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Systems that break reciprocity offer new possibilities for controlling wave propagation. Here we
study the scattering properties of coupled resonator systems that are under dynamic modulation.
Strong linear nonreciprocal transmission is manifested in the acoustic regime by introducing an
initial spatial phase bias to the space-time modulated coupled resonators. A theoretical model
is developed to characterize the system and the results are in good agreement with experimental
observations. Our work opens up new opportunities for designing compact nonreciprocal devices
and developing acoustic topological insulators.

The study of nonreciprocal scattering and directional
control of wave power flow has received considerable re-
cent research interest [1–7]. However, wave propagation
in conventional media is generally reciprocal, which is a
fundamental principle for any linear time-invariant sys-
tems without external bias [8]. Reciprocity can thus be
broken by biasing time-odd quantities into the media.
In electromagnetism and photonics, nonreciprocity has
been achieved by using magnetic materials [9], employing
nonlinearities [2, 10] or breaking time-reversal symmetry
[11], and has sparked numerous fascinating applications.
Successful demonstration of nonreciprocity in the field of
acoustics, on the other hand, is much rarer [12].

To realize acoustic nonreciprocity, one approach to cre-
ate the time-odd bias is to employ intrinsic time-reversal
symmetry breaking by using passive or active nonlinear-
ities [13–16]. The rectification rate, i.e., isolation level
of one-way transportation can in principle be very high.
However, this approach typically requires bulky and com-
plicated structures and suffers from strong signal distor-
tion. A high level of input energy is also needed in order
to excite nonlinear effects. These constraints make it dif-
ficult to apply this technique in real world scenarios. For
example, in many applications such as communication,
linear nonreciprocity with unchanged frequency content
is preferred which restrict the use of this method.

An alternative way to induce nonreciprocity is the use
of external spatiotemporal modulation where the media
properties or the interaction among different components
are time dependent [4, 17–19]. This approach offers many
design degrees of freedom manifested by the modulation
parameters and can in principle be very efficient. Al-
though there has been abundant demonstrations in pho-
tonic and electromagnetic systems based on this idea, it
is much more difficult to realize it in the acoustic regime
due to the lack of effective modulation techniques. Other
than elastic waves [20, 21], most proposals to achieve
acoustic nonreciprocity based on spatiotemporal modula-
tions only exist in theory [22–26] or through pseudotime-
varying modulation [27]. Experimental demonstrations

based on space-time modulation have been primarily
achieved by moving background medium [28, 29]. Their
practical usage, on the other hand, is severely limited
as the systems are complicated and are high energy-
consuming.

Here we propose and experimentally demonstrate non-
reciprocal acoustic transmission with space-time modu-
lation in a coupled resonator system. By driving the res-
onators mechanically, the resonance frequencies of the in-
dividual resonators can be modulated dynamically. This
not only provides an efficient means to induce space-time
modulation in acoustics but also breaks the time reversal
symmetry and imparts a strong spatial bias to the sys-
tem. Although nonreciprocal acoustic propagation has
been proposed using resonator systems [26], its efficiency
is limited due to low transmission near the resonance fre-
quency of the Helmholtz resonators [30]. In this work
the resonators are acoustic cavities which feature trans-
mission peak at resonance frequencies and the efficiency
is greatly enhanced. Since the resonators are coupled, a
small amount of modulation can result in strong inter-
action that leads to nonreciprocal responses. Nonrecip-
rocal propagation in the structure is realized by suitably
choosing the modulation parameters that are well within
the experimental capabilities. Our work makes linear,
compact, low energy-consuming acoustic diodes possible
and can be useful for applications in acoustic communi-
cations, etc.

Consider a two-level coupled resonator system as
shown in Fig. 1, the two resonators have their reso-
nance frequencies ω1 and ω2, and are connected to exter-
nal ports 1 and 2 with lifetimes τ1 = 1/γ1 and τ2 = 1/γ2.
γ1 and γ2 are the decay rates of the resonators. The cou-
pling strength is κ and is assumed to be constant under
small modulations. The states of the two resonators are
written as:

|ψ〉 =

[
α1(t)
α2(t)

]
. (1)

Under time modulation with frequency Ω, α1,2(t) can
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FIG. 1. Schematic diagram of the system under study. The
resonance frequencies of the two coupled resonators (with cou-
pling strength κ) are modulated dynamically. The resonators
are connected to external ports with lifetimes 1/γ1 and 1/γ2.

be expressed as summations of different harmonics using
temporal coupled mode theory [31–33]:

α1,2(t) =
∑

an1,2e
j(ω1,2+nΩ)t (2)

where an1,2 are the complex amplitude coefficients of the
nth harmonic of the two resonators.

The states |ψ〉 satisfy a Schrödinger type differential
equation:

−j∂t|ψ〉 = H|ψ〉+ s(t) (3)

where H is the Hamiltonian operator and is written as:

H =

[
ω1(t) + jγ1 κ

κ ω2(t) + jγ2

]
. (4)

s(t) is the source with an incident field from the external
ports. Consider a harmonic excitation from port 1, s(t)
is written as:

s(t) =

[√
2γ1e

jωt

0

]
(5)

with ω being the excitation frequency.
We consider a sinusoidal modulation of the two res-

onators, in which the resonance frequencies ω1,2(t) are
written as:

ω1(t) = ω0 + δω cos(Ωt)

ω2(t) = ω0 + δω cos(Ωt+ φ), (6)

where δω is the modulation depth, φ is the initial phase
difference of modulation. Although the theory can be
generally applied to two arbitrary resonators, here the
two resonators are considered identical in the static case,
i.e., ω1,2 = ω0 without modulation. The decay rates are
also assumed to be the same for the two resonators, i.e.,
γ1 = γ2 = γ.

Insert the above equations into Eq. (3), the follwing
equations can be obtained:

(ω + nΩ− ω0 − jγ)an1 −
δω

2
(an+1

1 + an−1
1 )

FIG. 2. Experimental setup of the coupled resonators under
modulation. A speaker is used to excite the system and the
response is recorded by a microphone. Mechanical shakers
are connected to the cavities to dynamically modulate their
effective lengths.

−κan2 =
√

2γ1δn0 (7)

(ω + nΩ− ω0 − jγ)an2 −
δω

2
(an+1

2 e−jφ + an−1
2 ejφ)

−κan1 = 0 (8)

Here δ is the Kronecker delta. Equations (7) and (8)
can be solved by truncating higher order harmonics. For
example, under weak modulation, i.e., δω/ω0 � 1, only
first few harmonics need to be considered. Here the
first 50 harmonics are included in our calculations, which
is sufficient to yield accurate results (see Supplemental
Material [34]). The reflected/transmitted amplitudes at
ports 1 and 2 of each harmonic are then obtained by
multiplying a1,2 with

√
2γ1,2. Here we are interested in

nonreciprocal transmission in the linear regime and the
scattering properties of the fundamental mode are de-
fined as S21 in the forward direction (corresponds to high
transmission) and S12 in the backward direction (corre-
sponds to low transmission).

It is noted that the theoretical framework can in prin-
ciple be applied to any coupled resonator system in dif-
ferent physical scenarios. In this work we aim at its re-
alization in acoustics. Figure 2 shows the experimental
setup of the system. Two cylindrical cavities are chosen
as the resonators. They are identical with radius and
height being 15 mm and 88 mm, respectively. Here we
use the second eigenmode of the cavity which possesses
maximum pressure amplitude at its center [35]. The two
cavities are effectively coupled through a hole opened at
their centers. The radius and length of the coupling hole
are 4 mm and 10 mm, respectively, which ensures a suf-
ficient coupling strength between the cavities, as will be
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FIG. 3. Measured system response in the static case. (a) Measured pressure spectrum of a single resonator for the determination
of decay rate. (b) Measured pressure spectrum of a coupled resonator pair for the determination of coupling strength.

shown later. In practice, the coupling strength can be
tuned by modifying the radius of the coupling hole or
adding additional holes along the cavities [35]. Two ex-
ternal ports with a 5 mm radius are opened at one end
of each cavity. A loudspeaker is connected to one of the
external ports using a customized 3D printed adapter to
excite the system. Sinusoidal waves with a duration of
1s are used for the measurements and the response is
recorded at a 4 Hz step. The opening of the cavities is
connected to a Nitrile rubber coated disk to ensure good
seal of the cavity while maintaining flexibility. The disks
are further connected to mechanical shakers (model SF-
9324) for dynamic modulation.

Towards this end, experiments are carried out in the
static case, i.e., without activating the mechanical shak-
ers, to determine the coupling strength κ and decay rate
γ of the resonators. The coupling port is first blocked
and a microphone (type ADMP401) is inserted through
a slit on top of the cavity [36] to measure the pressure
of a single resonator. The decay rate is then determined
by fitting the measured data according to the analyti-
cally predicted onsite spectrum |Ps(ω)| = A| 1

ω−(ω0+jγ) |,
where A is the amplitude coefficient [37]. Figure 3a de-
picts the measured pressure amplitude of a single cavity
and the decay rate is determined to be γ = 21.8 Hz. To
obtain the coupling strength between the two resonators,
a Green’s function approach is adopted [35, 37]. The an-
alytically obtained spectrum is expressed as |Pc(ω)| =

A|〈p|
←→
G (ω)|s〉| for the coupled resonator pair. Here

←→
G (ω) is the Green’s function of the system, |s〉 and |p〉
are the basis vectors and are written as (1, 0)T . The cou-
pling between the resonators is manifested by the sepa-
ration of the peaks in the spectrum. By comparing this
separation with the measured curve as shown in Fig. 3b,
the value of κ can be obtained and is found to be κ = 37.5
Hz. The peaks of the measured response have small vari-
ations, which may be caused by the slight geometrical
difference between the cavities and unbalanced excita-
tions.

The experimentally determined coupling strength and

decay rate are then plugged into the theory above to
find the optimal modulation parameters. As the mechan-
ical shakers have larger vibration amplitudes at lower
frequencies, here we set their working frequency to be
Ω = 50 Hz so that a few millimeter modulation depth
can be delivered. The isolation ratio 20log|S21/S12| and
transmission asymmetry |S21| − |S12| [38] are plotted in
Fig. 4 as a function of δω and φ. It can be observed that
the isolation ratio can be as high as 80 dB with max-
imum transmission asymmetry being around 0.7. This
indicates that the coupled resonator system under dy-
namic modulation can yield strong nonreciprocity with
a relatively low insertion loss by suitably choosing the
modulation parameters. The parameters chosen to be
implemented in our experiments are marked by the stars
in Fig. 4 by balancing the isolation ratio and transmis-
sion asymmetry, which read δω = 74 Hz and φ = 78◦.

Next we demonstrate nonreciprocal transmission with
dynamic modulation by activating the mechanical shak-
ers. A function generator (RIGOL DG4202) is used
to generate the signals and an audio amplifier (type
PAM8403) is employed to drive the shakers. Since the
modulation produces some noises that exceed the dy-
namic range of the original microphone when measuring,
another microphone (type BJ-21590-000) is used which
has larger dynamic range but slightly less sensitivity. We
note that the noise mainly comes from friction between
moving components and can be reduced by ensuring bet-
ter contact. The microphone is secured on a metallic
block and is not in contact with the resonators to iso-
late vibrations. As the modulation depth δω is expressed
in terms of frequency, it needs to be translated to the
actual displacement delivered by the shakers. This can
be done by analyzing the eigenfrequencies of the cavity
modes (see Supplemental Material [34]). The effective
length of the cavities need to be varied from 86.1 mm
to 89.5 mm and a maximum displacement of 3.4 mm is
required, which can be fulfilled by the shakers. Accurate
modulation is ensured by a high-speed camera, which
measures the displacement of the disks at the end of the
cavities (see Supplemental Material [34]). The calculated
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FIG. 4. Scattering properties of the coupled resonator system. Isolation ratio 20log|S21/S12| (a) and transmission asymmetry
|S21|−|S12| (b) as a function of modulation depth δω and initial phase difference φ. The parameters implemented in experiments
are marked by the stars.

initial phase difference of φ = 78◦ is applied to measure
the transmission in one direction and the positions of the
speaker and the microphone are interchanged to measure
the transmission from the other direction.

Figure 5 shows the measured pressure spectrum of the
structure. Good agreement can be observed between
the theory and the experiment, which unambiguously
demonstrates the nonreciprocal effect. The small varia-
tion patterns in the spectrum is well captured by the mea-
surements. The small discrepancies can be attributed to
the inherent microphone errors (finite size, noise, etc.)
and imperfect modulation produced by the mechanical
shakers. A 50 Hz band of around 6 dB isolation emerges
near the resonance frequency, which is relatively narrow
and is typical for such coupled resonator systems [23, 39].
Larger bandwidth may be achieved by increasing the de-
cay rate of the resonators and further optimizing the
modulation parameters. Maximum isolation occurs at
the resonance frequency at 3908 Hz, which aligns well
with measurements, and an isolation ratio of 19.9 dB is
observed.

To conclude, we have theoretically developed and ex-
perimentally demonstrated a compact acoustic diode
based on space-time modulated resonators. The res-
onators are driven mechanically and the initial phase of
modulation creates the time-odd bias that is essential
to achieve nonreciprocal transmission. An isolation ra-
tio of nearly 20 dB is observed in experiments and the
measured system response is in good agreement with the-
oretical predictions. Our work provides a feasible route
to achieve linear acoustic nonreciprocal device that em-
braces space-time modulation and does not require exter-
nal moving fluid. The coupled resonator system proposed
here can be readily extended to host a larger number
of resonators for the realization of subwavelength circu-
lators [23] or Floquet topological insulators [24]. The
system could therefore be a good candidate for the ex-
perimental exploration of space-time modulation in the
field of acoustics. Since topological states [40, 41] and

FIG. 5. Experimental demonstration of nonreciprocal trans-
mission using space-time modulated coupled resonators. The
solid curves represent theoretical calculations and the mea-
surement data is denoted by the markers. Blue: forward di-
rection; red: backward direction.

exceptional points [42, 43] can be easily introduced in
coupled resonator structures, our work may also be use-
ful for the study of these effects in a dynamic fashion.
The theory outlined here is generic to wave physics and
the dimensions of the resonators can be scaled for non-
reciprocal sound propagation at other frequencies. It is
hoped that the design could serve as basic elements for
various acoustic applications.
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[10] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity–time-symmetric whispering-gallery microcavities,
Nature Physics 10, 394 (2014).

[11] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang,
G. Li, G. Wang, and M. Xiao, Parity–time symmetry
and variable optical isolation in active–passive-coupled
microresonators, Nature photonics 8, 524 (2014).

[12] R. Fleury, D. Sounas, M. R. Haberman, and A. Alu, Non-
reciprocal acoustics, Acoustics Today 11, 14 (2015).

[13] B. Liang, B. Yuan, and J.-c. Cheng, Acoustic diode: Rec-
tification of acoustic energy flux in one-dimensional sys-
tems, Physical review letters 103, 104301 (2009).

[14] B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, An
acoustic rectifier, Nature materials 9, 989 (2010).

[15] N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-
based acoustic switching and rectification, Nature mate-
rials 10, 665 (2011).

[16] B.-I. Popa and S. A. Cummer, Non-reciprocal and highly
nonlinear active acoustic metamaterials, Nature commu-
nications 5, 3398 (2014).

[17] F. Ruesink, M.-A. Miri, A. Alu, and E. Verhagen, Non-
reciprocity and magnetic-free isolation based on optome-
chanical interactions, Nature communications 7, 13662
(2016).

[18] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Mar-
quardt, A. A. Clerk, and O. Painter, Generalized non-
reciprocity in an optomechanical circuit via synthetic
magnetism and reservoir engineering, Nature Physics 13,
465 (2017).

[19] D. B. Sohn, S. Kim, and G. Bahl, Time-reversal sym-
metry breaking with acoustic pumping of nanophotonic
circuits, Nature Photonics 12, 91 (2018).

[20] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang,
and C. Daraio, Observation of nonreciprocal wave prop-

agation in a dynamic phononic lattice, Physical review
letters 121, 194301 (2018).

[21] G. Trainiti, Y. Xia, J. Marconi, G. Cazzulani, A. Erturk,
and M. Ruzzene, Time-periodic stiffness modulation in
elastic metamaterials for selective wave filtering: Theory
and experiment, Physical Review Letters 122, 124301
(2019).

[22] D.-D. Dai and X.-F. Zhu, An effective gauge potential for
nonreciprocal acoustics, EPL (Europhysics Letters) 102,
14001 (2013).

[23] R. Fleury, D. L. Sounas, and A. Alù, Subwavelength ul-
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