ࣜ/ࣛ ≤ 1). The free running power is related to  ା depend on the ellipticity of the conservative orbits of߁ ൌ ሺߞ െ 1ሻ/ሺߞ  ܳଵሻ, with the supercriticality ߞ ൌ ܬ  andܬ/ௗܬ ൌ Γீ the critical current density above which stable limit cycles are stabilized. Fig. 2(b, c) shows the evolution of the free running frequency ݂ ߪ/ ൌ ߱/ሺ2ߨሻ, of the amplitude relaxation frequency Γ/ߨ and of the non-linear coupling parameter |ߥ| as a function of . 
The corresponding transformation of the forcing torque ሺሶ ሻி to the general elliptical forcing function ࣠ሺ, ߰ሻ of Eq. 2 has to consider the different possible injection locking cases of STNOs. For example, a driving field ܪܿݏ൫ ߱ݐ൯ࢍ࢛, linearly polarized in a direction ࢍ࢛ , generates a conservative forcing torque ሺሶ ሻࡲ ൌ െߛᇱ ܪܿݏ൫ ߱ݐ൯ ൫ ൈ ൫ݏܿܬ ൯, while injection of a current densityࢍ࢛ ߱ݐ൯, spin polarized in a direction  ൌ ࢍ࢛ , generates in Eq. 3 a conservative and a dissipative forcing torque ሺሶ ሻࡲ  ൌ െߛᇱ ܬܿݏ൫ ߱ݐ൯൫ ܾ   ൈ ࢍ࢛  ܽ  ൈ  ൈ ሶ൯ due to field-like and the damping-like torque contributions. All different types of driving signals can be obtained from a linear combination of only two basic forms of forcing torques: conservative ሺ࢛ ሻி ൌ ܽܿݏ൫ ߱ݐ൯  ൈ ࢛  or dissipative  ሺሶ ሻி ൌ ܽܿݏ൫ ߱ݐ൯  ൈ ሺ ൈ ൫ݏis the static equilibrium direction and ܽܿ ࢛࢞ ሻ each one for three directions in space i = x, y, z, where࢛ ߱ݐ൯ the driving signal. The corresponding transformations are given by the basic forcing functions, written as ࣠ሺ, ߰ሻ ൌ ܽ ࣲ,ሺ, ߰ሻ where subscripts (i, n) indicate that the forcing depends on the direction ࢛ and the order ݊. For the in-plane STNO these transformations are listed in Table 
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II, where we differentiate for clarity between conservative ࣲ, ൌ ࣝ,ሺ, ߰ሻ and dissipative ࣲ, ൌ ࣞ,ሺ, ߰ሻ forcing functions. The detailed expressions of the different forcing terms are quite lengthy and are provided in Appendix B. They take the form of an elliptical forcing (Eq. 2):  ࣲ,ሺ, ߰ሻ ൌ ሺߝ/2ሻሾߝଵܿݏሺ߰ െ ሻߠ ݅ ߝଶ݊݅ݏሺ߰ െ ,ଵሺߝ ሻሿ with the power and phase forcing parametersߠ ࣜ/ࣛ ሻ, ,ଶሺߝ ࣜ/ࣛሻ and an additional parameter ߝሺ, ࣜ/ࣛሻ that scales the strength ܽ of the driving signal. Through ߝ, ,ଵߝ ,ߝ , but for clarity we leave out the indices ݅, ݊  for࢛  and the orbit ellipticity ࣜ/ࣛ. The detailed dependencies differ for the different orders ݊ and directions ଶ  the forcings ࣲ, depend on the free running powerߝ ,ଵߝ ,ଶ. From these basic forcing functions one can obtain immediately the transformation of any arbitrary forcing torque through a linear combination of the basic forcing terms ࣲ,ሺߝ ߰ሻ, as will be illustrated in Sect. IV.E. Before discussing explicit examples, we first discuss some general properties of the forcing terms ࣲ,ሺ, ߰ሻ 
TABLE II. Summary of the transformations of the forcing torques ሺሶ ሻࡲ to the forcing functions ࣠ሺ, ߰ሻ expressed through the forcing terms ࣝ,ሺ, ߰ሻ and ࣞ,ሺ, ߰ሻ for respectively conservative and dissipative forcing and for the three directions ࢛ with ݅ ൌ ,ݔ ,ݕ ,The forcing terms take the form of an elliptical (ell.), circular (circ.) or power (pow.) forcing, see discussion in Sect. II.A. Detailed expressions for ࣲ,ሺ  .ݖ ߰ሻ are given in Appendix B.  

Forcing torque ሺሶ ሻࡲ Forcing type 
Forcing term ࣲ,(p,ψ) ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ ൫ݏܿ 3  ߱ݐ൯  ൈ ,Conservative - ࣝ௫,ଶሺ ࢛࢞ ߰ሻ ሾܿ݅ܿݎ. ሿ - ܿݏ൫ ߱ݐ൯  ൈ ,௬,ଵሺࣝ ’‘ ࢛࢟ ߰ሻ ሾ݈݈݁. ሿ - ࣝ௬,ଷሺ, ߰ሻ ሾܿ݅ܿݎ. ሿ ܿݏ൫ ߱ݐ൯  ൈ ,௭,ଵሺࣝ ’‘ ࢠ࢛ ߰ሻ ሾ݈݈݁. ሿ - ࣝ௭,ଷሺ, ߰ሻ ሾܿ݅ܿݎ. ሿ ܿݏ൫ ߱ݐ൯  ൈ  ൈ ,Dissipative - ࣞ௫,ଶሺ ࢛࢞ ߰ሻ ሾݓ. ሿ - ܿݏ൫ ߱ݐ൯  ൈ  ൈ ,௬,ଵሺࣞ ’‘ ࢛࢟ ߰ሻ ሾ݈݈݁. ሿ - ࣞ௬,ଷሺ, ߰ሻ ሾݓ. ሿ ܿݏ൫ ߱ݐ൯  ൈ  ൈ ,௭,ଵሺࣞ ’‘ ࢠ࢛ ߰ሻ ሾ݈݈݁. ሿ - ࣞ௭,ଷሺ, ߰ሻ ሾݓ. ሿ 

 
(i) Forcing Form: Table II shows that for STNOs all different cases of forcing can occur. More specifically, for ݊ ൌ 1 the forcings are elliptical, for ݊  2, the dissipative forcings ࣞ,ሺ, ߰ሻ are power forcings (݅. ݁. ଶߝ ൌ 0), whereas the conservative forcings ࣝ,ሺ, ߰ሻ are circular forcings (i.e. |ߝଵ/ߝଶ | ൌ 1). For many spin torque nano-oscillators one has ߥ ≫ 1 and thus |λ| ≫ 1, so that the synchronization properties in the case of elliptical 
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and circular forcing can be approximated by those of power forcing. As will be shown below the case of ࣞ௬,ଵ turns into phase forcing at specific values of the power.  
(ii) Harmonic order: For both conservative and dissipative driving signals, injection locking occurs at even orders ݊ ൌ 2, when the driving signal is along the equilibrium direction ࢛௫ and at odd orders ݊ ൌ 1, 3 when it is along an orthogonal direction ࢛௬ or ࢛௭. This confirms experiments and simulations using rf fields and currents3,4,24 . 
(iii) Ellipticity ऌ/ऋ: The exact expressions in Appendix B show that ߝ, ,ଵߝ ݊ ଶ  depend on the orbit ellipticity ࣜ/ࣛ. An important consequence is that for  |ࣜ/ࣛ| = 0 (i.e. for circular orbits) injection locking cannot occur atߝ  2 (power and circular forcings) since here  ߝଵ ൌ ଶߝ ൌ 0. This is consistent with descriptions for out-of-plane precessions24,39 either for a driving by field or current injection. When |ࣜ/ࣛ| is non-zero, each case has to be analyzed separately since not only the forcing parameters ߝଵ,   .and  Γ depend on |ࣜ/ࣛ|, see Appendix A ߥ  ଶ, but also the nonlinear parametersߝ
 (vi) Power dependence: An important aspect of the optimization of the injection locking is to define the operational conditions that for instance provide large locking ranges. Therefore one should inspect in more detail the dependence of the locking parameters of Table I on the power p0 or equivalently on the injected dc current density.  
From Appendix B the forcing terms ࣲ,ሺ, ߰ሻ for ݊  2 are circular or power forcings that depend only on ߝଵ 
which is proportional to ೖమ ሺ ݇ ൌ 0,1,2  or 3). With ߝ~ߗ߂ଵሺሻߥሺሻ, and ߥ decreasing with , see Fig. 2c, the locking range ߗ߂ can thus either increase or decrease with  and each injection locking case has to be analyzed separately to determine the best operation. 
A more interesting situation occurs for ݊ ൌ 1. Here the forcings ࣝ௬,ଵࣝ௭,ଵ, ࣞ௬,ଵࣞ௭,ଵ (see Appendix B) are elliptical functions, with more complex dependencies of ߝଵ, ଵߝ ௗ௬ for ࣞ௬,ଵ where :. From these dependencies two critical values of power can be derived ଶ onߝ ൌ 0 and ௬ for ࣝ௬,ଵ where ߝଶ ൌ 0. As a consequence this leads to singularities in the ratio |εଵ/εଶ| and in |ߣ| vs.  as shown in Fig. 3(b,c) for the in-plane oscillator (with ࣜ/ࣛ ൎ െ0.91). For small powers ( ൏ 0.1ሻ the ratio |ߝଵ/ߝଶ| ൎ 1 and ࣝ௬,ଵ , ࣝ௭,ଵ, ࣞ௬,ଵ, ࣞ௭,ଵ behave all as 
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circular forcings. Upon increasing  the forcings ࣝ௭,ଵ, ࣞ௭,ଵ remain almost circular while for ࣝ௬,ଵ and ࣞ௬,ଵ the ratio |ߝଵ/ߝଶ| and |ߣ| vary a lot, turning ࣝ௬,ଵ into a power forcing at ௬ (|ߣ| ≫ 1ሻ and ࣞ௬,ଵ into a phase forcing at ௗ௬ (|ߣ| ا 1ሻ.  While in the case of ࣝ௬,ଵone does not expect that the synchronization properties are strongly affected at ௬, in the case of ࣞ௬,ଵ one expects at ௗ௬ : (i) a strong reduction of the locking range ߗ߂ (absence of the non-linearity contribution), (ii) zero variation of power (ߜ ൌ ߎ߂ ݀݊ܽ 0 ൌ 0) and (iii) in the vicinity of ௗ௬, a progressive change in the power angle ߰. These peculiar properties are confirmed in Sec. III.B by numerical simulations. Note that for a case of strong positive ellipticity ࣜ/ࣛ ൎ 1 the singularities would have led to a critical behavior in ࣝ௭,ଵ, ࣞ௭,ଵ. These findings are an important illustration of the strong interdependence between the forcings and the orbits and that the exact forcing function has to be derived separately for each injection locking case and for the different operational points. 
 

 
FIG.3. (a) 3D trajectories for the in-plane precession (IPP) mode with ࣜ/ࣛ ൎ െ0.91  for several free running powers  using the parameters of the in-plane oscillator given in Fig. 2. (b)  Evolution of the ratio |ߝଵ/ߝଶ| for four different forcings at n=1, ࣝ௬,ଵࣝ௭,ଵࣞ௬,ଵࣞ௭,ଵ over the full range of the IPP mode existence: 0 ൏  ൏ 0.52 (1 ൏ ߞ ൏ 1.71). The vertical dashed lines correspond to the critical powers ௗ௬ ൌ ௬  0.22 ൌ 0.34 (see Appendix C). (c) Evolution of |λ| ൌ   . εଵ/εଶ| withߥ|
To conclude this part, we point out some limitations of the analytical description. (i) The transformation of the locking torques ሺሶ ሻி for the in-plane uniform STNO provides resonant terms only for the locking order ݊ ൌ 1, 2, 3. It does not describe injection locking for ݊  3 or fractional synchronization3 ݉ ߱ ൎ ݊߱. To 
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describe these situations of injection locking, the analytical description needs to include additional fast oscillating terms. (ii) The analytical description is limited to small amplitudes of the driving signals, leading to linear boundaries of the Arnold tongue defined by ߗ߂/ܽ. This results from the approximation that the forcing functions ࣠ depend only on the free running power  and not on the power deviation ߜ. For larger driving signals the numerical simulations44 (not shown here) reveal non-linear and asymmetrical boundaries of the Arnold tongue as was also found in Ref8,33,45. The derived analytical expressions permit to extend the analytical description to larger values of 44ߜ as will be described elsewhere.   
III. ANALYSIS OF SPECIFIC INJECTION LOCKING CASES 

A. Macrospin solver 

In the following the analytical description of Section II for the in-plane uniform oscillator will be applied to several concrete injection locking cases that are of interest for defining experiments or applications. The first case treats the injection locking for a dissipative forcing ࣞ௬,ଵ at n=1 applied through a spin-polarized current in the polarizer direction to illustrate the singular behavior at the critical power pdy. The second case compares the efficiency of the injection locking by a driving field ࣝ, at different orders n=1, 2, 3 and the last examples treat the superposition of two basic forcing functions. The results will be compared to macrospin simulations to validate the analytical approaches. For this the LLGS equation (Eq. 3) is numerically integrated to obtain the time evolution of the magnetization ሺݐሻ, using a 2nd order predictor scheme46,47 and the material parameters of Fig. 2d. The solutions ሺݐሻ are then numerically transformed into ߜሺݐሻ and ߰ሺݐሻ, using the transformations of Sec. II.B and are averaged over one period. The solutions are analyzed for a given set of control parameters (applied dc field Hdc and applied dc current density Jdc) upon varying the frequency detuning ߜ by varying the frequency of the generator ߱. The dependencies of ߜ and ߰ on the frequency detuning ߜ are then fitted to the solutions of Table I to extract the synchronization properties ∆ߗ, ,ߎ߂ ߰, ߰, which will be compared to the corresponding results obtained from the analytical description.   
B. Injection locking through the dissipative forcing ऎ࢟, supplied by a spin polarized current 
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Injection locking by an rf current density ܬܿݏ൫ ߱ݐ൯ at ݊ ൌ 1, spin polarized along the polarizer direction ࢛ ൌ ,ݔ = ൫݉ ,ݕ݉ 0൯ illustrates the forcing ࣞ௬,ଵሺ, ߰ሻ. The corresponding forcing torque ሺሶ ሻࡲ and the forcing function are given in Eq. 4:  
ሺሶ ሻࡲ ൌ  െߛᇱ ܬܽܿݏ൫ ߱ݐ൯ ቀ݉௬ ൈ ൫ ൈ  ൯ቁ                                                                ሺ4ܽሻݕ࢛

࣠ሺ, ߰ሻ ൌ െߛᇱ ܬܽ݉௬ࣞ௬,ଵሺ, ߰ሻ                                                                      ሺ4ܾሻ 
with the forcing term ࣞ௬,ଵሺ, ߰ሻ given in Table B4 and ܽ ൌ െߛ′ ܬܽ݉௬. 
Fig. 4 shows the corresponding synchronization properties ∆ߗ, ,ߎ߂ ߰, ߰ as a function of the supercriticality ߞ ൌ ߣ ௗ௬ where As expected from the discussion of Fig. 3, due to the singularity at the power .ܿ݀ܬ/ܬ and for a constant ratio of ݎܿܬ/ܿ݀ܬ ൎ 0, and where the elliptical forcing turns into phase forcing, the locking range as well as the locking power are reduced by two orders of magnitude.  At the same time the phase difference at zero detuning ߰ exhibits a jump of ߨ, see Fig. 4c and the power angle ߰ goes to infinity, see Fig. 4d. These variations result from a sign change of ߝଶ and the ߨ increment of ߠ at the critical point.  
According to the discussion on Fig. 1, the strong change of ߰ with ߞ is expected to lead to a strong variation of the power deviation ߜሺߜሻ with the supercriticality ߞ. This is confirmed in Fig. 5(a-c). For small ߞ ൌ 1.06, the elliptical forcing function ࣠ can be approximated by a power forcing using ෨࣠ ൌ ࣬݁ሺ࣠ሻ because for the STNO considered here ߥ ≫ 1. This leads to ߰ close to 32/ߨ  (see Sect. IIA) and a linear dependence of ߜሺߜሻ, as shown in Fig. 5a. Increasing the supercriticality  to ߞ ൌ 1.19 the power forcing starts to turn into a phase forcing and ߰ takes a value between 32/ߨ and 2ߨ, explaining the transition from a linear to a tilted parabolic dependence of ߜሺߜሻ, see Fig. 5(b,c). At the critical power ௗ௬ ൎ 0.22, corresponding to ߞ ൎ 1.2, compare Fig. 3b, the analytical model predicts a pure phase forcing ෨࣠ ൌ ࣣ݉ሺ࣠ሻ, leading to 0= ߎ߂ and hence 0=ߜ.  However, the simulated power range ߎ߂ in Fig. 4b and the power deviation ߜ in Fig. 5d are small but not equal to zero, the solutions are asymmetric with the detuning ߜ and the phase difference ߰ (inset of Fig. 5d) does not show the typical arcsine shape predicted from the Adler equation. From this, it is concluded that in the close vicinity of the critical power pdy, the synchronization cannot be fully described by the analytical 
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solutions of Fig. 1 because non-resonant terms have been neglected in the transformation (see Sec. II.B) that might start to become important to correctly describe the power variation ߜ around pdy, 
Except these deviations for ߜ at the critical power, there is otherwise a very good agreement between the analytical description using ࣞ௬,ଵand the numerical results for all locking parameters, see Fig. 4 and the power deviation see Fig. 5 throughout the full range of super-criticalities considered here. This confirms the validity of the analytical description, in particular the occurrence of the critical power. It is an important finding relevant for experiments since the corresponding value of the supercriticality lies in the range used in common experiments.  
With respect to experiments we would like to make a general comment on the power deviation ߜ. The oscillation power  discussed up to now relates to the theoretical oscillation amplitude of the complex variable d: p=|d|². This should not be confused with the experimentally measured electrical power which in the case of STNOs can be the power spectral density measured on a spectrum analyzer1,2,3,48 or a dc rectified signal11,12 measured by a voltmeter. In magneto-resistive nanopillars the electrical power is given by the projection of the free layer magnetization on the polarizer magnetization. Thus for a given STNO configuration it is in principle possible to establish a relation between the oscillation power p=|d|² and the measured electric signals, even though this might not be straightforward for all STNO configurations. Independent of the details of this relation, an analysis of the experimentally measured power deviation as a function of detuning should reflect the dependencies of the theoretical power deviations ߜ presented in Fig. 1. In particular for the case of power forcing (ߥ and/or ߣ ≫ 1) where the power deviation ߜ varies linearly, it is expected that the experimentally measured power deviation vs. detuning is linear with a slope that reflects the relation between the free running frequency and power. Similarly, in the case of pure phase forcing, the electrical measured power deviation is expected to be zero. This analysis provides valuable additional information on the oscillator and its synchronization properties, an aspect that has been neglected in most descriptions on injection locking.  
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FIG.4. Injection locking using a spin polarized current polarized along  for ݊ ൌ 1. (a) locking range ߗ߂, (b) power range ߎ߂, (c) phase shift at zero detuning ߰, (d) power angle ߰ are shown as a function of ߞ, in the range of 1 < 1.41 > ߞ ( > 0 < 0.39) with  ܬ/ܬௗ= -3x10-3. For larger driving amplitudes, the model induces an asymmetry of the Arnold tongue and is no longer valid. All other parameters are the same as in Fig. 2. Results are compared for simulations (open dots) and analytical calculations using the elliptical forcing (red line) ࣠ ן   .Eq. 4b 1,ݕࣞ

 
FIG.5. Power deviation ߜ versus the normalized detuning ߜ/∆Ω for different ߞ using parameters of Figs. 2,4. Black dots correspond to the simulation results. Red line is a fit to the solutions of Table 1 used to extract ߎ߂ and ߰ from the 
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simulations. (a) ߞ ൌ 1.06, ߰ = 277°. Grey dashed line: prediction by the exact forcing ࣠ using ߰ = 275° with ߜ≈ߜ/N. (b) ߞ ൌ 1.17, ߰ = 316°. (c) ߞ ൌ 1.19, ߰ = 337°. (d) ߞ ൌ 1.20 corresponding to the critical power ௗ௬≈0.22. Grey dashed line: prediction by the exact forcing ࣠ ൌ ࣣ݉ሺ࣠ሻ with ΔΠ=0 and 0 = ߜ. The insets in all figures show ߰ vs. the detuning ߜ.  
 

C. Injection locking through the conservative forcings ऍ࢟,, ऍ࢞,, ऍ࢟,  supplied by a magnetic field 

The next example will compare the efficiency of the injection locking to an external field at different orders ݊ ൌ 1, 2, 3. We consider a linearly polarized driving field ܪܿݏ൫ ߱ݐ൯࢛, see Fig. 6a, where the field direction ࢛ ൌ ሺܿݏሺ߮ሻ, ,ሺ߮ሻ݊݅ݏ 0ሻ lies in the ݔ െ  plane of the layer with ߮ the angle between the applied field and the ݕ
x-axis. For this case, we focus only on the phase properties ߗ߂ and ߰. For the simulation, the forcing torque is given by Eq. 5a whereas the analytical model gives three different forcings Eq. 5(b-d) depending on the order ݊ (see Table II):  

ሺሶ ሻࡲ ൌ  െߛᇱ  ܪܿݏ൫ ߱ݐ൯ ൫ܿݏሺ߮ሻ ൈ ࢛࢞  ሺ߮ሻ݊݅ݏ ൈ  ௬൯                                                       ሺ5ܽሻ࢛
݊ ݐܣ ൌ 1,   ࣠ሺ, ߰ሻ ൌ െߛᇱ ܪ݊݅ݏሺ߮ሻࣝ௬,ଵሺ, ߰ሻ                                                                        ሺ5ܾሻ 
݊ ݐܣ ൌ 2,   ࣠ሺ, ߰ሻ ൌ െߛᇱ ܪܿݏሺ߮ሻࣝ௫,ଶሺ, ߰ሻ                                                                        ሺ5ܿሻ 
݊ ݐܣ ൌ 3,   ࣠ሺ, ߰ሻ ൌ െߛᇱ ܪ݊݅ݏሺ߮ሻࣝ௬,ଷሺ, ߰ሻ                                                                        ሺ5݀ሻ 

The expressions of the forcing terms ࣝ௬,ଵሺ, ߰ሻ, ࣝ௫,ଶሺ, ߰ሻ and ࣝ௬,ଷሺ, ߰ሻ are given in Tables B1, B3), using ܽ ൌ െߛᇱ ܪ݊݅ݏሺ߮ሻ for ݊ = 1, 3 and ܽ ൌ െߛᇱ ܪܿݏሺ߮ሻ for ݊ = 2.  
To compare the efficiency, the corresponding locking ranges are normalized by the driving field amplitude and the ratio ܪ/ߗ߂ is called here coupling sensitivity. Fig. 6(b-c), shows the evolution of the coupling sensitivity ܪ/ߗ߂ and of the phase difference ߰ as a function of the angle ߮ of the driving field. As can be seen the coupling sensitivities ܪ/ߗ߂ are ߨ-periodical with ߮ and the phase differences ߰ are 2ߨ-periodical. This is consistent with reported experiments3 and simulations49 where the locking range for ݊ ൌ 1, 3 is maximum when the field is collinear with ࢛࢟ (߮ ൌ 90°) and maximum for ݊ ൌ 2 when the field is applied 
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along  ( . When the coupling sensitivity goes to zero, the corresponding phase difference  exhibits a jump of  due to the sign change of  and respectively .  
Note that for the operating point ( ) in Fig. 6, the maximum locking range for =1 ( ) is larger than for  =2 ( ), which is larger than for  =3 ( ): , see Fig. 6b. However, this is not the case for all values of , for instance for  (not shown here) it is  Hence, the locking parameters strongly depend on the operational point  (i.e. on the power) and it is not straightforward to predict for which order n, injection locking will be more efficient. This is a further demonstration that the exact expressions of the forcing are needed to correctly describe the injection locking behavior and to compare specific configurations.  

 
FIG.6. Injection locking using a linearly polarized driving field applied in the ( ) plane. (a) Schematic of the configuration.  is the angle between the field direction  and the equilibrium direction . Dependence on the angle  of (b) the coupling sensitivity  and (c) the phase difference at zero detuning , for injection locking at different orders (blue, red, green respectively). The supercriticality is  (corresponding to ) and all other parameters are the same as in Fig. 2.  

D. Injection locking through two simultaneous conservative forcings  and , supplied by a 

magnetic field  
The analytical model presented here provides a straigthforward means to address more complicated injection locking cases that are a superposition of the basic forcing torques and consequently of the basic forcing functions defined in Table II. As an example we consider the injection locking to a rotating driving 
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field ܪ࢛ሺݐሻ at ݊ ൌ 1, where the dynamic direction ࢛ሺݐሻ = ቀ0, ൫ݏ௬ܿߩ ߱ݐ൯, ൫ݏ௭ܿߩ ߱ݐ െ ߶߬൯ቁ lies in the plane (࢛௬, ࢛௭), orthogonal to the equilibrium direction of the magnetization. Here ߶ఛ is a fixed phase delay. 
The forcing torque ሺሶ ሻࡲ and the analytical forcing function ࣠ሺ, ߰ሻ are given in Eq. 6, where the analytical description is simplified under the assumption that |ߣ| ≫ 1 (only power forcings): 

ሺሶ ሻࡲ ൌ  െߛᇱ  ܪ ൫ߩ௬ܿݏ൫ ߱ݐ൯ ൈ ࢛࢟  ൫ݏ௭ܿߩ ߱ݐ  ߶ఛ൯ ൈ  ൯                                                    ሺ6ܽሻࢠ࢛

࣠ሺ, ߰ሻ ൌ െߛᇱ  ܪ ቀߩ௬ߝԢଵ,௬ܿݏ൫߰ െ ௬൯ߠ  ሺ߰ݏԢଵ,௭ܿߝ௭ߩ െ ௭ߠ െ ߶ఛሻቁ                                                    ሺ6ܾሻ 

This case is more elaborated because now, two basic forcing torques ܿݏ൫ ߱ݐ൯  ൈ ൫ݏܿ and ࢛࢟ ߱ݐ൯ ൈ ݁࣬ contribute simultaneously to the synchronization. The related basic forcing functions are ࢠ࢛ ቀࣝ௬,ଵሺ, ߰ሻቁ ൌ
൫߰ݏԢଵ,௬ܿߝ െ ௬൯ߠ  and ࣬݁ ቀࣝ௭,ଵሺ, ߰ሻቁ ൌ ሺ߰ݏԢଵ,௭ܿߝ െ ௭ሻߠ  with ߝԢଵ,௬ ൌ ଵ,௬/2ߝ,௬ߝ  and ߝԢଵ,௭ ൌ ଵ,௭/2ߝ,௭ߝ  (Table B3). The phase delay ߶ఛ between the two directions ࢛࢟ and ࢠ࢛ induces a polarization of the driving field. In what follows, we will focus on: (i) a linear polarized field (߶ఛ ൌ   .(௭ߩ = ௬ߩ and 2/ߨ±=ఛ߶) similar to Sec. III.C) and (ii) a circular polarized field ,(ߨ) 0
(i) Linear polarized field  

The driving field is linearly polarized along the fixed direction ࢛ = ൫0, ,௬ߩ ,௭൯ = ൫0ߩ ,ሻߢሺ݊݅ݏ ࣠ :see Fig. 7a. The linear combination of the two power forcings Eq. 6b can be reduced to the form of one power forcing ,ߢ ሻ൯, defined by the angleߢሺݏܿ ן ൫߰ݏଵ̃ܿߝ െ ଵ,ᇱߝ ,ߩ ෨ depend on the parameters of the two basic forcingsߠ ଵ̃ andߝ ෨൯, whereߠ  with ݅ ൌߠ , ,ݕ  :and the phase difference at zero detuning ߰ are then given by Eq. 7 ߗ߂ ሻ. The locking rangeߢሺ݊ܽݐ = ௭ߩ/௬ߩ and with the ratio  ݖ
ߗ߂ ൌ ටሺߩ௭ߗ߂௭ሻଶ  ൫ߩ௬ߗ߂௬൯ଶ ൌ ௭|ඨ1ߗ߂௭ߩ|  ቆߩ௬ߝଵ,௬ᇱߩ௭ߝଵ,௭ᇱ ቇଶ                                                         ሺ7ܽሻ 

߰ ൌ ۔ۖەۖ
୫߰ۓ െ ݊ܽݐܿݎܽ ݏ ቆߝᇱଵ,௬/ߝᇱଵ,௭ߩ௭/ߩ௬ ቇ ଵ,௭ᇱߝ௭ߩ ݂݅             0

߰୫ െ ݊ܽݐܿݎܽ ݏ ቆߝᇱଵ,௬/ߝᇱଵ,௭ߩ௭/ߩ௬ ቇ  ଵ,௭ᇱߝ௭ߩ ݂݅   ߨ ൏ 0                                                            ሺ7ܾሻ 
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Here ߗ߂ =  ߛԢ ′݅,1ߝ ܪ  , with ݅ ൌ࢛± = ࢛ is the locking range when |ߥ|  ,ݕ the angle ߰୫ is constant and defined by ߰୫ ,ݖ ൌ ൫݊݃ݏሺܰሻߨ  ௬ߠ  ௭ߠ  |ߣ| or െ1 if ߶ఛ = 0. Due to the assumption of ,ߨ = 1 if ߶ఛ = ݏ 2൯/2 with/ߨ ݏ ≫ 1 the power range is ߎ߂ ൌ ሺ݊ܰሻ and ߰/ߗ߂ ൌ   .is a constant 2/ߨ3
The angular variation of the coupling sensitivity ܪ/ߗ߂ and the phase difference at zero detuning ߰  are illustrated for the in-plane STNO in Fig. 7(b-c) for a supercriticality ߞ ൌ 1.06. The analytical description (red line) agrees very well with the simulation (dots). According to Eq. 7a, the coupling sensitivity evolves ߨ-periodically with the angle ߢ and it is bounded between the maximum value ߗ߂௬/ܪ at ࢛࢟± =ࢍ࢛ (࣠ ࣠) ࢠ࢛± =ࢍ࢛  atܪ/௭ߗ߂ and the minimum value ((2/ߨor 3) 2/ߨ=ߢ ,൫ࣝ௬,ଵ൯݁࣬ן ן ࣬݁൫ࣝ௭,ଵ൯, 0=ߢ (or ߨ)). The difference between ߗ߂௬ and ߗ߂௭ is determined by the ratio of the power forcings ߝଵ,௬ᇱ ଵ,௭ᇱߝ/  which in the case of STNOs depends on the ellipticity ࣜ/ࣛ (see Table B3). For the in-plane STNO considered here with ࣜ/ࣛ ൌ െ0.91, this leads to a forcing ratio of ߝԢଵ,௭/ߝԢଵ,௬ ൎ 0.2. Consequently, injection locking is by a factor of  ൎ 5 more efficient when the driving field is applied along ࢛࢟ as compared to ࢠ࢛. For the special case of circular orbits with ࣜ/ࣛ ൌ 0, the ratio becomes ߝଵ,௬ᇱ ଵ,௭ᇱߝ/  = 1 and the locking range ߗ߂ is independent of ߢ. 
The angular variation of the phase difference ߰ in Fig. 7c (full line for ࣜ/ࣛ ൌ െ0.91 ) shows an abrupt change around ࢠ࢛± =ࢍ࢛ but varies smoothly around ࢛࢟± =ࢍ࢛. These peculiar variations reflect the influence of the geometry of the orbit on the synchronization properties. For comparison, the dashed line in Fig. 7c shows the special case of circular orbits with ࣜ/ࣛ ൌ 0, where ߰ varies linearly with the angle ߢ over a 2ߨ-range. Such a linear dependence of the phase difference can be of interest to develop a tunable phase shifter. Upon varying the field angle, the phase shift of the oscillator can be tuned linearly over a range of 2ߨ. A similar result has been discussed in Ref49 by numerical simulations.  
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 FIG.7. (a-c) Injection locking at  to a linear polarized driving field applied in the ( ) plane with  : (a) Schematic with  the angle between with the driving field direction  and . Evolution as a function of  of (b) the coupling sensitivity  and (c) the phase difference at zero detuning  for the supercriticality  (  and other parameters as in Fig. 2.  (d-f) Injection locking at  to a circularly polarized driving field applied in the ( ) plane with  and  =  : (d) Schematics to indicate the rotation sense of the rotating driving field  with respect to the magnetization m: plus (minus) sign means the same (opposite) rotation sense. (e) Coupling sensitivity  and (f) phase shift at zero detuning  as a function of supercriticality .  
  

(ii) Circular polarized field  

We now add a constant phase delay between the y- and z- components of the driving field in Eq. 6a to generate a circularly polarized magnetic field in the plane ( , ). Choosing  = and a phase delay  = ±  one arrives at two configurations indicated in Fig. 7d: for =  the driving field rotates in the same direction as the dynamical component of the magnetization and for =  it rotates in the opposite direction. In these cases, the forcing of Eq. 6b after reformulation, leads with  for  to the 



 
 

21 
 

expressions of Eq. 8 that show that the locking range ߗ߂ is now a linear superposition of the locking ranges ߗ߂௭ and ߗ߂௬, while ߰ is constant, as shown in Fig. 7f. 
ߗ߂ ൌ ௭ߗ߂  ௬ߗ߂ݏ  ൌ ௬ߗ߂ ቆ1  ݏ  Ԣଵ,௬ቇ                                                                       ሺ8ܽሻߝԢଵ,௭ߝ

߰ ൌ  ሺ8ܾሻ                                                                                                            ߨ
The important result here is that upon adjusting the phase delay ߶ఛ it is possible to enhance or reduce the locking range: an identical rotation sense (s=+1) of the magnetization and the driving field increases the locking range whereas an opposite rotation sense (s=-1) reduces it. This is illustrated in Fig. 7e for the corresponding coupling sensitivity ܪ/ߗ߂ as a function of supercriticality. Fig. 7e furthermore shows that for 
s=+1 ܪ/ߗ߂ is larger than the largest of the two locking ranges which is ߗ߂௬, and that overall ܪ/ߗ߂ decreases with increasing supercriticality ߞ. Finally, there is a good agreement between the analytical model and the simulation.  
This configuration is very important for practical applications, notably the mutual synchronization of STNOs. The understanding of their coupling through the generated dynamic dipolar fields will be crucial to define a robust array of mutually synchronized oscillators. For instance, the situation described in Fig. 7(d-f) would correspond to two in-plane STNOs whose time varying y- and z- components of the magnetization define a circularly polarized dipolar field in the y-z-plane.  Other configurations are the out-of-plane precession mode or a vortex STNO22 that generate a circularly polarized field in the x-y-plane.  Based on the results in Fig. 7e, it is predicted that the coupling is more efficient when each oscillator sees a global dipolar field, rotating in the same direction as the magnetization. This is actually found in experiments on dipolar coupling of vortex oscillators22.  

E. Injection locking through two simultaneous forcings  
To finish, we generalize the method in Sec. III.C-D of combining two forcings to any sum of two functions ࣲఈ and ఉࣲ of Table II. For this it is necessary to define a “global phase delay” ߭ written: ߭ ൌ ఈߠ െ ఉߠ െ ߶ఛ, where the two most important cases are ߭ = (2/ߨ3) 2/ߨ and ߭ = 0 ሺߨሻ:    
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(i) 2/࣊ = ࣏ or 32/࣊: In this case the combination of two forcing ࣲఈ and ఉࣲ leads to the properties of Eq. 7a and Eq. 7b, where the locking range depends in a non-trivial manner on the individual locking ranges and the phase difference  ߰ can be continuously tuned via the driving components ߩఈ, ߩఉ of the two involved forcings.  
An important example for the case of ߭ = (2/ߨ3) 2/ߨ is the injection locking at ݊ ൌ 2, using a spin polarized current with a spin polarization component along the x-axis, i.e. ࢛. ௫࢛ ് 0. Considering besides the damping-like torque (DLT) also the field-like torque (FLT) the total forcing torque is ሺሻሶ ிሺݐሻ ן ൫ݏܿܬ  ߱ݐ൯ൣܽ  ൈ ൈ ௫࢛  ܾ ൈ ࣠ ሿ and the corresponding forcing function (see Table II) is࢛࢞ ן ܽ࣬݁൫ࣞ௫,ଶ൯  ܾ࣬݁൫ࣝ௫,ଶ൯. Here ܽ and  ܾ are respectively the DLT and the FLT coefficients. With ߭ ൌ ௗ௫ଶߠ െ ௫ଶߠ ൌ and ߶ఛ 2/ߨ3 ൌ 0, the zero detuning phase difference ߰ is modified as given in Eq. 9 for the in-plane STNO. It depends on the ratio of the two torque components ܾ/ ܽ and the ratio of the corresponding power forcings ߝଵ,௫ଶ and ߝଵ,ௗ௫ଶ.   

߰ ൌ ݊ܽݐܿݎܽ  ቆߝଵ,௫ଶߝଵ,ௗ௫ଶ ܾܽቇ  2/ߨ  ൫ߨ ݂݅ ܽߝଵ,ௗ௫ଶ ൏ 0൯                                                    ሺ9ሻ 
In the case of a strong FLT ( ܾ ≫  ܽ) this will add a phase shift of ±2/ߨ to ߰. However, even if the FLT is small, but ߝଵ,௫ଶ ≫   .ଵ,ௗ௫ଶ, there will be a non-negligible contribution to the zero detuning phase difference. A similar result has been found to explain injection locking and mutual locking of vortex oscillators7,23. It was shown that the field like torque cannot be neglected to interpret the experimental results. Injection locking can thus provide important information on the presence and value of the field like spin transfer torqueߝ
(ii) For ࣏ =  or ࣊, the injection locking properties of the combined forcing simplify to Eq. 8a and Eq. 8b. As a consequence, similar to the rotating field discussed in Fig. 7(d-f), the locking range will be enhanced or reduced depending on the rotation sense. For example, this can be useful to elaborate more complicated injection locking schemes, where at the same time, a driving current and a field synchronize the system. The model states that an optimal increase (or resp. decrease) of the locking range is possible, when the condition ߭ = 0 (or resp. ߨ) is fulfilled. This can be obtained by choosing an adequate forcing and phase delay ߶ఛ.    
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IV. CONCLUSION 

In summary, in order to treat analytically all possible injection locking configurations for STNOs, we have introduced the most general form of the forcing function ࣠, which is elliptical : ࣠ ן  ߰ݏଵܿߝ  |ଵߝ| with ߰ ݊݅ݏଶߝ݅ ് ,ߗ߂ They are fully described by the four locking parameters .ߜ ଶ|. We first provide for such elliptical forcing the stationary solutions (Sec. II.B) for the phase difference ߰ and the power deviationߝ| ,ߎ߂ ߰, ߰ that depend on the forcing parameters ߝଵ and ߝଶ as well as on the non-linear oscillator parameters ߥ and ߁ (see Table I) that can be varied through the free running power . Here we have introduced: (i) the power range  ߎ߂, that defines the largest power deviation ߜ within the locking range, (ii) the power angle ߰ that defines its shape (Fig. 1) and (iii) the enhancement factor ߣ that rescales the non-linear coupling parameter ߥ, and through this modifies previous expressions of ߗ߂, ߰. Since the analytical oscillation power  and the experimentally measured electrical signal can be related, it is expected that one can obtain important additional information on the locking forces from experiments when analyzing the power in the injection locked state. 
The results for a general elliptical forcing ࣠ are valid for any non-isochronous auto-oscillator. Here they are applied to the specific case of a uniformly in-plane magnetized STNO, although this can be easily transferred to other STNO configurations by appropriate choice of the coordinate system. An important output of the paper is that we provide for the six basic forcing torques (three conservative ~ ൈ ~ and three dissipative ࢛ ൈ ሺ ൈ ࣠ the explicit expressions of the corresponding forcing functions (࢛ ן  ߰ݏଵܿߝ  ,ଵߝ where the forcing parameters ,(Table II) ߰ ݊݅ݏଶߝ݅ ,ߗ߂ and the ellipticity ࣜ/ࣛ of the STNO trajectory. With this, one straightforwardly obtains the dependence of the injection locking properties ( ߞ or supercriticality)  ଶ depend on the free running powerߝ ,ߎ߂ ߰, ߰ as a function of  (or ߞ) and ࣜ/ࣛ. This allows the analysis and comparison of different injection locking configurations vs. external control parameters (dc current and via ࣜ/ࣛ applied magnetic dc field) or the anisotropy (defining ࣜ/ࣛ). The full potential of the analytical description is demonstrated when superposing two external rf driving signals at the same frequency and with a fixed phase delay. For the example of a rotating rf magnetic field we show that the locking range depends on the rotation sense. Rotating rf fields occur when considering mutual synchronization of STNOS via dipolar 
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fields. The analytical description is expected to provide a better understanding of the mutual synchronization of several STNO devices via dipolar field and/or rf currents and will help to define robust synchronization schemes, that are also relevant for rf signal detection.  
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APPENDIX A: TRANSFORMATION of LLGS 

The effective field of the STNO takes the following form using reduced parameters:  
ࢌࢌࢋࡴ  ൌ ଵఊబᇲ ቆఠಹାఠಲೣೣିఠಲିఠಲ ቇ ۔ە ݄ݐ݅ݓ 

ۓ ߱ு ൌ ௗ߱௫ܪᇱߛ ൌ െߛᇱܯ௦ ௫ܰ௫߱௬ ൌ ௦ܯᇱߛ ௬ܰ௬߱௭ ൌ ௦ܯᇱߛ ௭ܰ௭
                                                      ሺ1ܣሻ      

  The parameters of the spin wave transformation are summarized in Table A1 and the equivalent expressions in the d-variable of each torque of the LLGS equation, Eq. 3, are shown in Table A2. The parameters of the conservative and dissipative terms are defined in Table A3. More details on the transformations can be found in Refs38,44.  TABLE A1. Transformations of the spin wave formalism. 
Transformations ܽ ൌ ݉௬  ݅݉௭ඥ2ሺ1  ݉௫ሻ ܾ ൌ ܽݑ  ݒ തܽ ܿ ൌ ඨ ࣛ߱ிெோ ܾ 

Parameters 

ݑ ൌ ඨࣛ  ߱ிெோ2߱ிெோ , ݒ ൌ ሺࣜሻඨࣛ݊݃݅ݏ െ ߱ிெோ2߱ிெோ , ܴܯܨ߱ ൌ ටࣛ2 െ ࣜ2  ࣛ ൌ ߱௫  ߱ு  ߱௬  ߱௭2 , ࣜ ൌ ߱௬ െ ߱௭2   Note 1: ݒ ,ݑ can be expressed only through the ellipticity of the precession trajectory ࣜ/ࣛ. Note 2: The non-linear factor 1/√1 െ ܽ തܽ coming from the first transformation is neglected in all calculations.  
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 TABLE A2. Transformation of precession, damping and STT torques.    Precession Damping Damping-like STT Forcing ሶ ൌ െߛᇱ൫  ൈ  ߙᇱߛ൯ െࡴ ൈ ൫ ൈ ᇱܽߛ൯ െࡴ ௗܬ  ൈ ൫ ൈ ሶ൯  ሺ ሻிሺݐሻ ሶ݀ ൌ ݅ ቀ߱ሺሻ െ ݊߱ቁ ݀ െ߁ାሺሻ݀ ି߁ ሺሻ݀ ࣠ሺ, ߰ሻ݀  ߱ሺሻ ൌ ߱ிெோ  ሻାሺ߁ ܰ ൌ ߁ீ ሺ1  ܳଵሻ Γି ሺሻ ൌ ௗሺ1ܬߪ െ  ሻ Sect. II.B
 
TABLE A3. Coefficients of the analytical model. Linear damping Γ ൌ ߪ Linear spin transfer ࣛߙ ൌ െߛᇱܽ݉௫, Non-linear damping parameter ܳଵ ൌ െ ቀ߱ிெோࣛଶ ቁ 3ݒݑ൫െ߱௬  ߱௭൯  ሺݑଶ  ଶሻݒ ൬3߱௫  32 ൫߱௬  ߱௭൯  ߱ு൰൨ 

Non-linear frequency shift coefficient ܰ ൌ െ ቀ߱ிெோࣛ ቁ ଶݑሺݒݑ3ൣ  ଶሻ൫߱௭ݒ െ ߱௬൯  ሺݑସ  ସݒ  ଶሻ൫2߱௫ݒଶݑ4  ߱௬  ߱௭൯൧ 
Power relaxation rate Γ ൌ ൫Γ݃ܳ1   0൯ܿ݀ܬߪ

 
APPENDIX B: FORCING FUNCTIONS 

TABLE B1. Circular forcings at ݊ ൌ 2, 3 with ࣡ሺݔሻ ൌ √1 െ  .(ߠ to ߨ+ If ࣜ/ࣛ < 0 add) ଶ and for ࣜ/ࣛ > 0ݔ
Forcings ࣲ,ሺ, ߰ሻ ൌ 12  ሻ݁ିሺటିఏሻଵሺߝ

ࣝ௫,ଶሺ, ߰ሻ ߝଵሺሻ ൌ |ࣜ/ࣛ|࣡ሺࣜ/ࣛሻ ߠ ൌ  2ߨ 

ࣝ௬,ଷሺ, ߰ሻ ߝଵሺሻ ൌ ൭ඥ1  ࣡ሺࣜ/ࣛሻ െ ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ |ࣜ/ࣛ|2√2 ඥߠ  ൌ  2ߨ

ࣝ௭,ଷሺ, ߰ሻ ߝଵሺሻ ൌ ൭ඥ1  ࣡ሺࣜ/ࣛሻ  ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ |ࣜ/ࣛ|2√2 ඥߠ  ൌ ݊ TABLE B2. Power forcings at  ߨ ൌ 2, 3 with ࣡ሺݔሻ ൌ √1 െ  .(ߠ to ߨ+ If ࣜ/ࣛ < 0 add) ଶ and for ࣜ/ࣛ > 0ݔ
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Forcings  ࣲ,ሺ, ߰ሻ ൌ ଵଶ ሻଵሺߝ ሺ߰ݏܿ െ  ሻߠ

ࣞ௫,ଶሺ, ߰ሻ ߝଵሺሻ ൌ ߠ |ࣛ/ࣜ| ൌ  0 

ࣞ௬,ଷሺ, ߰ሻ ߝଵሺሻ ൌ ቌඨቆ1  ࣡ ൬ ࣜࣛ ൰ቇ െ ܵ݅݃݊ ൬ ࣜࣛ ൰ ඨቆ1 െ ࣡ ൬ ࣜࣛ ൰ቇቍ |ࣜ/ࣛ|2√2 ߠ ඥ ൌ  0 

ࣞ௭,ଷሺ, ߰ሻ ߝଵሺሻ ൌ ቌඨቆ1  ࣡ ൬ ࣜࣛ ൰ቇ  ܵ݅݃݊ሺ ࣜࣛ ሻඨቆ1 െ ࣡ ൬ ࣜࣛ ൰ቇቍ |ࣜ/ࣛ|2√2 ߠ ඥ ൌ  2ߨ

 TABLE B3. Conservative elliptical forcings at ݊ ൌ 1 with ࣡ሺݔሻ ൌ √1 െ ሻݔଶ and with ܵ݅݃݊ሺݔ ൌ ݔ ݎ݂ 1  0,ܵ݅݃݊ሺݔሻ ൌ െ1 ݂ݔ ݎ ൏ 0 and S݅݃݊ሺݔሻ ൌ ݔ ݎ݂ 0 ൌ 0.  
Forcings ࣲ,ሺ, ߰ሻ ൌ 12 ሺ߰ݏሻܿଵሺߝሻሾሺߝ െ ሻߠ  ݅ ሺ߰݊݅ݏሻଶሺߝ െ  ሻሿߠ

ࣝ௬,ଵሺ, ߰ሻ 

ሻሺߝ ൌ ൭ඥ1  ࣡ሺࣜ/ࣛሻ െ ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ 12ඥ2 

ሻଵሺߝ ൌ 1 െ ሻଶሺߝ  ,   ൌ െ ൬1 െ ൬2 െ ࣜࣛ ൰  ൰

ߠ ൌ  2/ߨ

ࣝ௭,ଵሺ, ߰ሻ 

ሻሺߝ ൌ  ൭ඥ1  ࣡ሺࣜ/ࣛሻ  ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ 12ඥ2 

ሻଵሺߝ ൌ 1 െ ሻଶሺߝ ,   ൌ െ ൬1 െ ൬2  ࣜࣛ ൰  ൰

ߠ ൌ  ߨ

 TABLE B4. Dissipative elliptical forcings at ݊ ൌ 1 with ࣡ሺݔሻ ൌ √1 െ ሻݔଶ, and with ܵ݅݃݊ሺݔ ൌ ݔ ݎ݂ 1  0, ܵ݅݃݊ሺݔሻ ൌെ1 ݂ݔ ݎ ൏ 0 and S݅݃݊ሺݔሻ ൌ ݔ ݎ݂ 0 ൌ 0.  
Forcings ࣲ,ሺ, ߰ሻ ൌ 12 ሺ߰ݏሻܿଵሺߝሻሾሺߝ െ ሻߠ  ݅ ሺ߰݊݅ݏሻଶሺߝ െ  ሻሿߠ

ࣞ௬,ଵሺ, ߰ሻ 

ሻሺߝ ൌ ൭ඥ1  ࣡ሺࣜ/ࣛሻ  ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ 12ඥ2 

ሻଵሺߝ ൌ ฬ1 െ 3 ൬1 െ ࣜࣛ ൰   ൬1 െ ࣜࣛ ൰ ൬2 െ ࣜࣛ ൰ ሻଶሺߝ   ଶฬ ൌ െ1 

ߠ ൌ  ߨ

ࣞ௭,ଵሺ, ߰ሻ 

ሻሺߝ ൌ ൭ඥ1  ࣡ሺࣜ/ࣛሻ െ ܵ݅݃݊ሺࣜ/ࣛሻඥ1 െ ࣡ሺࣜ/ࣛሻ࣡ሺࣜ/ࣛሻ ൱ 12ඥ2 

ሻଵሺߝ ൌ ฬ1 െ 3 ൬1  ࣜࣛ ൰   ൬1  ࣜࣛ ൰ ൬2  ࣜࣛ ൰ ሻଶሺߝ ଶฬ ൌ െ1 

ߠ ൌ 2ߨ3  
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Note 1: Expression of ࣞ,ଵ given for  > ௗ with i = y, z. Otherwise, multiply ߝଶ by -1 and add +ߨ to ߠ.  
APPENDIX C: CRITICAL POWERS  

The elliptical forcing ࣞ௬,ଵሺ, ߰ሻ becomes a phase forcing when ߝଵሺௗ௬ሻ ൌ 0 :  
ௗ௬ ൌ 32 ൬ 12 െ ࣜ/ࣛ൰ ቌ1 െ ඨ1 െ 49 ൬2 െ ࣜ/ࣛ1 െ ࣜ/ࣛ൰ቍ ࣛࣜ  ݄ݐ݅ݓ   א െ1, 15൨                                        ሺ1ܥሻ 

The elliptical forcing ࣝ௬,ଵሺ, ߰ሻ becomes a power forcing when ߝଶሺ௬ሻ ൌ 0:   
௬ ൌ 12 െ ࣜ/ࣛ ࣛࣜ  ݄ݐ݅ݓ  א െ1, 12൨                                                                               ሺ2ܥሻ 

From symmetry, the critical power ௭ of ࣝ௭,ଵ is given by : ௭ሺࣜ/ࣛሻ ൌ ࣛ/ࣜ ௬ሺെࣜ/ࣛሻ, with א ሾെ1/5,1ሿ and the critical power ௗ௭ of ࣞ௭,ଵ is given by  ௗ௭ሺࣜ/ࣛሻ ൌ ࣛ/ࣜ ௗ௬ሺെࣜ/ࣛሻ with א ሾെ1/2,1ሿ.  
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