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A two-dimensional electron gas in a high magnetic field displays macroscopically degenerate Lan-
dau levels, which can be split into Hofstadter subbands by means of a weak periodic potential. By
carefully engineering such a potential, one can precisely tune the number, bandwidths, bandgaps
and Chern character of these subbands. This allows a detailed study of the interplay of disor-
der, interaction and topology in two dimensional systems. We first explore the physics of disorder
and single-particle localization in subbands derived from the lowest Landau level, that nevertheless
may have a topological nature different from that of the entire lowest Landau level. By projecting
the Hamiltonian onto subbands of interest, we systematically explore the localization properties of
single-particle eigenstates in the presence of quenched disorder. We then introduce electron-electron
interactions and investigate the fate of many-body localization in subbands of varying topological
character.

I. INTRODUCTION

The quantum Hall effect has been one of the most
important and well studied physical phenomena in re-
cent decades. In the presence of a perpendicular mag-
netic field, the single-particle states of a two-dimensional
electron gas reorganize themselves into highly degenerate
Landau levels. In the high field limit, where the cyclotron
energy is much larger than all other energy scales in the
problem, all the physics can be projected to the lowest
Landau level (LLL) as inter Landau level mixing becomes
negligible. A disordered potential causes a broadening of
the LLL and is well understood as the basis of the integer
Quantum Hall transition1. In this case, there is a sub-
thermodynamic number of extended states with Chern
number C = 1 at the centre of the LLL2. On the other
hand, in the presence of a periodic potential, the LLL
splits into an intricate set of Hofstadter subbands3. The
spectral properties and topological character of the sub-
bands depend on the details of the periodic potential in
a fine-tuned manner.

The addition of weak disorder to the Hofstadter prob-
lem causes the topologically non-trivial subbands to ac-
quire critical energies, each with a diverging localization
length4–7. The scaling theory of localization predicts that
all the single particle states in a two-dimensional subband
will be localized if it does not have a topological charac-
ter (i.e. its Chern number is zero). When the strength of
disorder is increased, the subbands broaden and critical
energies corresponding to opposite Chern numbers anni-
hilate each other in this process. Finally, at a disorder
much stronger than the periodic potential, the Hofstadter
subbands are washed away and the LLL problem with a
single critical energy is recovered.

The role of disorder in the presence of a periodic po-
tential has been studied in continuum and lattice single-
particle models as well as experimentally in the context of
its implications on the Hall conductivity, electron local-
ization and critical exponents5,8–21. However, the idea

that the periodic potential can be carefully engineered
to isolate both topological subbands with Chern num-
bers other than +1 (the LLL value), as well as topolog-
ically trivial subbands with zero Chern number, has not
received as much attention in the studies of disordered
systems.

In this paper, we first explore various ways of creating
Hofstadter subbands with large bandgap-to-bandwidth
ratios. This enables us to safely neglect inter-subband-
mixing and allows us to project all the physics to one or a
few subbands, even when disorder and electron-electron
interactions are present.

It is well known that electron-electron interactions sta-
bilize a gapped fractional quantum Hall phase at spe-
cific filling fractions of the LLL. The addition of dis-
order causes a ground-state transition to an Anderson
insulator22,23. However, the highly excited states of the
many-body spectrum do not show a corresponding local-
ization transition24. This is argued to be a consequence
of the diverging localization length in the single-particle
spectrum, which delocalizes all many-body states in the
presence of interaction25.

Many-body localization (MBL) has been the subject of
a considerable amount of work in the past decade26–31.
The existence and stability of the MBL phase in one
dimension is by now well established thanks to a com-
bination of numerical and theoretical methods32–39, in-
cluding a mathematical proof for the case of short-range
interactions40,41. However, many open questions remain,
including the fate of the MBL phase in dimension greater
than one42–48, the impact of long-range interactions49,
and the importance of rare region effects on the stability
of the MBL phase50–53.

Our construction of nearly flat topological and non-
topological bands in the LLL allows us to study the dis-
ordered and interacting problem in a projected Hilbert
space in a two-dimensional continuum model. It also
enables us to decouple the effects of dimensionality and
topology in destabilizing MBL in the LLL.

This paper is organized as follows. In Sec. II, we set
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up the single-particle version of this problem and describe
two methods for creating flat subbands. In Sec. III, we
analyze the effects of disorder on single-particle flat-band
models. We perform numerical exact diagonalization and
use the inverse participation ratio of wavefunctions as a
metric of localization. In Sec. IV, we study the many-
body problem in the presence of electron-electron interac-
tions and use eigenvalue level statistics as well as memory
of initial conditions under unitary dynamics as diagnos-
tic tools for characterizing the ergodic-to-localized phase
transition. We summarize our conclusions in Sec. V.

This paper is an extension of our previous work54.
There, based on spectral statistics, we argued that there
is evidence for an ergodicity breaking transition in topo-
logically trivial LLL subbands in the one-dimensional
limit. Results for two dimensional scaling were not con-
clusive, showing a finite-size drift of the putative transi-
tion point. The present work has two aims: (i) to de-
scribe in detail the single-particle localization properties
of the models studied, clarifying the genuine many-body
nature of our previous results, and (ii) to corroborate and
extend those results. In particular, these extensions in-
clude (i) a method for splitting the LLL into nearly-flat
subbands of arbitrary Chern number, which enables the
study of (de)localization in higher-Chern bands; (ii) a
more thorough two-dimensional finite-size scaling of one
of our models; and (iii) an additional metric, beyond
the level spacing statistic, to independently diagnose the
breaking of ergodicity.

II. THE SINGLE-PARTICLE PROBLEM
WITHOUT DISORDER

In the high-field limit, the cyclotron energy and Zee-
man splitting become arbitrarily large; as a result we can
work with Hamiltonian of spin-polarized electrons

HLLL = PLLLV1-bodyPLLL, (1)

where PLLL is the projector onto the LLL. We consider
a torus of dimensions Lx and Ly, enclosing Nφ =

LxLy
2πl2B

flux quanta, where the magnetic length lB =
√

~/eB.
We study two different examples of V1-body.

A. Lattice of point impurity scatterers

The first model we consider is a lattice of point-like
impurities, modeled by δ functions55:

V1-body(r) = −V0
∑

n1,n2

δ(r− n1a1 − n2a2), (2)

where a1 and a2 are the primitive lattice vectors. The
total number of delta functions Nδ is such that Nφ

Nδ
= p

q ,
for coprime integers p and q. If Nδ < Nφ, we obtain p−q
degenerate bands at E = 0. This manifold is topological

with total Chern number C = 1. The remaining q bands
are non-topological and are centered around energy −V0
(Fig. 1 (a,b)).
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FIG. 1. (a) Hofstadter-like fractal band structure of a square
lattice of point impurities as in Eq. (2), as a function of flux
per unit cell p/q. For p/q > 1, there is topological manifold at
zero energy, and split-off bands with collective Chern number
zero at negative energies. (b) Same as (a), but with a trian-
gular lattice. (c) The total bandwidth of the split-off bands
falls off exponentially with flux. The thin dashed lines are
drawn as guides to the eye.

Our ultimate goal is to study the effect of disorder and
interaction on the non-topological split-off bands derived
from the LLL. Thus we seek to pull out as many states as
possible from the E = 0 band (Nδ → Nφ). However, this
generically increases the bandwidth-to-bandgap ratio, as
we will see next, so an optimum must be found.

The width of the E 6= 0 split-off bands falls off ex-
ponentially with the amount of flux per delta function
scatterer (Fig. 1(c)). For p

q > 1, this is nearly equal to
the bandwidth-to-bandgap ratio. In the dilute limit, each
point impurity localizes one state of the form exp

(
− r2

2l2B

)
,

having a Gaussian tail with length scale lB . In a tight-
binding picture, the width of the band formed from these
states depends on the overlap between nearest neighbor
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wavefunctions. This gives a bandwidth ∼ exp
(
− r2n

4l2B

)
,

where rn is the nearest neighbor distance. The unit
cell of a square lattice has area r2n, and encloses p/q
flux quanta. Since an area of 2πl2B encloses one flux
quantum, the bandwidth for square lattices scales as
exp

(
− r2n

4l2B

)
= exp

(
−πp2q

)
. For the same value of flux

p/q, the triangular lattice gives a smaller bandwidth,
scaling as exp

(
− πp√

3q

)
. In later sections, we specifically

consider values of p/q around 6, where the bandwidth-
to-bandgap ratio is O(10−3).

B. Smooth periodic potential

More generally, we can take an arbitrary periodic po-
tential V (x, y) = V (x + a, y) = V (x, y + b) on a rect-
angular unit cell of size a × b. In terms of the Fourier
series

V1-body(x, y) =
∑

mx,my

vmx,mye
i2π(mxx/a+myy/b) . (3)

If the unit cell encloses p
q flux quanta, then the mag-

netic Brillouin zone is defined by quasimomenta kx and
ky with 0 ≤ kx < 2π

qa and 0 ≤ ky <
2π
b . There are p

Hofstadter bands.
At a fixed k, the band structure can be calcu-

lated by diagonalizing a p × p matrix, with elements
〈ψβ,k|V1-body|ψβ′,k〉. The β, β′ ∈ {0, 1, · · · , p − 1} are
band indices. The Chern numbers C of the subbands
must obey the diophantine equation56 pC+qs = 1, s ∈ Z.

(mx,my) vmxmy × 10−3 ṽmxmy
(1, 0) 4.16 1895
(3, 0) −35.80 −30
(1, 1) −5.11 −1062
(2, 1) 8.08 159
(3, 1) −38.98 −15
(3, 2) 20.10 0.7
(3, 3) 20.66 0.01

TABLE I. Values of Fourier components vmx,my from Eq. (3),
that optimize the band flatness (width-to-gap ratio) at flux
per unit cell p/q = 2. Square symmetry enforces vmx,my =
vmx,−my = v−mx,my = vmy,mx . The coefficients ṽmx,my ≡
e−

π
4
(m2

x+m
2
y)vmx,my are rescaled by the form factor of the

LLL.

We start by considering two fluxes per unit cell (p = 2,
q = 1), which gives two subbands with Chern numbers
C = 0 and C = +1, respectively. Our goal is to obtain
widely separated bands with small dispersions Eb and a
large gap Eg, so that disorder Vdis and interaction Vint
can lie in an intermediate range, Eb � Vdis, Vint � Eg.
We therefore optimize the periodic potential for maximal
flatness Eb/Eg → 0 in the space of square-symmetric po-
tentials, with |mx|, |my| < 4. This results in the Fourier
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FIG. 2. (a) The potential V (x, y) described by the Fourier
coefficients in Table I is plotted on one unit cell. (b) When
a uniform magnetic field with two flux quanta per unit cell is
applied, a band structure with extremely flat bands symmet-
ric about E = 0 is created. The upper C = 1 band is plotted
here. In units where the bandwidth is unity, the band gap
Eg ≈ 8735. The dispersion of the C = 0 band is obtained by
reflection.

coefficients shown in Table I. The overall normalization
(irrelevant to the Eb/Eg ratio) is chosen to yield unit
bandwidth Eb = 1. Given the absence of terms with
both mx and my even, the resulting band structure has
the symmetry E1(k) = −E2(k); the bands thus are iden-
tical except for their Chern numbers (see Appendix A for
details). The listed Fourier coefficients yields a remark-
ably large bandgap-to-bandwidth ratio of Eb/Eg ≈ 8735,
allowing us to tune disorder and interaction over several
orders of magnitude while safely neglecting inter-subband
mixing.

We conclude by noting an interesting consequence of
single particle Hamiltonian, which facilitates the engi-
neering of flat bands with different Chern numbers. A
pair of potentials V , V ′ may be constructed for flux-per-
unit-cell values p

q ,
p
q′ , where q 6= q′, such that q − q′ is a

multiple of p, that yield exactly the same band structure,
{E1(k), . . . Ep(k)}, except for the Chern numbers of the
bands. This is accomplished by the rescaling

v′mx,my = vmx,mye
π
2p (q

′−q)(m2
x
b
a+m

2
y
a
b ) . (4)
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Taking q′ > q, the rescaling factor is rapidly divergent
in |m|, posing some constraints on the behavior of vm.
However if v has compact support (only a finite number of
non-zero entries) then the transformation is always well
defined. As an example, we can take p

q′ = 2
3 and use the

v coefficients from Table I to obtain two nearly-flat bands
with Chern numbers C = +2 and −1 respectively. The
proof of this construction is in Appendix A. In the rest of
the paper, we study the effects of disorder and interaction
on these identically dispersive nearly flat Chern subbands
with C = −1, 0, 1 and 2.

III. DISORDER AND SINGLE-PARTICLE
LOCALIZATION

In the absence of disorder, both models introduced in
Sec. II feature extended Bloch eigenfunctions. In the
presence of quenched disorder, the electronic eigenstates
acquire a finite localization length ξ. In the following, we
calculate ξ as a function of disorder strength for the two
models introduced in Sec. II. For each eigenstate, calcu-
lated by exact diagonalization, we estimate the localiza-
tion length ξ = 1√

2πP2
, where the inverse participation

ratio P2 ≡
∫
d2r |ψ(r)|4. This definition ensures that a

purely exponentially localized wavefunction ψ(r) ∼ e−r/ξ
has a localization length ξ.

The energy-resolved ensemble-averaged localization
lengths 〈ξ(E)〉 are computed for different finite sizes.
〈ξ(E)〉 is usually peaked close to the center of the band,
and falls off near the tails of the band. In the following,
we use the maximal localization length ξ̄ ≡ max

E
〈ξ(E)〉

as a measure of the localization of the wavefunctions in a
band. In Appendix B, we briefly comment on the validity
of the averaging procedure by examining the distribution
of ξ itself. Another effect of quenched disorder is an in-
crease in the energy bandwidth Eb of a band. In this
section, we quantify the impact of disorder on localiza-
tion in the LLL subbands using these two measures ξ̄ and
Eb for two different models.

A. Disordered point impurities

We start with the lattice of point impurities and ran-
domize the strengths and positions of scatterers by re-
placing Eq. (2) with

V1-body(r) = −
Nδ∑

n=1

Vnδ(r− rn). (5)

The Vn are independently and identically distributed
uniform random variables in [1−W, 1+W ]. In this paper,
we consider 0 < W < 1. The positions of the scatterers
rn are randomly distributed on the torus, with a circular
exclusion zone around each scatterer of area 2πl2B

Nφ
Nδ
ρ.

Placing impurities randomly allows us to circumvent the

constraints imposed by lattice-based models. Similar to
the lattice case, ifNδ < Nφ, there is a manifold ofNφ−Nδ
degenerate states at zero energy with total Chern number
C = 1.

The width of the remaining Nδ split-off states is con-
trolled by the disorder, which has two independent com-
ponents. The randomness in the scatterers’ strengths
is controlled by W , and randomness in their positions
is controlled by the density parameter 0 < ρ < π

2
√
3

=

0.907. The upper bound for ρ comes from a triangu-
lar lattice, which is the closest possible packing in two
dimensions. For large ρ, the distribution of scatterers
becomes more regular (the maximum value indeed forces
the configuration to be a triangular lattice with no ran-
domness left). At the opposite end, ρ = 0 corresponds
to maximal randomness and allows two scatterers to sit
arbitrarily close to each other, thus entirely closing the
band gap (if two scatterers sit at the same exact position,
then Nδ 7→ Nδ−1, and the split-off band loses one state).

10−2

10−1

100

E
b

(a)

10−2 10−1 100

W

1.4

1.6

1.8

2.0

2.2

ξ̄/
l B

(b)

ρ
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 3. (a) The bandwidth Eb of the split-off states for the
model described in Eq. (5) is plotted as a function of ampli-
tude disorderW and density parameter ρ. The bandwidth Eb
is defined as the energy interval within which 90% of the split-
off states lie. (b) The maximum average localization length ξ̄
of the band is calculated using the inverse participation ratio
as described in the text. We set Nφ = 6Nδ and perform exact
diagonalization of 200 realizations of disorder at each param-
eter value. The system size is Nφ = 3000 (torus dimension
≈ 137lB).

In Fig. 3, we explore the parameter space of positional
and amplitude disorder in this model. We set the number
of scatterers Nδ = Nφ/6, so that there are effectively 6
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flux quanta per point impurity. For this density of scat-
terers, the bandwidth of the split-off states is < 10−3 in
the disorder-free case (see Fig. 1). In general, the band-
width Eb of the split-off states increases with disorder. At
a fixed value of positional disorder ρ, there is a regime
where the bandwidth Eb and the maximum localization
length of the band ξ̄ are largely independent of ampli-
tude disorderW . AsW is increased, there is a transition
to a regime where the amplitude disorder W becomes
more relevant. In this regime ξ̄ decreases with increasing
W , and Eb increases linearly with W . The localization
length at the center of the split-off band, ξ̄, is very small
(� 137lB , the linear dimension of the torus studied).

For the purpose of the many-body problem, which we
will discuss in Sec. IV, we are interested in a regime where
the bandwidth is small (so the projection is justified),
yet the states respond strongly to changes in disorder
(so an ergodic-to-localized transition is plausible). For
this reason, we fix ρ = 0.4 (close to midway between
completely disordered and jammed scatterers) and vary
W in the vicinity of 10−2.

B. Periodic potential with correlated disorder

To localize states in the flat Hofstadter subbands gen-
erated by the continuum periodic potential of Eq. (3), we
introduce a short-range correlated disorder represented
by a potential Vdis(r) with

〈Vdis(r)Vdis(0)〉 = W 2σ−2e−r
2/2σ2

. (6)

Here 〈· · · 〉 denotes averaging over realizations, σ is a cor-
relation length andW quantifies the strength of disorder.
Setting σ = 0 yields uncorrelated Gaussian white noise.

As in the previous case, we explore the single parti-
cle localization properties as a function of the disorder
parameters. In this case, the much larger bandwidth-to-
bandgap ratio of the disorder-free problem allows us to
vary W over a large dynamic range without mixing the
two bands. We seek a parameter regime where the local-
ization length is rather small even for moderate disorder
and small system sizes.

In Fig. 4, we study the bandwidth and localization
length of states in the C = 0 and C = 1 bands as a func-
tion of disorder strength and correlation length. Disorder
makes the bands broaden to an equal extent, but we are
able to attain a large amplitude of disorder W ≈ 1000
without closing the gap. For the C = 0 band, the lo-
calization length saturates to a small value (∼ 2.5lB) for
large enough disorder W >∼ 10 for all system sizes. We
also observe (inset) that using a larger correlation length
σ makes the localization length of the C = 0 band sat-
urate much faster with system size. This is especially
useful towards the many-body problem, where system
sizes accessible by numerical diagonalization are by ne-
cessity very small. For this reason, in Sec. IV we shall
fix σ = 2lB when considering this model. On the con-
trary, for the C = 1 band, the localization length grows
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FIG. 4. (a) Similar to Fig. 3 (a), the bandwidth-to-bandgap
ratio Eb/Eg of the Hofstadter subbands of the continuum
periodic potential of Fig. 2 is plotted as a function of the
strength W of the correlated disorder potential (Eq. (6)) for
three different values of disorder correlation length σ. Each of
the two bands has the same bandwidth Eb within numerical
accuracy. (b) The maximum average localization length ξ̄ of
the C = 0 subband is plotted as a function of disorder W
and system size Nφ. The disorder correlation length is fixed
at σ = 2lB . The inset on the right shows the saturation of ξ̄
with system size at W = 20, for different values of disorder
correlation length σ. (c) Same as (b), but for the C = 1
subband. Unlike the previous case, the localization length
diverges with increasing system size.

with system size without bound, indicating the presence
of a divergent localization length in the thermodynamic
limit, i.e. a critical energy much like in the whole LLL.
The scaling of ξ̄ is expected to be described by the non-
trivial multifractal scaling exponents of the integer quan-
tum Hall effect1,57.

The periodic potential with coefficients as in Table I is
rescaled by Eq. (4) and unit cell is simultaneously resized
to admit 2/3 flux quanta per unit cell. This yields a
band structure exactly as for the previous case (see Fig.
2), but with subbands having Chern numbers +2 and
−1 respectively. When correlated disorder is added to
this model, we see in Fig. 5 that both subbands have a
diverging localization lengths ξ̄. The C = +2 subband
has two critical energies in the middle of the band, and
shows stronger delocalization11,58,59.

In the many-body case, we would therefore expect the
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FIG. 5. The maximum average localization lengths ξ̄ of the
C = +2 and C = −1 subbands are plotted as a function of the
correlated disorder strength W for the model with 2/3 flux
quanta per unit cell. The correlation length of the disorder
potential σ = 2lB . The inset shows the scaling of ξ̄ as a
function of system size at fixed disorder W = 20.

C = +2 subband to resist MBL more strongly than the
C = ±1 subbands.

IV. LOCALIZATION WITH INTERACTIONS

In Sec. II we presented two methods to engineer nearly-
flat subbands with varying topological character from the
LLL, and in Sec. III we added disorder to both and stud-
ied their single-particle localization properties. We next
turn on electron-electron interactions and turn our atten-
tion to the possibility of many-body localization in these
models.

While the model based on a smooth periodic potential
has the advantage that it allows us to project the disor-
dered potential onto very flat bands of arbitrary Chern
number, the periodicity of the potential places a severe
restriction on the sizes we can access numerically in the
interacting case. This constraint is absent in the model
based on point impurities, which allows greater flexibil-
ity in choosing system sizes at the cost of (i) lack of tun-
ability of Chern numbers, (ii) a strong asymmetry be-
tween the C = 0 and C = +1 subbands, and (iii) worse
band flatness ratio. The two models thus feature distinct
strengths and weaknesses as platforms for the study of
localization with interactions.

A. Method

We consider the Hamiltonian

HLLL = PsbPLLL [V1-body + Vint]PLLLPsb, (7)

where Vint is an interaction term and Psb further projects
the LLL Hamiltonian onto a single subband of desired
Chern character obtained through the methods discussed
in previous sections. With Ne electrons, the filling frac-
tion ν = Ne/No, whereNo is the number of single particle
orbitals in the projected subband.

We choose Vint to be a Haldane V1 pseudopotential in-
teraction Vint(k) = Vc(1− k2l2B)e−k

2l2B/2. There are now
two independent parameters – the interaction strength
Vc, and the disorder strength characterized byW (and ρ,
in the point-impurity model) as described in the previous
section.

We investigate the onset of a possible many-body local-
ization transition by two methods – eigenvalue statistics
and infinite-time persistence of an initial charge density
imbalance.

We compute the many-body eigenvalues {En} and
eigenvectors {|φn〉} of the Hamiltonian in Eq. (7) via
numerical exact diagonalization on rectangular tori of
dimensions Lx × Ly. Then we compute the eigenvalue
spacing ratio

rn =
min (En − En−1, En+1 − En)

max (En − En−1, En+1 − En)
. (8)

The ensemble-averaged mean value of this statistic
〈r〉 is a useful diagnostic of localization-delocalization
transitions33,34,60. In a delocalized (thermal) phase, the
eigenvalue statistics are governed by the Gaussian uni-
tary ensemble (GUE), characteristic of an ergodic sys-
tem with broken time-reversal symmetry. In this case,
〈r〉 ≈ 0.599661. In a disordered (localized) phase, the
eigenvalue spacing distribution is Poissonian and 〈r〉 =
2 ln 2− 1 ≈ 0.3862.

A popular experimental method to probe many-body
localization and prethermalization is the time evolution
of an initial density imbalance in the system62–68. In the
ergodic phase, unitary time evolution from any initial
state should scramble the system completely, so the ini-
tial imbalance should vanish at long times. On the other
hand, in the many-body localized phase, memory of ini-
tial conditions is retained to arbitrarily long times under
unitary evolution, so a finite residual imbalance should
be observed even after infinite time.

In order to probe this effect numerically, we consider
the relaxation of an initial charge density imbalance,
modeled by the traceless Hermitian operator

M =

∫
dr c†rcr cos(2πx/Lx) . (9)

We initialize a mixed state close to infinite temperature
with density matrix ρ0 = 1+εM

D , where ε is a small posi-
tive coefficient and D is the Hilbert space dimension. The
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initial amplitude of charge density imbalance is

〈M0〉 = Tr [ρ0M ] =
ε

D TrM2 (10)

=
ε

D
∑

m

〈
φm|M2|φm

〉
. (11)

This means the system initially has higher charge den-
sity near x ' 0 than it does at the opposite side of the
torus, near x ' Lx/2. Unitary evolution will relax this
imbalance in the ergodic phase but not completely in the
MBL phase.

The amplitude of the charge density imbalance at times
t > 0 is given in terms of the time-evolved density matrix

ρt = e−iHtρ0e
iHt =

∑

m,n

ei(En−Em)t|φm〉〈φm|ρ0|φn〉〈φn| .

(12)
At long times t � ~/δE (where δE is the typical
many-body energy spacing), the off-diagonal density ma-
trix elements accumulate phases that time-average to
zero (we assume the disorder prevents any degeneracies).
In this limit, using the x∞ notation as shorthand for
limT→∞

1
T

∫ T
0
dt x(t), we have

ρ∞ =
∑

m

(〈φm|ρ0|φm〉)|φm〉〈φm| (13)

and therefore

〈M∞〉 = Tr [ρ∞M ] =
ε

D
∑

m

[〈φm|M |φm〉]2 . (14)

The remnant charge imbalance is the ratio 〈M∞/M0〉.
It lies between zero and one and quantifies the extent to
which the initial charge density modulation is ‘remem-
bered’ at infinite time. It provides us with a useful metric
to complement the level statistics to diagnose the lack of
ergodicity and thus the possibility of a many-body local-
ization transition.

Nφ Nδ Ne Lx/lB = Ly/lB
54 9 3 6

√
3π

72 12 4 12
√
π

90 15 5 6
√

5π

108 18 6 6
√

6π

TABLE II. Summary of system sizes studied in the point
impurity model, as described in Sec. IIIA. We exactly diag-
onalize four different system sizes, each with square aspect
ratio, at a filling ν = Ne/Nδ = 1/3. The number of scatterers
is Nδ = Nφ/6.

In the following we apply this method to the two mod-
els previously discussed. We first study the disordered
distribution of point impurities. This allows us to study
2-D finite size scaling in the non-topological C = 0 sub-
band with a fixed filling, which we set to ν = 1/3. Next,
for the smooth periodic potential of Sec. II B, we solve

Nφ
Lx
a
× Ly

a
νmin νmax ∆ν

16 2
√

2× 2
√

2 0.25 0.5 0.125
18 3× 3 0.222 0.444 0.1111

20
√

10×
√

10 0.2 0.5 0.1

26
√

13×
√

13 0.154 0.462 0.0769
32 4× 4 0.125 0.5 0.0625

34
√

17×
√

17 0.118 0.471 0.0588

36 3
√

2× 3
√

2 0.111 0.5 0.0556
24 3× 4 0.167 0.5 0.0833
30 3× 5 0.133 0.467 0.0667
36 3× 6 0.167 0.5 0.0556

TABLE III. Summary of system sizes studied in the smooth
potential model of Sec. III B with p/q = 2. The unit cell
has side is a = 2

√
πlB ≈ 3.54lB . For each value of Nφ, the

accessible fillings ν = 2Ne/Nφ lie between νmin and νmax,
spaced by ∆ν. We perform calculations for seven different
sizes for 2-D scaling on square tori, and three different sizes
for quasi 1-D scaling on rectangular tori.

the problem on rectangular tori of dimensions Lx × Ly
at various fillings. This system gives us access to C = 0,
C = ±1 and C = 2 subbands, depending on the flux per
unit cell. The Hilbert space dimension grows exponen-
tially with the system size, limiting the maximum size.
Further, we must ensure that the torus admits an integer
number of unit cells with periodic boundary conditions.

a

Lx =
√

10a

Ly =
√

10a

FIG. 6. The torus of size Lx×Ly can be rotated with respect
to the underlying periodic potential. This allows us to obtain
tori with linear dimensions that are an irrational multiple of
the lattice constant. In this example, the torus encloses an
area of 10a2. Periodic boundary conditions are imposed on
parallel edges as indicated.

If we keep the orientation of the torus aligned with
that of the lattice, so that both Lx and Ly are multiples
of the lattice constant a, we are severely limited in the
sizes we can access. This limitation is partially allevi-
ated by rotating the torus with respect to the lattice, as
illustrated in Fig. 6. In the case of p/q = 2 flux quanta
per unit cell, the system sizes we can access are listed in
Table III.
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We perform two kinds of analysis. First, at a fixed
filling of ν = 1/3 and Lx = 3a, we compare the results
at different values of Ly. This is equivalent to quasi 1-
dimensional scaling. Second, we attempt a 2-dimensional
scaling by comparing the results for square tori Lx =
Ly of different sizes. In the latter case, no one filling is
available at every size, therefore we interpolate the data
to estimate the scaling behavior at a fixed filling ν = 1/3.

Nφ
Lx
a
× Ly

a
νmin νmax ∆ν

12 3
√

2× 3
√

2 0.333 0.5 0.167
24 6× 6 0.167 0.5 0.0833

30 3
√

5× 3
√

5 0.133 0.467 0.0667

TABLE IV. Same as Table III, but for p/q = 2/3 flux quanta
per unit cell. The period of the smooth potential is a =
2
√
π/3lB ≈ 2.05lB . In this case, we perform calculations

only on square tori.

Finally, for the case where each unit cell encloses
p/q = 2/3 flux quanta (where the subbands have Chern
numbers C = +2 and C = −1), the system sizes are
listed in Table IV.

B. Results

0.38
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0.44

〈r
〉

Ne

3

4

5

6

10−3 10−2 10−1

W

0.4

0.6

0.8

1.0

〈M
∞
/M

0
〉

FIG. 7. Two-dimensional scaling of the 〈r〉 statistic (above)
and remnant charge imbalance 〈M∞/M0〉 (below) as a func-
tion of disorderW for electrons at a filling fraction ν = 1/3 in
the C = 0 subband of the disordered point impurity model.
Details of system sizes are given in Table II.

In Fig. 7, we show the 〈r〉 statistic and the persistence
of charge imbalance 〈M∞/M0〉 as a function of disorder
strength for the C = 0 of the disordered distribution of
point impurities. We fix the interaction strength Vc = 1,
and the non-interacting bandwidth Eb <∼ 0.1 as in Fig. 3
(a).
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FIG. 8. The 〈r〉 statistic is plotted as a function of the in-
teraction strength Vc and disorder strength W for a filling of
1/3 for the C = 0 (left) and C = 1 (right) bands, for four dif-
ferent system sizes (Nφ = 18, 24, 30, 36), increasing from top
to bottom. The C = 1 band shows an increasing tendency to
delocalize as the system size is increased. Approximately 100
different disorder realizations are averaged over at Ne = 6 and
around 10000 at Ne = 6. One linear dimension of the torus
is kept fixed (Lx) while the other is increased.

This model was shown to have clear evidence of a cross-
ing of the 〈r〉 statistic between Poisson and random ma-
trix behavior at a filling ν = 1/2 around W = 10−2 for
quasi 1-D scaling54. Two dimensional scaling also showed
such crossing, but it was unclear whether that behavior
persisted in the thermodynamic limit or whether it slowly
drifted to infinite disorder. Here, we study a different fill-
ing of ν = 1/3. The 〈r〉 statistic decreases with disorder
W , as expected, and also shows a crossing between differ-
ent sizes aroundW ≈ 10−2. The 〈r〉 value does not attain
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FIG. 9. The 〈r〉 statistic (above) and remnant charge imbalance 〈M∞/M0〉 (below) are plotted against disorder both for the
C = 0 (a) and C = 1 subbands (b) at a filling of ν = 1/3. For values of Nφ not divisible by 3, the curves are obtained by
interpolating from the nearest available rational fraction. The 〈r〉 statistic of the C = 0 subband attains the localized Poisson
value at much smaller disorder than the C = 1 subband. The value of 〈M∞/M0〉 is also much larger for the C = 0 subband, and
also appears to flow towards a step function as system size is increased. In (c), we plot the critical disorder Wc as a function
of system size Nφ. We define Wc to be the value of W at which 〈r〉 = 0.5 (roughly halfway between Poisson and GUE) in the
upper panel. In the lower panel, we define Wc to be the value of W at which 〈M∞/M0〉 attains roughly half its saturation
value. For the C = 0 subband, we define 〈M∞/M0〉(Wc) = 0.4, and for the C = 1 subband, we define 〈M∞/M0〉(Wc) = 0.2.

its GUE value of 0.6 as W → 0, because of the residual
positional disorder of scatterers and also partly due to
finite size effects. The persistence of charge imbalance
〈M∞/M0〉 also shows a clear monotonically increasing
trend as a function of disorder. We observe a crossing
in the curves at W ≈ 10−2, consistent with the eigen-
value statistics. The lack of access to larger system sizes
precludes us from making a conclusive statement about
whether this behavior is characteristic of a finite disor-
der transition in the thermodynamic limit. It is possible
that there is a slow drift of the crossing with system size,
indicating the instability of true MBL in this system in
the two-dimensional limit. Further studies are necessary
to clearly disambiguate the two scenarios.

The many-body localization transition is a high tem-
perature phenomenon, and is not expected to depend on
the properties of the ground state. That our results for
ν = 1/2 and ν = 1/3 are so similar is consistent with this
expectation.

Next, we turn to the smooth potential of Sec. II B,
and perform quasi 1-D scaling at filling ν = 1/3. In
Fig. 8, we show the 〈r〉 statistic for both the C = 0 and
C = 1 subbands. It is evident that although disorder and
interaction provide two independent energy scalesW and
Vc respectively, only their ratio W/Vc seems to matter in
controlling the ergodic-to-MBL transition, as long as W
and Vc are both sufficiently larger than the bandwidth

(which we set to 1). In the rest of the paper, we fix the
interaction strength at Vc = 8, which is a factor of 103

smaller than the inter-subband gap, and large enough to
be in the regime where results depend solely on W/Vc.
Both subbands show an increasing tendency to delocalize
as the system size is increased. However, the critical
disorder strength Wc at which 〈r〉 is midway between
Poisson and GUE statistics seems to appproach a finite
value for the C = 0 subband, while that for the C = 1
subband seems to diverge with system size.

In Fig. 9, we plot the eigenvalue statistic 〈r〉, and the
persistence of charge imbalance 〈M∞/M0〉 as a function
of disorder strength for 2-D scaling on square tori. Val-
ues are obtained by interpolating the curves as a function
of filling for different sizes to obtain curves at ν = 1/3
(see Appendix C for details). In the C = 0 subband, it is
evident that there is a signature of a finite disorder transi-
tion. At small W , the remnant charge imbalance is close
to zero, indicating a thermal phase in which memory of
initial conditions is washed away completely. At large
W , the remnant charge imbalance is non-zero. The tran-
sition between the two regimes becomes sharper as the
system size is increased, indicating that the phenomenon
is likely to persist in the thermodynamic limit. This be-
havior is mirrored in the eigenvalue 〈r〉 statistic, which
smoothly interpolates between the GUE value at small
disorder and the Poisson value at large disorder with a
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crossing very close to the Poisson value, in line with pre-
vious works34.

The C = 1 subband, on the other hand, behaves qual-
itatively differently. The remnant charge imbalance does
not increase appreciably with disorder and approaches
zero continuously as the system size is increased. The
eigenvalue statistic 〈r〉 also has no crossing and the value
of the critical disorder strengthWc at which it is midway
between Poisson and GUE values drifts to infinity with
system size.

In Fig. 10, we repeat the same analysis for the case
where the projected subbands have Chern numbers +2
and −1 respectively. In this case, the lattice commen-
surability condition constrains the square tori to have a
number of unit cells that is a multiple of 3. This makes
fewer sizes amenable to numerical exact diagonalization
than in the previous case.

Both subbands tend to delocalize, with the crossover of
the 〈r〉 statistic between GUE and Poisson values drifting
rapidly as a function of system size, suggesting absence of
MBL in the thermodynamic limit. The remnant charge
imbalance also behaves very similarly, saturating at a
very small value, and tending towards zero at all disorder
strengths as the system size is increased. These findings
are symptomatic of the absence of MBL in these Chern
subbands, as is expected. Interestingly, there is a small
quantitative difference between the C = −1 and C = +2
subbands in this case: while both show a tendency to
delocalize, the C = +2 subband delocalizes more easily.
At any given disorder strengthW and system sizeNφ, the
C = +2 subband has a larger 〈r〉 and smaller 〈M∞/M0〉
than the C = −1 subband. This is consistent with the
theoretical picture in which many-body delocalization is
caused by single-particle critical states25: the presence
of two critical energies11,58,59 in the C = +2 subband
makes it quantitatively more robust against localization
than the C = −1 subband, which has a single critical
energy.

V. DISCUSSION

In this paper we have systematically examined the in-
terplay of topology and disorder in the lowest Landau
level, with and without interactions. By providing an ex-
plicit recipe to construct potentials that lead to nearly-
flat Hofstadter subbands with arbitrary Chern number
in the lowest Landau level, we have been able to study
various topological subbands individually. The ability
to neglect inter-subband mixing arises from the large
bandwidth-to-bandgap ratio (≈ 102 to 104, depending
on the model). The process of projection to a gapped
subspace is analogous to other studies of MBL in tight-
binding models or cold atom systems, where higher bands
and continuum scattering states are neglected.

Using exact diagonalization on finite-sized systems, we
analyzed the energy spectrum as a whole, as well as indi-
vidual many-body eigenstates, in search for signatures of

localization. We find that MBL is absent in topological
subbands of the lowest Landau level, in both the one-
dimensional and two-dimensional thermodynamic limits.
Furthermore we find that, at finite size, higher-|C| bands
delocalize more strongly than |C| = 1 bands (such as
the whole LLL). This corroborates the picture of de-
localization being driven by topological (C 6= 0) single
particle states, which in the presence of interactions act
as non-local “communication channels” between distant
localized single particle orbitals. Higher-|C| bands fea-
ture more topological states, and are thus even more ro-
bust against the localizing effect of disorder. On phys-
ical grounds, these statements about the existence and
stability of MBL are expected to be true irrespective of
microscopic details such as the the type of interaction,
periodic potential and filling fraction.

However, the situation is rather different in topolog-
ically trivial LLL subbands. In principle, such C = 0
bands have no obstruction to localization since all single-
particle states are localized, as we showed in Sec. III.
While it is unclear if a many-body localized phase is sta-
ble in two dimensions in general, our finite-size results
suggest that, up to rare region effects which lie beyond
the scope of numerical diagonalization, many-body states
in C = 0 subbands of the LLL show several physical sig-
natures of localization – namely absence of many body
level repulsion and persistence of initial conditions. The
results for quasi-1D scaling are fairly unambiguous, and
have already been discussed in our previous work54. The
present work adds weight to the evidence that similar be-
havior also holds in the two-dimensional thermodynamic
limit – though ultimately further work is needed before
a conclusive statement can be made.
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Appendix A: Nearly-flat Chern subbands

In this appendix, we discuss details of the engineering
of nearly-flat LLL subbands, and prove the validity of
the transformation in Eq. (4) for obtaining bands width
identical dispersion but tunable Chern number.

We start by deriving the single particle Hamiltonian
of an electron in the LLL with a smooth periodic po-
tential, as described in Sec. II B. This Hamiltonian has
discrete translational symmetry, so its spectrum has a
Bloch band structure. A unique feature of projecting
the system to the LLL is that the subbands thus formed
generically have a topological character described by an
integer Chern number. We also explain how, starting
from one set of parameters, a whole family of energet-
ically equivalent yet topologically distinct Hamiltonians
may be constructed.
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FIG. 10. Same as Fig. 9, but for p/q = 2/3 flux quanta per unit cell. The two subbands have Chern numbers +2 and
−1 respectively. Both the 〈r〉 statistic (above) and remnant charge imbalance 〈M∞/M0〉 (below) are consistent with the
absence of MBL in the thermodynamic limit. In (c), the critical disorder is defined as 〈r〉(Wc) = 0.5 in the upper panel and
〈M∞/M0〉(Wc) = 0.2 in the lower panel.

On a rectangular torus of dimensions Lx × Ly (where
LxLy = 2πNφl

2
B), the LLL wavefunctions form a basis

of dimension Nφ. In the Landau gauge A = −Byx̂, the
basis wavefunctions are given by

ψn(x, y) =
1

(
√
πlBLx)

1
2

∞∑

l=−∞

ei2π(n+lNφ)
x
Lx exp− 1

2l2B

[
y − Ly

Nφ
(n+ lNφ)

]2
(A1)

In this gauge, the magnetic translation operators are69 t(x)a = exp
(
iapx~

)
and t

(y)
b = exp

(
ib
py−eBx

~

)
. We wish to

study the LLL system with a periodic potential V (x, y) = V (x + a, y) = V (x, y + b), with each unit cell of area ab
enclosing p/q flux quanta, with p and q co-prime. The problem of obtaining the spectrum of energy eigenvalues and the
the eigen wavefunctions is simplified by transforming the basis wavefunctions above to a Bloch basis of simultaneous
eigenstates of t(x)a , t(y)b and V . The generic non-commutativity of the translation operators forces us to consider a
magnetic unit cell that consists of q primitive unit cells of the periodic potential, such that [t

(x)
qa , t

(y)
b ] = 0.

The Bloch LLL wavefunctions are

ψβ,k(x, y) =

(
2pq

b
a

) 1
4

√
qab

∞∑

r=−∞
eikybreix(kx+

2π
qa (β+rp)) exp

[
− πp
qab

(
y − b

p

(
kxqa

2π
+ β + rp

))2
]
, (A2)

where the band index β ∈ {0, 1, · · · , p−1}. The quasimomentum k is defined through the eigenvalues of the translation
operators t(x)qa |ψβ,k〉 = eikxqa |ψβ,k〉 and t(y)b |ψβ,k〉 = eikyb |ψβ,k〉.

In the presence of a periodic potential V (x, y) =
∑

mx,my

vmx,mye
i2π(mxx/a+myy/b), the degeneracy of the LLL is
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broken, and we obtain a block-diagonal Hamiltonian at each k. Let Hβ,β′(k) ≡ 〈ψβ,k|V1-body|ψβ′,k〉, then

Hβ,β′(k) =
∑

mx,my

vmx,mye
−πq2p (m

2
x
b
a+m

2
y
a
b )
∑

r

(−1)rmyeikybrei2π
my
p ( kxqa2π + β+β′

2 )δβ−β′+rp+qmx=0

=
∑

mx≡q−1(β′−β) mod p
my

ṽmx,mye
−ikyb(β−β′)/pei2πmyβ/pei

qmykxa−qmxkyb
p eiπqmxmy/p, (A3)

where the LLL-projected Fourier coefficients ṽmx,my are
defined as

ṽmx,my = vmx,mye
−πq2p (m

2
x
b
a+m

2
y
a
b ) (A4)

and we have introduced the notation q−1 mod p to de-
note the multiplicative inverse of q in Zp, i.e. the unique
x ∈ Zp such that xq ≡ 1 mod p (this is well defined since
p, q are co-prime).

The elements of this matrix can be computed easily,
and hence the entire single-particle spectrum over the
magnetic Brillouin zone k ∈ [0, 2πqa ] × [0, 2πb ] can be ob-
tained. In Sec. II, we first consider the specific case of
p = 2 and q = 1, which gives us a 2 × 2 matrix. The
trace of this matrix is

TrH(k) =
∑

β=0,1

Hββ(k)

=
∑

even mx,
my

ṽmx,mye
i
2 (mykxa−mxkyb)

∑

β=0,1

eiπmyβ

= 2
∑

even mx,
even my

ṽmx,mye
i
2 (mykxa−mxkyb) (A5)

The matrix can thus be made traceless by setting to zero
all Fourier coefficients vmx,my with bothmx andmy even.
This results in a band structure with symmetry E1(k) =
−E2(k).

This single particle Hamiltonian has an interesting fea-
ture that enables us to construct the same band structure
for two different values of flux per unit cell p/q and p/q′,
such that q′ ≡ q mod p.

This is accomplished by demanding that the LLL-
projected Fourier coefficients are the same ṽmx,my =
ṽ′mx,my . As a consequence, the Hamiltonians of the two
systems are related by a transformation

e−ikyb
(β−β′)(q−1)

q Hβ,β′(k/q) = e
−ikyb (β−β′)(q′−1)

q′ H ′β,β′(k/q
′).

(A6)

This is a unitary transformation as it may be rewritten
in the form

H ′(k/q′) = UH(k/q)U†, (A7)

where U is a diagonal matrix of complex phases Ull =

e
ikybl

(
q−1
q + q′−1

q′

)
.

Since the two Hamiltonians are related by this unitary
transformation, the band structures {E1(k), . . . Ep(k)}
are identical, up to a rescaling of the magnetic Brillouin
zone.

However, the Chern numbers of the subbands are dif-
ferent in the two cases as they are calculated from the
eigenstates |φm(k)〉 as

Cm =
i

2π

∫
d2k ẑ · 〈∇kφm(k)|×|∇kφm(k)〉 . (A8)

This transformation is used in the main text to obtain a
set of C = +2,−1 subbands in a model with 2/3 magnetic
flux quanta per unit cell.

Appendix B: Distribution of single particle
localization length
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FIG. 11. The distribution (over an ensemble of realizations)
of single-particle localization lengths near the centers of the
C = 0 and C = 1 subbands of the model in Sec. III B. Dotted
lines denote the position of the mean of the distribution, used
to generate the points in Fig. 4. The most localized Wannier
orbital that can be constructed out of LLL wavefunctions has
ξ =
√

2 and leads to a hard cut-off in the distribution.

In Sec. III, we define the localization length ξ(E) from
the inverse participation ratio (IPR), and calculate the
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energy-resolved maximum of its ensemble average as a
proxy for the localization of the entire band. Since
the distribution of IPR is not always a well-behaved
Gaussian-like distribution70 and often has power-law
tails, it is not immediately clear that ensemble averag-
ing of ξ(E) leads to a robust and stable measure of lo-
calization. In Fig. 11, we plot the distribution of ξc (ξ
in a small energy window at the center of the subband)
for the case of periodic potential with correlated disorder
at fixed disorder strength W = 20 and disorder correla-
tion length σ = 2lB (see Fig. 4 for the mean localization
length ξ̄ as a function of W ). We find that while the
distributions are skewed, the means represent the distri-
butions well. Further, we notice that the distribution for
the C = 0 subband remains stationary as system size is
increased, while that for the C = 1 subband moves, and
has a completely different shape.

Appendix C: Details on filling interpolation

In this appendix, we present the raw data of spec-
tral statistics and charge density imbalance based on
which the findings in Sec. IVB are obtained. The pe-
riodic potential with two flux quanta per unit cell, as
described in Sec. II B, constrains our system sizes to be
Nφ = 2(n21 + n22) with integer n1, n2 in order to obtain
square tori. For a fixed system size Nφ, we obtain raw
data for 〈r〉(W ) for various fillings ν = Ne/2Nφ (see Fig.
12). Since the Hilbert space dimension of the projected

problem grows as
(

Nφ/2
νNφ/2

)
, limitations on computa-

tional power make it impossible to study the exact size
scaling at fixed filling ν.

We study the 〈r〉 statistic as a function of disorder
W at different fillings and interpolate the data to obtain
an estimate at ν = 1/3. In Fig. 12, we show the raw
〈r〉 statistic. At all system sizes, the eigenvalue statistic
moves from GUE-like at small disorder to Poisson-like at
large disorder. At a fixed system size Nφ, smaller fillings
cross over to the localized Poisson regime more easily.
This is because smaller fillings are more single-particle
like and have a smaller Hilbert space dimension com-
pared to fillings near ν = 1/2. Since the trends are very
smooth as a function of system size, we can synthesize
a 〈r〉(W ) curve at any intermediate filling of our choice
by linear interpolation between the two nearest fillings
at that size. This enables us to make a comparison of
eigenvalue statistics at fixed filling ν = 1/3 (see Fig. 9).

The same procedure is followed for the charge density
imbalance 〈M∞/M0〉. In Fig. 13, we show the raw data
that is interpolated to obtain the curves in Fig. 9.
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FIG. 12. We plot the raw eigenvalue statistic 〈r〉 for the eight different dimensions of square tori described in Table III. At
each size Nφ, we are able to obtain several different fillings. This enables us to interpolate the data to obtain results at a fixed
filling ν = 1/3.
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FIG. 13. Similar to Fig. 13, we plot the raw charge density imbalance 〈M∞/M0〉 for the eight different dimensions of square
tori described in Table III.
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