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Achieving low thermal conductivity and good electrical properties is a crucial condition for ther-
mal energy harvesting materials. Nanostructuring offers a very powerful tool to address both re-
quirements: in nanostructured materials, boundaries preferentially scatter phonons compared to
electrons. The computational screening for low-thermal-conductivity nanostructures is typically
limited to materials with simple crystal structures, such as silicon, because of the complexity arising
from modeling branch- and wave vector-dependent nanoscale heat transport. The phonon mean-
free-path (MFP) dependent Boltzmann transport equation (MFP-BTE) approach is a model that
overcomes this limitation. To illustrate this, we analyze thermal transport in 75 nanoporous half-
Heusler compounds for different pore sizes. Our calculations demonstrate that, in most cases, the
optimization of thermal transport in nanostructures should take into account both bulk thermal
properties and geometry-dependent size effects, two aspects that are typically engineered sepa-
rately. To enable efficient calculations within this paradigm we derive a model, based on the “gray”
formulation of the BTE, that can decouple the influence of the geometry and the material on the
effective thermal conductivity with relatively little loss in accuracy compared to the MFP-BTE. Our
study motivates the need for a holistic approach to engineering thermal transport and provides a
method for high-throughput low-thermal conductivity materials discovery.

INTRODUCTION

Direct conversion of thermal energy into electricity has
tremendous advantages in many applications, including
power generation and cooling [1, 2]. Despite decades
of research on thermoelectric materials, the energy con-
version efficiency is still relatively low compared to tra-
ditional technologies. The thermoelectric efficiency in
semiconductors is limited by the figure of merit ZT =
TσS2/κ, where σ is the electrical conductivity, S is the
Seebeck coefficient, T the lattice temperature and κ is the
thermal conductivity (TC), which consists of electronic
and lattice components: κel and κL. As these three
quantities are interrelated, achieving high-ZT materials
is challenging. Nanostructuring is a unique platform to
overcome some of these challenges because it preferen-
tially suppresses phonon transport relative to electrical
transport [3]. The reason for such behaviour stems from
the fact that phonon mean free paths (MFPs) are typi-
cally larger than electron MFPs that contribute to σ in
heavily-doped semiconductors. Promising results have
been obtained with nanowires [4–7], thin films [8, 9] and
porous materials [10–16]. As phonons may have wide
MFP distributions, effective suppression can be achieved
with all-scale hierarchical materials. The different scales
can be spanned by combining doping, nano-inclusion and
grain engineering [17].

For practical reasons, the search for low TC bulk ma-
terials is often pursued separately from the engineering of
phonon suppressing nanostructures. A common simplifi-
cation is that given two materials with bulk TCs κa and
κb with κb > κa, this ordering is preserved in their nanos-
tructured counterparts. In this work, we challenge this
assumption by calculating the TC of porous materials
based on half-Heusler (HH) compounds; the bulk MFP
distributions are taken from [18]. Our model, based on
the phonon Boltzmann transport equation (BTE) and
first-principles calculations, predicts that the bulk order-
ing is largely preserved only for structures with nanos-
tructuring length scales that are relatively large with re-
spect to the bulk MFP distribution. Conversely, when
heat is primarily ballistic, the bulk MFP distribution
plays a crucial role in determining the ordering of the
TCs. The nanostructuring length scale, referred to as
“characteristic length” throughout the text, is the limit-
ing dimension of the material, e.g. the thickness of a thin
film. Finally, we identify a material-independent model,
based on a simplified version of the BTE, that provides
a faster estimation of the TC of a given nanostructure
and a generic set of materials. As HHs are promising
thermoelectric materials [19–21], our work provides prac-
tical guidance to experimentalists. Furthermore, it can
serve as a basis for high-throughput thermal transport
in nanostructures, where the bulk MFP distribution can
be estimated from either first-principles or experimental
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reconstructions of MFP distributions [22, 23]. Finally, it
demonstrates that effective material optimization should
explicitly include both intrinsic materials properties and
system geometries.

RESULTS

The crystal structure of the HH compound ABC is
formed by three interpenetrating FCC lattices, where A
and C form a rocksalt structure and B is located at the
diagonal position (1/4, 1/4, 1/4), as shown in Fig. 1(a).
The 75 HH compounds considered in this work are taken
from Ref. [18], in which high-throughput calculations
were used to screen nearly 80 thousand entries from the
AFLOW database [24], on the basis of mechanical and
thermodynamic stability. Similarly to Ref. [25], we con-
sider a nanoporous material with circular pores arranged
on a square lattice. The simulation domain is a unit cell
that comprises a single pore and has periodicities L =
10 nm, 100 nm, or 1 µm. We note that, in this case,
the periodicity is equal to distance between the centers
of the pores, i.e. the pitch. The thickness of the material
is considered to be infinite. The porosity, i.e., the ratio
of the pore volume to the total volume, is fixed to φ =
0.3; the pores diameter is ≈ 6.18 nm, 61.8 nm and 618
nm for L = 10 nm, 100 nm and 1µm, respectively. Pe-
riodic boundary conditions are applied to the heat flux
on the boundaries of the unit cell. Along the walls of
the pore we apply diffuse scattering boundary conditions,
i.e., incoming phonons are scattered back isotropically;
the temperature of the phonons leaving the pore’s sur-
face is set so that zero normal thermal flux is guaranteed
along the boundary [26]. Heat flux is ensured by apply-
ing a temperature difference ∆T = 1 K between the hot
and cold contacts. A sketch of the simulation domain is
shown in Fig. 1(a). Our model for phonon transport is
based on the MFP-BTE [27, 28]

Λŝ · ∇T (r,Λ) + T (r,Λ) = TL(r), (1)

where T (r) is the space-dependent effective temperature
distribution of phonons with MFP Λ and group velocity
with direction ŝ; TL(r) is the effective lattice tempera-
ture, given by

TL(r) =

∫ ∞
0

< T (r,Λ′) > B2(Λ′)dΛ′, (2)

where < . > is an angular average and Bn(Λ′) =[∫∞
0
K(Λ′′)/Λ′′

n
dΛ′′

]−1
K(Λ′)/Λ′

n
. The term K(Λ) is

the bulk MFP distribution, computed by combining den-
sity functional theory (DFT) with the phonon supercell
approach [29, 30]. The implementation of our BTE model
is described elsewhere [27, 28]. For clarity, we will drop
all the space dependencies from the notation. Along

the walls of the pore we apply diffuse scattering bound-
ary conditions, i.e., incoming phonons are scattered back
isotropically; the temperature of the phonons leaving the
pore’s surface, TB , is set so that zero normal thermal flux
is guaranteed along the boundary and is given by [26]

TB =

∫
B1(Λ)T+(Λ)dΛ, (3)

where T+(Λ) = 1/4 < T (Λ)̂s · n̂ >+ ·n̂; the notation
< f >+ stands for an angular average over all incom-
ing phonons and n̂ is the normal to the boundary. The
essence of classical size effects is captured by the phonon
suppression function

S(Λ) =
3L

∆TAHotΛ

∫
AHot

< T (Λ)̂s > ·n̂dS, (4)

a quantity that describes the ratio of the MFP distri-
bution of the porous material to that of the bulk K(Λ),
where Λ is the bulk MFP. In Eq. 4, Ahot is the surface
area of the hot contact. Once S(Λ) is computed by the
BTE, the effective TC is obtained via

κeff =

∫ ∞
0

K(Λ)S(Λ)dΛ =

=

∫ ∞
0

αbulk(Λ)g(Λ)dΛ,

(5)

where g(Λ) = −∂S(Λ)/∂Λ and αbulk(Λ) is the cumu-
lative bulk thermal conductivity at MFP Λ, i.e. the
sum of all MFP contributions up to Λ. We note the
bulk TC is κbulk =

∫∞
0
K(Λ)dΛ. The values for κbulk at

room temperature of the HH compounds considered in
this study range from 1.24 WK−1m−1 (NiHfSn) to 62.12
WK−1m−1 (CoNbSn) [18]. When the porous material is
large enough that all phonons travel diffusively, κeff is
obtained by Fourier’s law, i.e.

κFourier = −κbulk
L

∆TAhot

∫
Ahot

∇TF · n̂dS, (6)

where the temperature TF is the solution to ∇2TF =
0. In the case of aligned pores, the reduction factor,
κFourier/κbulk ≈ r = (1−φ)/(1+φ) = 0.54, is predicted by
Eucken-Garnett theory [31] and is in agreement with that
computed by our Finite-Volume (FV) diffusive solver. As
diffusive heat conduction does not depend on the phonon
MFPs, it gives the same result regardless the size of the
unit cell, as long as the porosity is kept constant. Con-
versely, when size effects occur, heat transport becomes
scale dependent [32, 33] and degrades significantly. In
fact, our BTE simulations predict that the values of κeff

are on average 17 %, 65 % and 83 % smaller than those
computed by Fourier’s law. These reductions are in line
with those obtained by Monte Carlo simulations on sim-
ilar structures [33]. In the subsequent analysis, to focus
on size effects we normalized κeff by the macroscopic re-
duction factor, i.e. κ̃ = κeffκbulk/κFourier = κeffr

−1. In
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Fig. 2(a), we plot the distribution of κ̃ for all compounds
and periodicities. We note that for L = 10 nm, most of
the values are below 10 Wm−1K−1, as a result of sup-
pression of long-MFP phonons. As L increases, the dis-
tribution of κ̃ widens up until approaching the bulk one
for L = 1 µm, where size effects become negligible. The
values of κ̃ are available upon request.

(a) (b)

FIG. 1. (a) Structure of the HH compound. ABC are three
generic elements sitting on three interpenetrating fcc lattices.
(b) Unit cell used for the BTE calculation. Heat flux is set
up by imposing a difference of temperature between the hot
and cold contacts.

We now assess whether κbulk can be used as a “descrip-
tor” for κ̃. A descriptor is a simple model correlated,
within some approximation, to a more complicated cal-
culation. The linear regression between κbulk and κ̃ is
shown in Fig. 2(b). We quantify their correlation with
the Spearman rank correlation [34]; such a quantity cor-
relates the ranking of two variables within their corre-
sponding sets. If the ranking is fully preserved, rs = 1.
In our case we obtain rs ≈ 0.88, 0.96, 1 for L = 10 nm, 100
nm and 1 µm, respectively. This trend can be understood
if we analyze the phonon suppression functions. To this
end, we conveniently introduce the Knudsen number, Kn,
as the ration between the MFP and the limiting dimen-
sion of a material, e.g. the pore-pore distance in a porous
materials. For small Kns, phonons travel mostly diffu-
sively and S(Λ) reaches a plateau; consequently, when
Lc is larger than the MFPs of heat-carrying phonons,
e.g. for L = 1 µm, the shape of S(Λ) in the non-diffusive
regime becomes negligible with κ̃ being determined com-
pletely by κbulk. However, for smaller periodicities the
entire curve S(Λ) must be taken into account. In fact,
as shown in Fig. 3(a), for L = 10 nm S(Λ) strongly de-
pends on the material while for L = 100 nm the sup-
pression functions approaches a universal value, called
diffusive material limit [26]. Such a limit assumes that
all phonon MFPs are smaller than Lc and is practically
achieved with L= 1 µm. On the other extreme, when
all the MFPs are larger than Lc, we have the ballistic
material limit, also plotted in Figs. 3(a) and 3(b). To en-
able fast calculations of size effects in complex geometries

and with a wide library of bulk materials, we set out to
derive a material- and scale- independent approximation
to S(Λ). In a first attempt, we build a model assuming
that heat carried by phonons with MFP smaller than a
generic threshold ΛT does not suffer size effects, while
all the rest is completely suppressed. The term ΛT is a
parameter that we vary within a range that is chosen to
be larger than the bulk MFPs; each choice of ΛT leads
to a different value of the effective thermal conductivity.
Within this approximation, the suppression function is
given by S(Λ) = rΘ(ΛT − Λ), where Θ(x) is the Heavi-
side function. Using Eq. 5, we get g(Λ) = rδ(Λ−ΛT ) and
κ̃ ≈ κδ = αbulk(ΛT ). This result shows that κ̃ is dictated
by the bulk cumulative thermal conductivity around ΛT
rather than by κbulk. In fact, there are cases, such as for
the pair CoBiTi and RuTaSb, where the curves of αbulk

cross each other for some values of ΛT (see Fig. 2(c).)
In this instance, if the nanostructuring length is smaller
than the crossing point the ordering of κbulk is the op-
posite to that of κ̃, an effect that is captured by κ̃δ. For
completeness, we note that there are cases, such as the
pair CoNbSi-RhBiTi (see inset of Fig. 2(c)), where the or-
dering swaping is absent. Within the considered library,
the number of material pairs with crossing cumulative
thermal conductivities is roughly 80 % of the total num-
ber of pairs, further motivating the need for a model that
goes beyond Fourier’s heat conduction. In carrying this
analiysis we have ruled out pairs of materials where whe
crossing point is below 3 nm due to the challenges in fab-
ricating nanostructures with smaller geometric features.
It is worth noting that the effect of ordering mismatch
has already been discussed conceptually in [35].

In this section we assess the use of κδ as a descriptor
for κ̃. To this end we calculate the Spearman rank cor-
relation between these two quantities for different ΛT .
As shown in Fig. 2(d), for all the periodicities such a
correlation increases with ΛT , reaches a maximum, and
eventually approaches a constant value. These final val-
ues concide with those obtained with κbulk as a decriptor
since αbulk(∞) = κbulk, namely there is no size effects.
The value at which the correlation is maximum increases
with L, as a consequence of the increasing characteristic
length, referred to as Lc. These results show, therefore,
that by taking into account αbulk the ordering of κ̃ within
a given set of materials is better estimated than with the
simple use of κbulk. However, this descriptor has a limi-
tation: the optimal ΛT for a given structure is unknown
unless one runs the BTE, negating the utility of κδ. We
note that, in principle, one can estimate ΛT on the ba-
sis of the characteristic lenght of the material; however,
such a property is cumbersome to identify in complex ge-
ometries. Motivated by this shortcoming, we introduce
a parameter-free descriptor, as detailed below.

The material dependency arises from the definition
of TL in Eq. 2, encoding the fact that the material is
nongray. The hypothesis of gray materials, on the other



4

(a) (b)

(c) (d)

FIG. 2. (a) Thermal conductivity (κ̃) density distributions for L = 10 nm, 100 nm and 1 µm. As the periodicity increases
the values of κ̃ approach those of the bulk because size effects become negligible. The inset shows the thermal flux map. The
gradient of temperature is enforced along the x̂ direction. Red areas indicate high-flux regions. (b) Linear regression between
κ̃ and κbulk for all the periodicities. (c) A representive pair of crossing bulk cumulative thermal conductivities, κbulk. In the
inset, a pair of non-crossing αbulk is illustrated. (d) The Spearman rank correlation between κδ(ΛT ) and κ̃ is shown for all L
and varying ΛT .

hand, assumes that there is only one phonon MFP. Here
we adopt a middle-ground approach by solving the BTE
for different MFPs, independently. For this reason, we
call this model the “multi-gray” (MG) model. We note
that this approach is formally equivalent to Ref. [36] but
applied to arbitrary geometries. Within this assumption,
the BTE becomes

Λŝ · ∇T (Λ) + T (Λ) =< T (Λ) > . (7)

We note that as
∫
B2(Λ)dΛ = 1, TL is always bounded

by the extreme values of < T (Λ) >. As a consequence,
by choosing < T (Λ) > as a material-independent effec-
tive lattice temperature, we make it sure that the error
with respect to TL does not increase unreasonably. Fur-
thermore, it is possible to show that this model conserves
the energy for each choice of Λ [27, 32, 37].

After Eq. 7 is solved for a wide range of MFPs, we
compute the phonon suppression function, SMG(Λ), us-

ing Eq. 4. We point out that Eq. 4 does not make
any assumption on TL thus it holds for both the MFP-
BTE and MG models. Then, we evaluate κ̃MG =
r−1

∫∞
0
SMG(Λ)K(Λ)dΛ. The Spearmen rank correlation

between κ̃MG and κ̃ is close to unity for all the periodic-
ities, and the linear regression slopes are 0.89, 0.94 and
0.97, for L = 10 nm, 100 nm and 1 µm, respectively
(Fig. 3(c).) This trend can be understood if we analyze
phonon suppression in the small-Kn limit, namely where
the difference between SMG(Λ) and S(Λ) reaches, gener-
ally, its maximum value. In the MG case, it is possible
to show that SMG(0) = r, i.e. it recovers the standard
diffusive limit. On the other hand, combining Eqs. 1-2-4,
the suppression function, computed at Λ = 0, gives

S(0) = − 3L

Ahot

∫
Ahot

B2(Λ)∇ < T (Λ) > ·n̂dSdΛ; (8)

according to [26], the gradient of < T (Λ) > reaches a
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(a) (b)

(c) (d)

FIG. 3. Suppression functions of the HH compounds (blue shaded region) for (a) L = 10 nm and (b) L = 100 nm. These
curves are bounded by those of the “diffusive” and “ballistic” material limits. The suppression function of the “multiple gray”
model is also plotted. (c) The slope of the regression model between κeff and κ̃MG. The value 1 represents perfect quantitative
prediction. (d) The regression model between κ̃ and κ̃MG.

plateau for small Kns. Therefore, for macroscopic ma-
terials, i.e. when all the phonon MFPs are smaller than
the characteristic length, Eq. 9 becomes

S(0) ≈ − 3L

Ahot

∫
Ahot

∇ < T (0) > ·n̂dS
∫
B2(Λ)dΛ. (9)

As mentioned above, this is the case of a diffusive ma-
terial. It is possible to show that, in this regime, S(0)
only includes geometric effects thus it is equal to r [26].
For this reason, the performance of SMG(Λ) in estimat-
ing S(Λ) increases with the size of the unit cell. However,
when considering materials with strong size effects, the
two quantities may differ; this difference may be esti-
mate by looking at the fraction of MFPs falling below
the characteristic length.

The definition of the MG model allows us to calcu-
late a suppression function that does not depend on the
bulk material. In fact the bulk MFP distribution is taken
into account only in Eq. 5, which has a negligible cost.
Therefore, once the MG model is evaluated for a given

geometry, the calculations of κ̃ for a set of new bulk mate-
rials come, practically, with no additional computational
effort. Moreover, if we define a geometry only in terms
of relative distances, we may also compute κ̃ for different
scales with no added cost. In fact, scaling Eq. 7 by a
space variable, which we choose to be L, we have

ξ ŝ · ∇T (ξ) + T (ξ) =< T (ξ) >, (10)

where ξ = ΛL−1. The suppression function for the MG
model thus becomes a function of the relative dimension
ξ. Hence, once SMG(ξ) is computed, κ̃ can be evaluated
for arbitrary scales via

κ̃MG(L) = r−1

∫
K(ξL)SMG(ξ)dξ. (11)

Ideally, SMG(ξ) must be evaluated for ξ ∈ R. However,
on the basis that ξ is nothing than the Knudsden num-
ber with the characteristic length set to L, SMG(ξ) can
be approximated to r for small ξ. On the other hand, for
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large ξ, we may use SMG(ξ) ≈ αξ−1, where α can be re-
trieved by fitting such trend as we approach the ballistic
regime.

CONCLUSION

By solving the phonon Boltzmann transport equation,
we have computed the effective thermal conductivity of
75 nanoporous half-Heusler compounds with different pe-
riodicities, obtaining significant reductions with respect
to the corresponding bulk values. Then, we have de-
veloped a model that enables the calculation of thermal
transport in a large number of materials by solving the
BTE only once, within a given geometry. In addition
to enhancing our understanding of nanoscale heat trans-
port, our approach has the potential of accellerating ma-
terials discovery for thermoelectric applications.
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