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Magnetically-launched flyer plates were used to investigate the shock response of beryllium 

between 90 and 300 GPa. Solid aluminum flyer plates drove steady shocks into polycrystalline 

beryllium to constrain the Hugoniot from 90 to 190 GPa. Multi-layered copper/aluminum flyer 

plates generated a shock followed by an overtaking rarefaction which was used to determine the 

sound velocity in both solid and liquid beryllium between 130 and 300 GPa. Disappearance of 

the longitudinal wave was used to identify the onset of melt along the Hugoniot and 

measurements were compared to density functional theory calculations to explore the proposed 

hcp-bcc transition at high pressure. The onset of melt along the Hugoniot was identified at ~205 

GPa, which is in good agreement with theoretical predictions. These results show no clear 

indication of an hcp-bcc transition prior to melt along the beryllium Hugoniot. Rather, the shear 

stress, determined from the release wave profiles, was found to gradually decrease with stress 

and eventually vanish at the onset of melt. 

I. Introduction: 

Among metals, beryllium has one of the highest strength-to-weight ratios and elastic 

moduli, with an elastic stiffness comparable to steel but at less than a quarter the density.1, 2  It 

exists in the hexagonal-close-packed (hcp) structure and has the lowest c/a ratio of any 

hexagonal metal.3 At ambient conditions, beryllium also has the highest longitudinal sound 

velocity and lowest Poisson ratio of any metal; consequently it is the only hcp element whose 

shear modulus exceeds its bulk modulus.3   



Currently, beryllium is of particular interest as an ablator or liner material for inertial 

confinement fusion (ICF)4 and magnetized liner inertial fusion (MagLIF)5 experiments.  In both 

fusion concepts, beryllium provides a significant advantage over other materials in that it has a 

higher mass ablation rate,6, 7 enables better control of hydrodynamic instabilities,8, 9 and enables 

the use of lower implosion adiabats.4  Recent studies of ICF capsule physics with beryllium 

ablators10 found that beryllium capsules exhibit the smallest instability growth rates and can 

reach the highest theoretical yields of all ablator materials considered.11 

Design of ICF and MagLIF experiments require large-scale hydrodynamic simulations to 

model the implosion and resulting extreme pressure and temperature states. These simulations 

model the behavior using the conservation relations for mass, momentum, and energy: a set of 

equations that is closed by inclusion of an equation of state (EOS).12 Because the EOS of a 

material depends on its phase, knowledge of the beryllium phase diagram is critical to 

understanding the behavior of the liner or shell throughout a MagLIF or ICF experiment. In 

MagLIF experiments, the imploding liner is compressed quasi-isentropically and remains in the 

solid phase for the bulk of the implosion.5 Accurate prediction of solid-solid phase transitions is 

critical as the liner will see a sudden change in density and sound velocity, which will affect the 

propagation of compression waves and can lead to shock formation in the liner. Similarly, in ICF 

experiments, the compression uses a multi-shock laser pulse with the first pulse tailored to melt 

the Be ablator while keeping the fuel adiabat as low as possible.4 This requires knowledge of the 

melt behavior of beryllium along the Hugoniot to drive complete melting at the lowest possible 

adiabat thereby maximizing the fuel compressibility. A key concern in both MagLIF and ICF 

experiments is the control of hydrodynamic instabilities,8, 9 the growth of which is related to the 



sound velocity in the material. Accurate knowledge of these properties enables design of targets 

and drive pulses that are less susceptible to instability growth.13 

Theoretical calculations of the beryllium phase diagram predict a transition to a body-

centered-cubic (bcc) structure at high pressure and temperature.14-17 At ambient temperature, the 

predicted phase diagrams are in reasonable agreement with the hcp-bcc transition occurring 

between 39015 and 41514 GPa. However, at high temperatures, the predicted hcp-bcc-liquid 

triple-point varies in pressure and temperature from ~95 GPa and ~3500 K15 to ~180 GPa and 

~4300 K14. This high temperature discrepancy results in the predicted hcp-bcc transition along 

the principal Hugoniot differing by ~30 GPa. Experimental studies of the Be phase diagram have 

yet to constrain the high-pressure hcp-bcc transition and melt curve. At low pressure, a transition 

from α-Be to β-Be was observed prior to melting in early studies18, 19 but was not observed in 

more recent experiments.20-22 At high pressure and temperature, Lazicki et al measured the phase 

diagram up to 205 GPa and 4000 K using x-ray diffraction and found no evidence of the hcp-bcc 

transition.21 Furthermore, their measurements failed to provide clear evidence of melting, and 

only provide a lower bound on the melt curve.21 

The high-pressure properties of beryllium have been extensively studied under dynamic 

compression.  In solid Be, the principal Hugoniot has been measured up to ~160 GPa using 

explosively-driven shocks23-25, single-26 and two-stage27 gas guns, and magnetically-accelerated 

flyer plates28. Above the melt curve, the Be Hugoniot has been measured to ~1800 GPa using 

nuclear impedance matching29, 30 and laser-driven shocks31.  Beyond the principal Hugoniot, the 

sound velocity and strength of beryllium have been investigated using both shock and quasi-

isentropic loading. Under shock loading, the bulk and longitudinal wave velocities were 

measured and used to infer the shear stress in Be up to a peak stress of 35 GPa.32  Quasi-



isentropic loading experiments have measured the shear stress using ramp-release experiments to 

110 GPa1 and Rayleigh-Taylor experiments to 50 GPa2. 

We report measurements of the Hugoniot, sound velocity, and shear stress of beryllium 

between 90 and 300 GPa from magnetically-accelerated flyer plate experiments performed on 

the Sandia Z machine.33  The beryllium Hugoniot was constrained from 90-190 GPa to resolve a 

discrepancy between models and existing data. Sound velocity measurements from 130-300 GPa 

probed the proposed hcp-bcc transition and melting along the Hugoniot.  Density functional 

theory (DFT) calculations were used to identify the expected change in response across the hcp-

bcc transition and compared to the experimental results.  The onset of melting was determined to 

occur at ~205 GPa and no clear evidence of an hcp-bcc transition was identified. 

II. Experimental Methods: 

The beryllium Hugoniot and sound velocity were measured in flyer plate experiments 

performed on the Sandia Z machine, a pulsed-power generator capable of producing currents 

greater than 20 MA and magnetic fields exceeding 1000 T with a rise time of ~100-1000 ns.33  

These experiments used an asymmetric coaxial load geometry, with a rectangular cathode stalk 

surrounded by anode plates with anode-cathode (A-K) gaps of 1.4 and 1.0 mm on the north and 

south sides, respectively.34, 35  The anode plates were designed to be flyer plates which would 

impact the samples.  The asymmetric construction produced different magnetic pressures in the 

A-K gaps, accelerating the flyer plates to different velocities enabling measurement at two 

distinct stress states on a single shot. 

Three dedicated Hugoniot and seven sound velocity experiments were performed to 

investigate the properties of beryllium near melt on the Hugoniot.  The dedicated Hugoniot 

experiments used 0.9 mm thick solid aluminum flyer plates and the sound velocity experiments 



used 0.7/0.15 mm thick composite Al/Cu flyer plates. The composite flyer plates were fabricated 

by electroplating copper onto an aluminum “blank” and then diamond-turning both sides to the 

final desired thickness.  The density of the high-purity plated copper was found to be >99% full 

density (8.93 g/cm3).  Simulations with the 1D magnetohydrodynamics code LASLO36 show that 

the ramp compression wave that accelerates the flyer plate compresses any voids in the copper 

layer and that the resulting layer is at full density upon impact with the target.  For both flyer 

plate types, simulations imply that the plates have a sufficiently thick (>0.2 mm) solid layer at 

the impact surface to produce a steady shock which propagates through the target.37 

The relative thickness of the copper and aluminum layers for the sound velocity flyer 

plates were determined in two ways: (1) using acoustic microscopy from both sides of the flyer 

plate and (2) precision measurements of the flyer plate mass and dimensions.  Acoustic 

microscopy maps the internal features of the flyer plate, identifying the depth of the Al/Cu 

interface from each side as well as interrogating the adhesion of the copper plating to the 

aluminum blank.  Flyer plates for which the copper was found to have delaminated from the 

aluminum during final machining were rejected.  For the dimensional method the density of the 

copper and the aluminum were taken to be the measured density of the plated copper and the 

density of 6061-T6 aluminum (2.70 g/cm3), respectively.  The uncertainty in the inferred copper 

thickness using this method was dominated by the uncertainties in the lateral dimensions of the 

flyer plate (~10 µm) as measured with the measuring microscope, and the measured density 

uncertainty of the plated copper (contributes ~2 µm to thickness uncertainty).  Overall 

uncertainty in the thickness of the copper layer (using both methods) was determined to be ~3 

µm (~2% of the copper thickness). 



 Beryllium samples for the dedicated Hugoniot experiments were nominally 6.25 × 10 

mm and 1 or 0.75 mm thick polycrystalline material (S200F, Brush Wellman), backed by either 

lithium fluoride (LiF) or quartz windows. Adjacent samples were quartz windows which enabled 

observation of the flyer plate and estimation of the impact time at the beryllium sample.  The 

measured beryllium density was 1.85 g/cm3.  The backing windows were flash-coated with 

aluminum on the front surface and antireflective (AR) coated for 532 nm on the back surface. 

The beryllium samples for the sound velocity experiments (Figure 1) were stepped 

polycrystalline material (S200F, Brush Wellman), nominally 25 mm tall by 10 mm wide with 

thicknesses of 0.5, 0.7, 0.9, and 1.1 mm.  A 0.1 mm thick layer of copper was electroplated to the 

impact surface of the beryllium samplesto generate an impact stress above the melt stress for the 

copper impactor. Without this layer the impactor would have remained solid for most of the 

experiments described in this manuscript. This would have resulted in a complex release 

structure from the copper impactor, thereby complicating the experimental analysis.  The 

beryllium step heights were measured with a through-the-lens laser autofocus instrument, with 

~1 µm precision.  Measurements were made both prior to and after plating. Bowing of the 

beryllium sample due to residual stress from the plating process resulted in an uncertainty in the 

copper thickness of ~2 µm. 

Quartz or LiF windows, coated similarly to the dedicated Hugoniot targets, were mounted 

to the back of the beryllium steps using a low-viscosity epoxy (Angstrombond).  The different 

window materials were chosen to accommodate the measurement of wave profiles. Lower stress 

experiments (below 150 GPa) utilized LiF windows to enable measurement of the beryllium/LiF 

interface velocity; LiF has been demonstrated to remain transparent under shock compression to 

~210 GPa.38 Higher stress experiments (above 155 GPa, at which stress the resulting shock in the 



LiF would render it opaque) utilized α-quartz windows.  Above ~90-100 GPa along the Hugoniot 

α-quartz becomes reflective, and thus a continuous measurement of the shock velocity can be 

obtained using velocity interferometry. Similar to the dedicated Hugoniot experiments, adjacent 

samples were quartz windows which enabled observation of the flyer plate and estimation of the 

impact time at each step of the beryllium sample. 

A multipoint velocity interferometer system for any reflector (VISAR)39, 40 with 32 

independent channels was used to measure the flyer velocity and either the Be/LiF interface 

velocity or the shock velocity in quartz windows, as shown in Figure 1.  The VISAR probe was a 

Nd:YAG laser that is frequency doubled to 532 nm.  Single-crystal quartz is mostly transparent 

to 532 nm light, allowing the VISAR probe to pass through the windows and reflect off the back 

surface of the flyer plate, tracking its velocity from rest to impact.  A sudden change in phase and 

amplitude signified the flyer plate impact and shock-breakout at the Be/LiF and Be/quartz 

interface; these features were used to determine the transit time of the shock wave through the 

beryllium sample.  2π phase ambiguities were resolved by using either two or three different 

VISAR sensitivities (measured in velocity-per-fringe (VPF)) at each location.  VPF settings 

ranged from 0.506 to 1.926 km/s/fringe. Velocity uncertainty was conservatively estimated at 

one-tenth of a fringe, resulting in flyer plate and quartz shock velocity uncertainties of ~0.5% 

and Be/LiF interface velocity uncertainties of ~1%. 

III. DFT Calculations: 

First-principles molecular dynamics (FPMD) calculations were performed using the 

Vienna Ab-Initio Simulation Package (VASP), a plane-wave density functional theory (DFT) 

code developed at the Technical University of Vienna.41-43 For the Hugoniot calculations in this 

work, the beryllium atoms were represented with projector augmented wave (PAW) potentials44, 



45 and exchange and correlation were modeled with the Perdew-Burke-Ernzerhof (PBE) 

functional.46 A total of 250 atoms were included in the supercell, with a plane-wave cutoff 

energy of 300 eV. Molecular dynamics simulations were performed in the NVT ensemble, with 

simple velocity scaling as a thermostat, and typically covered on the order of a few to several 

picoseconds of real time with time steps of 2 fs. For these calculations the Brillouin zone was 

sampled by a Γ−centered 2 x 2 x 2 Monkhorst-Pack k-point grid.47 Calculations were performed 

for hcp, bcc, and liquid. 

The Rankine-Hugoniot jump conditions,12 which are derived by considering conservation 

of mass, momentum, and energy across a steady propagating wave, provide a set of equations 

relating the initial energy ( )E , volume ( )V , and stress ( )σ  with steady state, post-shock values 

 ( ) ( )( )0 0 0
1
2

E VE Vσ σ= − −−   (1) 

 ( )0 0 S pU uσ σ ρ− =   (2) 

 0 S

S pU u
Uρρ =
−

  (3) 

where ρ , SU , and pu  denote the density, shock velocity, and particle velocity, respectively, and 

the subscript 0 denotes initial values. The first of these equations, derived from the conservation 

of energy, provides a prescription for calculation of the Hugoniot. Temperatures and densities 

are iterated to obtain final states close to satisfying Eq. 1 for the stress range of interest with the 

final Hugoniot state obtained through interpolation on those values. 

 Elastic constants were determined by evaluating small strains (~1% in both compression 

and tension). In these evaluations, direct entropy calculations for the solid or liquid48 were used 

to choose ΔT such that the strained system remained on an adiabat (ΔS = 0). For the liquid case 



simple isotropic, adiabatic strains were evaluated to determine the adiabatic elastic constants. In 

the solid cases (both bcc and hcp), the strains were applied along strategically chosen directions 

such that the independent elastic constants were sampled. For the relatively simple cubic bcc 

system a single strategically chosen strain tensor provided all three independent elastic constants 

(c11, c12, and c44). The lower symmetry hcp system required a combination of two strains to 

provide all five independent elastic constants (c11, c12, c13, c33, and c44). Note that the equivalence 

c66 = (c11 - c12)/2 was evaluated and found to be satisfied, lending confidence in the method used. 

The bulk sound velocity for the hcp, bcc, and liquid were also obtained directly from the elastic 

constant calculations. In order to compare with the experimental measurements, which utilized 

polycrystalline material, the longitudinal sound velocities for the hcp and bcc solids were 

determined using a Voigt-Reuss-Hill average49. The Poisson ratio and shear modulus were also 

determined from these calculations and compared with experimental data. These values are listed 

in Table I and plotted in Figs. 5, 6 and 8. 

IV. Analysis: 

A. Hugoniot 

The beryllium shock velocity was determined from the measured thicknesses and shock 

wave transit times for the beryllium samples.  Since beryllium is opaque the impact time could 

not be directly observed. Instead, impact times were interpolated from the observed impact times 

for the adjacent quartz windows.  A correction to the impact time, based on the flyer velocity, 

was applied to account for measured differences in flight distances (typically <3 µm).  The 

beryllium Hugoniot state was determined through impedance matching using the Rankine-

Hugoniot relations,12 which identify the Hugoniot state as the intersection of the beryllium 

Rayleigh line and the backwards-facing aluminum Hugoniot emanating from the measured flyer 



plate velocity.12 The piecewise linear Hugoniot fit given in ref. 50 was used for the aluminum 

standard in these experiments. Uncertainty in impact and breakout times were conservatively 

estimated to be 0.5 ns, producing single-sample uncertainties in shock velocity of ~2-3%.  The 

measured shock velocity was averaged for the two sample thicknesses, resulting in a final 

uncertainty of ~1-2%. Uncertainty in the inferred particle velocity was determined using a 

Markov-chain Monte Carlo (MCMC) technique and were found to be of order 1%.  

B. Sound Velocity 

Sound velocities were inferred using the overtaking rarefaction method and observing the 

decrease in velocity upon overtake of the leading shock by the release wave from the copper-

aluminum interface in the flyer plate.35  This technique is similar to previous experiments 

observing a decrease in emission of a liquid (bromoform) analyzer,32, 51, 52 but is less affected by 

noise and small variations in stress.35  For quartz windowed samples, the reflective shock was 

tracked using the VISAR diagnostic and the decrease in velocity at overtake was directly 

observed.  A similar technique was used for the LiF windowed samples, however in those cases 

the Be-LiF interface velocity was tracked rather than the leading shock velocity. 

For experiments at peak stresses below melt on the Hugoniot, a complex structure was 

identified upon release caused by the splitting of the release wave into the longitudinal and bulk 

waves (Figure 2a).  The Be-LiF interface velocity (solid blue line) exhibits a velocity plateau 

upon the shock entering the LiF followed by a two-stage release.  Linear fits were made to the 

constant-velocity plateau (dotted black line), longitudinal release (dashed yellow line), and bulk 

release (dashed-dotted red line) regions.  The overtake time for the longitudinal wave (yellow 

star) and bulk wave (red star) was found from the intersection of the release fits with the fit to the 

plateau region.  The uncertainty in intersection time was calculated using a Monte Carlo 



technique with 106 iterations, where the plateau and overtake fits were recalculated using 

variable time durations for the fit region.  Uncertainties in the overtake times determined in this 

manner were typically <1 ns. 

The beryllium step thicknesses were chosen such that the overtake would occur within 

the sample for the thicker steps and within the windows for the thinner steps.  In cases where the 

overtake occurred within the sample (i.e. there was no constant-velocity plateau in the VISAR 

trace), the average of the plateau regions from the thinner steps was used and an effective 

negative overtake time was determined.  The overtake times and step thicknesses were correlated 

for each of the samples and linearly fit to determine the thickness, Od , and time, Ot , where 

overtake would occur in an infinitely thick sample (i.e. in the absence of wave interactions).  As 

seen in Figure 2b, the thicknesses where the longitudinal (dashed yellow line) and bulk (dashed-

dotted red line) would overtake the shock at breakout are identified as the overtake thicknesses. 

The copper layer on the impact surface of the beryllium sample served to generate a 

simple release from the Cu/Al interface within the flyer plate (the copper melted upon impact). 

However, it also complicated somewhat the sound velocity determination from the overtake 

measurement due to wave interactions at the Cu/Be interface. Upon the shock reaching the 

Cu/Be interface in the target, a release wave was launched back into the copper.  Thus, the 

overtaking rarefaction from the Cu/Al interface propagated through both shocked copper and 

partially released copper as seen in Figure 3.  The lower density and temperature of the partially 

released copper decreased the sound velocity relative to the shocked copper, resulting in the 

rarefaction wave arriving at the Cu/Be interface later than it would have had the partial release 

not been present. 



To account for this wave interaction a scale factor, 
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= , was used to relate the 

Lagrangian sound velocity of the partially released copper, ,
rel
l CC , to that of the shocked copper, 

,l CC .  McCoy, Knudson, and Root35 determined that the scale factor for copper releasing into 

quartz is nominally independent of stress, with a value of ~0.85±0.11.  We note that a 

computationally determined scale factor using the SESAME 332536 EOS table also exhibits a 

stress independent scale factor of ~0.84, in very good agreement with the experimentally 

determined value (~1% lower).  In the absence of an experimentally determined scale factor for 

copper releasing into beryllium, we used a value of 0.81, corresponding to a 1% increase in the 

scale factor of 0.80 determined computationally from SESAME 3325.  The scale factor 

uncertainty was assumed to be the same as the experimental value from ref. 35, i.e. 

,
0.81 0.11

l CCS = ± . 

The copper Hugoniot and sound velocity were used to determine the times at which the 

rarefaction, Rt , enters the beryllium sample.  The beryllium Lagrangian sound velocity, ,l BC , 

was then determined from 

 ,
O

l B
O R

d
t

C
t−

= . (4) 

The uncertainty in sound velocity was found to be ~2-3% and was dominated by the thickness 

measurements and inferred overtake times.  The impact and Be/window breakout times were 

directly observed with VISAR and resulted in smaller contributions to the overall uncertainty. 

C. Shear Stress 

The shear stress was estimated using the self-consistent method proposed by Asay and 

Lipkin.53  This technique assumes the in-situ particle velocity is known at multiple points within 



the material of interest, and the Lagrangian sound velocity is determined as a function of the 

particle velocity, as shown in Figure 4.  Determination of the in-situ particle velocity requires 

knowledge of the EOS of the window material as well as the interface particle velocity.  For the 

LiF windowed samples (Figure 2a) the interface particle velocity is directly observed with 

VISAR.  For the quartz windowed samples, the VISAR observed the quartz shock velocity rather 

than the interface particle velocity.  To extract the interface velocity, the Lagrangian technique 

developed by McCoy and Knudson54 was used.  This correction used the quartz Hugoniot and 

release model described by Knudson and Desjarlais50 with the most recent model calibration 

coefficients.55 

Because the shock impedances of quartz and LiF are similar to that of beryllium, the in-

situ particle velocity for the beryllium samples could be determined accurately through 

impedance matching.  At each time along the wave profile, an impedance match was made 

between the beryllium and window material in a manner similar to that described in ref. 56.  By 

repeating this for the entire wave profile, the in-situ particle velocity was determined as a 

function of time (solid blue line in Fig. 4).  After determining the in-situ response, and assuming 

uniaxial strain, the derivatives of the longitudinal stress (σ ) and strain (ε ), are determined 

through 

 ( ) ( ) ( )4
3md ddσ ε σ ε τ ε= +  and (5) 

 
( )l

d
u

du
C

ε = ,  (6) 

where mσ  is the mean stress and τ  is the shear stress.  By substituting the bulk ( bC ) and 

longitudinal ( lC ) sound velocities, Eq. 5 can be rewritten as 



 ( ) ( ) ( )2 2
0

3
4 l bd C C dτ ε ρ ε ε ε⎡ ⎤= −⎣ ⎦ ,  (7) 

where 0ρ  is the initial density.  The shear strength can be estimated as 2Y τ=  using the J2 

theory1, which, by substituting Eq. 6 and integrating Eq. 7, gives 

 
2 23
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C dY C u
C
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For each sample the wave profiles for the two thinnest Be steps, where both the 

longitudinal and bulk release occurred within the window, could be analyzed using Eq. 8 to 

estimate the shear strength.  This provided two independent measurements of the shear stress, 

which were then averaged to determine a shear stress and uncertainty. Additional details on the 

calculation can be found in refs. 1 and 53. 

V. Results and Discussion: 

A. Hugoniot 

A total of three dedicated Hugoniot experiments were performed on beryllium, yielding 

six Hugoniot measurements. The pertinent parameters for these experiments are listed in Table 

II. fv  and SU  denote the measured flyer plate velocity and the shock velocity in the beryllium, 

respectively. pu , σ , and ρ  denote the inferred particle velocity, stress, and density of the 

beryllium in the shocked state, respectively. The Hugoniot is plotted in Fig. 5. Also shown in the 

figure are data from gas gun measurements conducted by Isbell et al27 (green circles) and Wise et 

al (open circles)26, and explosively-driven data from the Marsh compendium (yellow triangles)23 

and Walsh et al (open triangles)24. The present results (red diamonds) are significantly less 

compressible than the Isbell results and agree well with an extrapolation of the other data. 

In comparison to EOS models, we find that the present results agree with both tabular 

models shown: SESAME57 2024 (dashed-dotted black line) and XEOS 4058 (dashed blue line; a 



QEOS model with similar behavior to the recent multiphase model developed by Benedict et 

al14). Density functional theory (DFT) Hugoniot fits were determined for hcp Be (

7.766 1.182S pU u= + , solid red line), bcc Be ( 7.488 1.208S pU u= + , dashed orange line), and 

liquid Be ( 7.800 1.187S pU u= + ). The experimental data are in excellent agreement with the hcp 

fit, whereas the bcc fit is systematically more compressible than the data, particularly at the 

lower stresses. However, we note that over the stress range explored here, the solid and liquid 

fits cannot be distinguished experimentally.  No experimental data exists in the 200-300 GPa 

stress range, within the liquid phase, to compare with the DFT calculations.We note that 

inclusion of the copper layer on the impact surface of the sound velocity targets in this study 

resulted in an inability to measure the Be Hugoniot directly in those experiments. However, due 

to the agreement between DFT and both the experimental results and tabular models in the solid 

regime, we chose to use the DFT solid and liquid Hugoniots to calculate the stress, density, and 

particle velocity of the shocked beryllium for the sound velocity experiments. This differentiated 

between the solid and liquid phases in Be, and represented the change in Hugoniot slope upon 

melting absent from the single-phase SESAME and XEOS models. 

B. Sound Velocity 

Seven sound velocity experiments were conducted, yielding fourteen measurements of 

the beryllium sound velocity at stresses between 130 and 300 GPa, as shown in Figure 6. Eight 

of these measurements exhibited a two-wave release structure, as illustrated in Figure 2a, 

indicative of release from the solid phase. The remaining six measurements exhibited a single-

wave release structure, indicative of release from the partially molten or liquid phase. The 

pertinent parameters for these experiments are listed in Table III. fv  and SU  denote the 

measured flyer plate and shock velocity, respectively. pu  and σ  denote the inferred particle 



velocity and peak stress obtained from the DFT Hugoniot for Be and the measured shock 

velocity. lC , bC , G , Y , and ν  denote the inferred longitudinal and bulk sound velocities, the 

shear modulus, the shear strength, and Poisson’s ratio, respectively, obtained from the measured 

overtake times. 

The sound velocities and Poisson ratio are plotted in Fig. 6. The peak longitudinal sound 

velocity (open diamonds) was observed at ~150 GPa. At higher stresses, the longitudinal wave 

velocity begins to decrease rapidly and approaches the bulk sound velocity (red diamonds) near 

~200 GPa. In contrast, the bulk sound velocity increases monotonically over this stress range. 

The Poisson ratio, defined as 
2 2

2 2

3
3

b l

b l

C C
C C

ν −=
+

, was used to determine the onset of melt (Figure 6c); 

a piecewise linear fit (solid black line) to these data (diamonds), the data of Chhabildas et al32 

(squares), and the ambient Poisson ratio (yellow triangle)3, suggests an onset of melt at a stress 

of 13204σ = ± GPa. 

Using the DFT Hugoniot and ambient thermal Grüneisen parameter, 0 1.30Γ = , from 

Zhang et al59, the bulk sound velocity was calculated from 

 0

2 2
1 H

b
H

V dV
V

C
dV

ε ρ σσ⎛ ⎞Γ Γ= − +⎛ ⎞−⎜ ⎟ ⎟
⎝ ⎠⎝ ⎠
⎜ ,  (9) 

where 
1V
ρ

=  is the specific volume and the subscript H denotes the stress and derivative of the 

stress along the principal Hugoniot.60 Here we make the common assumption of ρΓ  being 

constant; i.e., 0 0ρ
ρ
ΓΓ =  in Eq. 9. Under this assumption, the calculated bulk velocity (solid red 

line) falls within the uncertainty of the measurements reported here as well as those of 

Chhabildas et al32. The discrepancy between these data and the DFT calculations arises from the 



Grüneisen parameter; assuming ρΓ  to be constant yields 0.75Γ  at melt on the Hugoniot 

whereas the DFT calculations imply 0.91Γ . Previous DFT calculations by Luo16 with the DFT 

Γ . While the calculation assuming ρΓ =constant better matches the data, we don’t believe that it 

accurately represents the Be Grüneisen parameter at these stresses due to the extreme 

extrapolation from ambient measurement. 

The longitudinal sound velocity, calculated using the bulk sound velocity and the fit to 

the experimentally determined Poisson ratio, is shown as the black dashed line. We note that the 

bulk sound velocity from the model by Ignatova et al61 (dashed-dotted purple line) agrees with 

the present results. However, the longitudinal wave velocity from Ignatova (dashed-dotted green 

line) significantly overpredicts the peak wave velocity compared to this work. This large 

discrepancy in the longitudinal velocity implies that the Ignatova model does not produce a 

reasonable value for the high-stress shear modulus of beryllium. 

At increasing stress and temperature along the Hugoniot, beryllium is predicted to 

undergo a solid-solid phase transition from the hexagonal-close-packed to body-centered-cubic 

(hcp-bcc) phase at a stress just below the melt boundary. Different calculations of the phase 

diagram (see Fig. 7) predict the hcp-bcc transition along the Hugoniot in the stress range from 

~16515 and ~19514 GPa, and melt along the Hugoniot between ~205 and ~210 GPa. These 

predictions for melt along the Hugoniot appear to be in good agreement with the present 

experimental results, as illustrated by the Poisson ratio shown in Figure 6c. 

DFT calculations for solid Be (see Fig. 6b) show essentially no difference between the 

bulk velocity (solid symbols) in the hcp (triangles) and bcc (circles) phases. A small difference 

(~0.3 km/s) is seen between the hcp and bcc longitudinal velocities (open symbols), with the hcp 

phase exhibiting a consistently higher value. Given the relative size of the experimental 



uncertainty and the predicted difference in longitudinal velocity for the two phases, the present 

results are incapable of resolving between the two. In particular, the observed steady decrease in 

longitudinal velocity between ~150-200 GPa is consistent with either a steady decrease in the 

shear modulus and loss of strength as melt is approached or an hcp-bcc transition. 

This lack of conclusive evidence for a solid-solid phase transition is in agreement with 

the laser-heated diamond anvil cell work by Lazicki et al.21 In that study diffraction 

measurements only observed the hcp phase for P-T conditions up to 195 GPa and 4000 K. These 

conditions are well into the bcc regions defined by Robert15 and Luo16, but potentially fall short 

of the transition boundaries predicted by Benedict14 and Xian17. However, as noted by Robert, 

the predicted location of the hcp-bcc boundary has large uncertainty due to the small enthalpy 

difference between the two phases. Conclusive evidence for the bcc phase would require phase-

sensitive measurements, such as diffraction. Further investigation of the hcp-bcc phase boundary 

in this region would require use of shock-ramp compression techniques to reach the transition 

stress while remaining at temperatures below the melt curve. 

At stresses above the onset of melt along the Hugoniot, only the bulk sound velocity 

(yellow diamonds) is observed. In this stress regime the experimental data are in excellent 

agreement with the DFT calculations (dashes). In ICF experiments, the first shock is tailored to 

melt the ablator, with the subsequent shocks driving the implosion of the capsule.62 As growth 

rates and oscillation periods of the ablative Richtmyer-Meshkov instability are sensitive to the 

sound velocity in the shocked fluid63, use of the DFT liquid sound velocity would be 

recommended for hydrodynamic simulations of ICF capsules with Be ablators. 

a. Shear Modulus 



The shear modulus, G, can be estimated from the longitudinal and bulk wave velocities of 

shocked beryllium through the relation 

 ( )2 23
4 l bCG Cρ −= . (10) 

As shown in Figure 8, the peak shear modulus inferred from this study (red diamonds) is ~240 

GPa. This is in good agreement with the peak values measured by Chhabildas et al (black 

squares)32 for shock compression up to 34 GPa. Using the calculated bulk velocity and the piece-

wise linear fit to the Poisson ratio shown in Fig. 6c, a model for the shear modulus can be 

constructed (solid red line). This model for the shear modulus, which exhibits a maximum of 

~260 GPa at a stress of ~90 GPa on the Hugoniot, is in good agreement with the values inferred 

from the present study and Chhabildas et al. 

The only other experimentally inferred values for the shear modulus are from Brown et 

al. (yellow triangles), obtained from quasi-isentropic (ramp) compression experiments. The 

values reported by Brown et al are in good agreement with those of Chhabildas et al and our 

experimentally derived model for stresses below 50 GPa. At stresses of ~80-100 GPa the values 

reported by Brown et al are somewhat higher than our model. We note that the values reported 

by Brown et al are from quasi-isentropic compression experiments, and at these stresses the 

shock temperature exceeds that of the isentrope by ~1000 K. This difference might be sufficient 

to explain the shear modulus discrepancy between our model and the values reported by Brown 

et al. 

Also shown in Fig.8 are calculations of the shear modulus using various strength and 

EOS models for Be. Calculations were performed using the Steinberg-Guinan strength model 

(short-dashed blue line) and the SESAME 2024 table with the elastic constants from ref. 64, and 

the Burakovsky-Preston strength model (long-dashed blue line) with the Simon fit presented in 



Eq. 28 of ref. 65. Temperature dependence of the shear modulus was modeled using a fit to the 

average values from Nadal and Bourgeois66 and extrapolated linearly to higher temperature. 

Calculations were also performed using both the Steinberg-Guinan and Burakovsky-Preston 

strength models with the XEOS 40 table shown in Figure 5. This calculation gave approximately 

the same values as SESAME 2024, so only the one table is shown for clarity. The Burakovsky-

Preston model is in better agreement with the data and experimental fits than the Steinberg-

Guinan model. This is expected as the Burakovsky-Preston model updated the Steinberg-Guinan 

model to correct the insufficient negative curvature which resulted in overprediction of the shear 

modulus at moderate compression. The RING model (dashed-dotted purple  line)61 overpredicts 

the Be shear modulus along the Hugoniot for the entire stress range up to shock-melting. We 

note that at ambient conditions, the RING model predicts a shear modulus ~25% greater than 

experiment. Decreasing the model by this amount would reduce the peak value by more than 100 

GPa and bring the calculation into better agreement with the other models and experimental data.  

C. Shear Stress 

The inferred shear stress from these experiments, shown in Fig. 9, constrains the strength 

of beryllium for stresses above 100 GPa and temperatures approaching the melt curve. Data from 

this work (red diamonds) exhibit a steady decrease in strength along the Hugoniot, culminating 

with complete strength loss upon melting at a stress of just over 200 GPa. The peak shear 

strength inferred in this work was ~3.5 GPa, which is in good agreement with the peak shear 

strength inferred by Brown (yellow triangles)1 and Bat’kov (open circles)67. At stresses below 50 

GPa, both the Brown and Bat’kov results agree with those of Chhabildas (black squares)32, such 

that the yield curve of solid beryllium can be constrained for all stresses accessible under single-

shock compression. 



The Steinberg-Guinan (dashed blue line)64 strength model for beryllium agrees with the 

experimental results up to the peak shear stress. However, conventional models fail to accurately 

capture the loss of strength exhibited experimentally as the melt stress is approached. To account 

for this, the RING relaxation model (dashed-dotted purple  line)61 and earlier phenomenological 

model of strength (PMS, solid black line)68 developed by VNIIEF scale the shear stress by a 

factor of 1
m

T
T

− , where mT  is the melt temperature at a given stress. This construct is similar to 

the Preston-Tonks-Wallace (PTW)69 temperature correction factor of 1
m

T
T

α− ; the coefficient α 

prevents the PTW model from vanishing at melt and is not present in the VNIIEF models. Both 

VNIIEF models adequately represent the experimental data up to 100 GPa. However, the RING 

model systematically under predicts the shear stress as melt is approached. In contrast, the PMS 

model remains in good agreement with the experimental data. This conclusion contradicts the 

work of Henry de Frahan, et al2. They found that the RING model best represented the 

experimental results at low stresses. This indicates that while a relaxation model, such as RING, 

may accurately represent the behavior at low stresses, the accuracy may decrease for stress and 

temperature conditions approaching melt. 

VI. Conclusions 

The principal Hugoniot, sound velocity and shear stress of beryllium were measured 

using magnetically-accelerated flyer plates on the Sandia Z machine. Hugoniot measurements 

further constrained the solid behavior from 90-190 GPa and were in good agreement with lower-

stress data and DFT calculations. However, these results and DFT calculations do not agree with 

results reported by Isbell et al27 for solid Be above 90 GPa. The agreement between these results 



and the DFT calculations for the hcp phase lend confidence for the use of DFT for liquid Be 

where experimental data is sparse. 

The bulk and longitudinal sound velocity were measured over the stress range of 130-300 

GPa to investigate the melt behavior of Be. In the solid phase, the bulk sound velocity is slightly 

higher than predictions from DFT calculations for both the bcc and hcp phases but is in good 

agreement with a Mie-Grüneisen calculation using the DFT Hugoniot and ambient data. 

Measurements above the melt transition are in good agreement with DFT calculations for the 

liquid phase.  The longitudinal sound velocity is in better agreement with calculations for the hcp 

phase below 150 GPa; this also agrees with calculated phase diagrams which predict the hcp-bcc 

transition at stresses above 165 GPa. Above 150 GPa, the longitudinal velocity decreases 

monotonically until the onset of melt at ~205 GPa. No clear evidence for the hcp-bcc transition 

was identified from the sound velocity measurements. 

The shear modulus and shear stress were determined for solid beryllium approaching 

melt. The peak value of the shear modulus is in reasonable agreement with the Burakovsky-

Preston strength model but occurs at a peak stress ~50 GPa lower than predicted by that model. 

The present results are within the uncertainty of previous data when adjusted for temperature 

differences between the Hugoniot and isentrope. Measurements of the shear stress are in good 

agreement with earlier data and the PMS and RING models developed by VNIIEF. This work 

suggests that ~50 GPa prior to melt, Be begins to exhibit a gradual loss of strength that continues 

until the onset of melt. 

These results and DFT calculations suggest that the phase diagram of Benedict et al14 

best represents the high pressure and temperature response of beryllium and the expected hcp-

bcc transition. Furthermore, use of the DFT Hugoniot and liquid sound velocity presented here 



will allow for more robust ICF and MagLIF designs, increasing the likelihood of successful 

experimental designs. 
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Table I: DFT calculations of the sound velocity in solid and liquid Be. P , ρ , SU , pu , T , bC , 

lC , G , and ν  are the pressure, density, shock velocity, particle velocity, temperature, bulk 

sound velocity, longitudinal sound velocity, shear modulus, and Poisson ratio, respectively. In 

the liquid phase, there is only a bulk sound velocity, thus there is no shear modulus or Poisson 

ratio. 

Phase P  
(GPa) 

ρ  
(g/cm3) 

SU  
(km/s) 

pu  
(km/s) 

T  
(k) 

bC  
(km/s) 

lC   
(km/s) 

G  
(GPa) 

ν  

hcp 88.4 2.696 12.340 3.872 1200 11.577 15.342 200.2 0.266 
hcp 142 2.993 14.177 5.414 2540 12.736 16.142 220.8 0.302 
hcp 179 3.171 15.240 6.349 3400 13.354 16.710 239.9 0.314 
hcp 210.0 3.289 16.107 7.047 4400 13.842 16.811 224.5 0.341 
bcc 136.4 2.993 13.895 5.306 2142 12.572 15.862 210.0 0.307 
bcc 176.8 3.177 15.126 6.318 3262 13.280 16.302 213.0 0.331 
bcc 203.9 3.289 15.872 6.944 4000 13.681 16.547 213.7 0.344 

liquid 262.7 3.464 17.457 8.134 5068 14.736 *** *** *** 
liquid 323.0 3.650 18.816 9.279 6985 15.691 *** *** *** 
liquid 498.1 4.079 22.195 12.126 13530 17.344 *** *** *** 
liquid 797.8 4.60 26.862 16.056 27290 19.954 *** *** *** 
 

Table II: Direct-impact Hugoniot data for solid Be. fv  and SU  are the measured flyer plate and 

shock velocity, respectively. pu , σ , and ρ  are the inferred particle velocity, peak stress, and 

density, respectively. 

Sample fv  (km/s) SU  (km/s) pu  (km/s) σ  (GPa) ρ  (g/cm3) 
z1707N 7.46±0.05 12.46±0.23 4.02±0.04 92.6±1.3 2.73±0.03 
z1707S 8.62±0.05 13.29±0.30 4.66±0.05 114.5±1.8 2.85±0.05 
z1684N 9.36±0.05 13.78±0.17 5.07±0.05 129.1±1.3 2.93±0.03 
z1684S 10.36±0.05 14.48±0.18 5.62±0.05 150.4±1.5 3.02±0.03 
z1685N 10.94±0.05 14.76±0.19 5.95±0.04 162.6±1.6 3.10±0.04 
z1685S 12.19±0.05 15.71±0.26 6.63±0.05 192.8±2.3 3.20±0.05 

 

Table III: Sound velocity and shear stress measurements for Be. fv  and SU  are the measured 

flyer plate and shock velocity, respectively. pu  and σ  are the particle velocity and peak stress, 



respectively, determined from the DFT solid Hugoniot and the measured sock velocity. The 

longitudinal, lC , and bulk, bC , sound velocities were determined from wave overtake times. The 

Poisson ratio, ν , and shear modulus, G , were calculated from the sound velocities. The shear 

strength, 2Y τ=  (τ  is the shear stress), is the integrated area between lC  and bC  in the 

Lagrangian sound velocity vs. particle velocity plane. The six shots with fv >10 km/s melted, 

hence there is no longitudinal velocity, Poisson ratio, shear modulus, or shear strength. 

Sample fv  (km/s) SU  (km/s) pu  (km/s) σ  (GPa) bC  (km/s) lC  (km/s) ν   G (GPa) Y (GPa) 
z1680N 7.49±0.08 13.86±0.17 5.16±0.06 132.2±3.4 12.98±0.30 16.50±0.54 0.30±0.04 229±24 3.41±0.40 
z1680S 8.13±0.08 14.35±0.18 5.57±0.07 147.9±3.6 13.29±0.27 16.74±0.48 0.31±0.03 236±22 3.56±0.26 
z1689N 8.32±0.08 14.62±0.24 5.80±0.10 156.9±4.1 13.40±0.30 16.36±0.49 0.34±0.03 203±21 2.70±0.19 
z1688N 8.58±0.08 14.78±0.23 5.94±0.09 162.3±4.1 13.42±0.32 16.07±0.52 0.35±0.04 181±22 2.45±0.21 
z1689S 9.16±0.08 15.29±0.23 6.37±0.10 180.2±4.3 13.99±0.30 15.46±0.46 0.42±0.03 103±16 1.22±0.17 
z1688S 9.49±0.08 15.56±0.19 6.60±0.08 189.9±4.1 14.03±0.27 15.12±0.40 0.44±0.03 77±13 0.92±0.13 
z1657N 9.61±0.08 15.65±0.28 6.67±0.12 193.2±4.8 14.09±0.36 14.66±0.43 0.47±0.03 40.2±9.1 0.47±0.10 
z1681N 9.78±0.08 15.86±0.26 6.85±0.11 201.0±4.8 14.13±0.33 14.21±0.39 0.50±0.03 5.5±6.8 0.07±0.06 
z1657S 10.76±0.08 16.77±0.27 7.55±0.12 234.4±5.4 14.18±0.33 *** *** *** *** 
z1708N 10.79±0.08 16.85±0.27 7.62±0.12 237.5±5.5 14.42±0.34 *** *** *** *** 
z1681S 10.97±0.08 17.04±0.27 7.78±0.12 245.3±5.5 14.40±0.32 *** *** *** *** 
z1624N 11.29±0.08 17.20±0.28 7.92±0.13 251.9±5.9 14.60±0.35 *** *** *** *** 
z1708S 12.00±0.08 17.80±0.31 8.42±0.15 277.4±6.4 14.66±0.38 *** *** *** *** 
z1624S 12.66±0.08 18.37±0.44 8.90±0.22 303±10 15.38±0.45 *** *** *** *** 

 

  



Figures 

 

Figure 1: Representative VISAR data for an experiment with quartz windows (inset). The copper 

flyer plate velocity (blue line) was tracked from launch to impact with the windows adjacent to 

the stepped beryllium sample. Upon breakout of the shock from the Be sample into the quartz 

windows the shock velocity in the quartz is recorded at each step (black lines). The time between 

impact and shock breakout was used to determine the Be shock velocity.  

  



 

Figure 2: a) Typical overtake measurement in a LiF windowed experiment for solid Be. For 

stresses below melt, the Be release splits into a two-wave structure with the longitudinal wave 

propagating ahead of the bulk wave. The sudden drop in interface velocity upon rarefaction 

overtake indicated the overtake time for a given step. In samples where a two-wave structure is 

present, the intersection (stars) of linear fits to the constant plateau (dotted black line) and the 

longitudinal (dashed yellow line) and the bulk (dashed-dotted red line) releases is used to 

determine the overtake time. b) The thickness at which overtake would occur in an infinitely 

thick sample was determined by fitting the longitudinal and bulk overtake times as a function of 

the step thickness. The overtake thicknesses (arrows) are then determined by the 0Ot =  

intercepts. 



 

Figure 3: x t−  diagram of the rarefaction overtake in a thin Be sample. Upon impact of the 

Cu/Al flyer plate with the target, a shock (solid lines) is launched into the flyer plate and Cu 

layer on the target. When the shocks reach the Cu/Al interface (left axis) and Cu/Be interface, 

rarefaction waves (dashed lines) are launched into the flyer plate and Cu layer, respectively. 

These rarefaction waves interact, resulting in the overtaking rarefaction from the Cu/Al interface 

propagating through previously shocked and partially released copper (dotted line). Note that a 

similar wave interaction occurs near the Be/Quartz interface; in this case the overtaking 

rarefaction interacts with a recompression wave (quartz has a higher impedance than Be). 

However, the use of multiple thickness Be steps and extrapolation to 0Ot = , as shown in Fig. 2b, 

determines the overtake thickness in absence of these interactions (i.e. for an infinitely thick Be 

sample). 

  



 

Figure 4: Representative shear stress calculation. The wave profile shown in Fig. 2a is used to 

determine the Lagrangian sound velocity as a function of the particle velocity (solid blue line). A 

linear fit (dashed red line) is used to estimate the bulk response up to the peak particle velocity. 

Integration of the area between the longitudinal and bulk curves gives an estimate of twice the 

shear stress.1  

  



 

Figure 5: a) S pU u−  and b) P ρ−  Hugoniot for solid beryllium. This work (red diamonds) 

constrained the Hugoniot from 90-190 GPa, a range previously only measured by Isbell (green 

circles)27. The current results are in good agreement with lower stress work by Wise (open 

circles)26, Marsh (yellow triangles)23 and Walsh (open triangles)24 as well as the XEOS 40 

(dashed blue line) and SESAME 2024 (dashed-dotted black line) tables. The Isbell data neither 

agree with the other legacy data nor the present results. The DFT Hugoniot fit for the hcp phase 

(solid red line) is in excellent agreement with the data (with the exception of the Isbell data that 

appears to be an outlier) over the entire region. In contrast, the DFT Hugoniot fit for the bcc 

phase (dashed orange line) is systematically more compressible, particularly at the lower 

stresses. The calculated Hugoniot using the Vinet EOS and Debye thermal expansion fits from 



Lazicki (dotted purple line)21 is slightly more compressible than the present results. This 

discrepancy is likely due to the poor constraint for the thermal expansion fit noted by Lazicki. 

  



 

Figure 6: a) and b) Hugoniot sound velocity and c) Poisson ratio of beryllium. Below ~200 GPa, 

Be is solid as indicated by the existence of both longitudinal (open diamonds) and bulk (solid 

diamonds) release waves. The present results are in good agreement with earlier work by 

Chhabildas (squares)32. The bulk sound velocity (solid red line), determined from the DFT 

Hugoniot for the hcp phase and the ambient Grüneisen parameter, agrees with the experimental 



data, as does the model by Ignatova59 (dashed-dotted blue line). Calculation of the bulk velocity 

using the Grüneisen parameter determined from DFT calculations (long-dashed pink line) 

diverges from the ambient calculation above 130 GPa and is in better agreement with DFT 

calculations of the sound velocity (solid circles and triangles). The longitudinal velocity (dashed 

black line) was modeled using the bulk velocity (solid red line) and a piece-wise linear fit to the 

Poisson ratio (solid black line in (c)). Above 150 GPa, the longitudinal velocity exhibits a steady 

decrease, consistent with a softening of the shear modulus approaching melt. Prior to this 

decrease, the measured longitudinal velocities agree with DFT calculations for both the hcp 

(open triangles) and bcc (open circles) phases. In contrast to the bulk sound velocity, the 

longitudinal sound velocity from the model by Ignatova (dashed-dotted green line) is 

significantly higher than this work. The measured sound velocity in the liquid phase (yellow 

diamonds) is in good agreement with DFT calculations for liquid Be (dashes). 

  



 

Figure 7: P T− phase diagram of beryllium. Phase boundaries are from Robert (solid purple 

lines)15, Benedict (dashed blue line)14, Luo (long-dashed green line)16, and Xian (dotted brown 

line).17 We note that the Robert determined the melt boundary using a heat-until-melt method 

and thus should be viewed as an upper limit for the melt curve. Also shown are Hugoniots from 

the SESAME 2024 table (dashed-dotted black line) and Benedict (short-dashed blue line). The 

Hugoniot sound velocity experiments from this work that appear to have remained solid (red 

diamonds) do not provide conclusive evidence for the hcp-bcc transition. This is consistent with 

the highest P T−  results from Lazicki (open triangles)21 where they found Be to remain in the 

hcp phase. Taken together, these results are in reasonable agreement with the phase boundaries 

of Benedict and Xian, but disagree with the boundaries of Robert and Luo. However, as noted by 

Robert, the predicted location of the hcp-bcc boundary has large uncertainty due to the small 

enthalpy difference between the two phases. The experimentally determined onset of melt is 

shown as the yellow diamond. We stress that the temperature states for these experiments are not 

measured, but were determined from ( )T P  obtained from the DFT hcp Hugoniot and ignore any 



temperature increases due to dissipation; the actual temperature states may be higher than those 

shown here. 

  



 

Figure 8: Pressure dependence of the shear modulus for Be. A fit to the Poisson ratio from this 

work and that of Chhabildas results in the shear modulus denoted by the red line. DFT 

calculations do not show a significant difference in the shear modulus of the hcp and bcc phases. 

Brown (yellow triangles)1 reports a somewhat higher shear modulus from ramp compression 

experiments; this may be explained by the temperature difference between the Hugoniot and 

isentrope. The peak value of the shear modulus from this work is in reasonable agreement with 

DFT and results from the Burakovsky-Preston strength model (short-dashed blue line). In 

contrast, both the RING model (dashed-dotted purple line)61 and results from the Steinberg-

Guinan model (long-dashed blue line) predict a shear modulus that is significantly larger than 

that inferred from this work. 

  



 

Figure 9: Pressure dependence of the shear stress (or half the shear strength) of Be. The shear 

stress in this work (red diamonds) is inferred from the offset between the bulk and longitudinal 

response of beryllium during release. These data are in good agreement with previous results by 

Chhabildas (black squares)32, Brown (yellow triangles)1, and Bat’kov (open circles)67. As an 

example of conventional non-relaxation models, the Steinberg-Guinan strength model (dashed 

blue line) agrees with data up to peak shear stress but fails to accurately represent the decrease in 

strength approaching melt. The PMS (solid black line)68 and RING (dashed-dotted purple line)61 

models developed by VNIIEF both accurately represent the data up to peak shear stress; 

however, the PMS model better represents the data approaching melt.  


