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Even a small amplitude charge-density-wave (CDW) can reconstruct a Fermi surface, giving rise
to new quantum oscillation frequencies. Here, we investigate quantum oscillations when the CDW
has a finite correlation length ξ – a case relevant to the hole-doped cuprates. By considering the
Berry phase induced by a spatially varying CDW phase, we derive an effective Dingle factor that
depends exponentially on the ratio of the cyclotron orbit radius, Rc, to ξ. In the context of YBCO,
we conclude that the values of ξ reported to date for bidirectional CDW order are, prima facie, too
short to account for the observed Fermi surface reconstruction; on the other hand, the values of ξ
for the unidirectional CDW are just long enough.

I. INTRODUCTION

Charge density wave (CDW) order is a common feature
of the cuprate superconductors, and is generally believed
to be responsible for the Fermi surface reconstruction ap-
parent in quantum oscillation (QO) experiments1,2. In
YBCO, two kinds of CDW are observed in x-ray scat-
tering: a bidirectional CDW and a field induced uni-
directional CDW3. Most commonly, the Fermi surface
reconstruction is attributed to the bidirectional CDW4,5,
since the requisite electron-like pocket6 is most directly
obtained through a bidirectional reconstruction scheme.
However, there are also proposals for reconstruction by
the field induced unidirectional CDW7,8, which, if com-
bined with a nematic distortion of the underlying Fermi
surface, also yields an electron pocket. Such proposals
are consistent with the fact that the unidirectional CDW
appears above ≈ 15 T, whereas QOs are observed only
above ≈ 18 T9.

An important observation is that the correlation length
of the bidirectional CDW is rather short: ξ2Q ≈ 100 Å10,
whereas the cyclotron radius at the lowest fields for which
QOs are observed is Rc ≈ 400 Å. Since QOs are expected
to be strongly damped when ξ . Rc, it is unclear whether
the observed signal is consistent with reconstruction by
the bidirectional CDW.

On the other hand, the correlation length of the unidi-
rectional CDW is longer: ξ1Q ≈ 200 Å11 at fields relevant
for QOs, which could more easily account for experimen-
tal observations. A quantitative understanding of QOs
in disordered CDWs may therefore help distinguish be-
tween the two proposed reconstruction scenarios.

With this experimental motivation in mind, we un-
dertake a theoretical investigation of Fermi surface re-
construction by a CDW with finite correlation length.
Our primary result is an expression for the Dingle fac-
tor RD(p) which suppresses the amplitude of the pth QO
harmonic. For the first harmonic and for the reconstruc-
tion scenarios relevant to the cuprates,

RD(p = 1) = e−BD/B ; BD =
2n~kF
eξ

. (1)

Here ξ is the relevant CDW correlation length, n = 1 for
unidirectional order and n = 2 for bidirectional order,
and 2kF is defined to be the distance between points on
the Fermi surface at which the CDW Bragg scatters the
electron. Eq. 1 is a lower bound on the experimentally
observed Dingle field Bexp

D , as it neglects all disorder be-
sides the finite CDW correlation length.

Combining this result with the measured correlation
lengths ξ1Q and ξ2Q, we predict

Bexp
D &

{
90 T unidirectional order

340 T bidirectional order
(2)

in YBa2Cu3O6.59, whereas from QO measurements we
find Bexp

D ≈ 110 T. That is, the lower bound set by the
bidirectional CDW is violated, while the lower bound set
by the unidirectional CDW is just satisfied. Given that
the QO frequency evolves smoothly with hole doping,
this observation is not easy to reconcile with reconstruc-
tion by the bidirectional CDW. On the other hand, re-
construction by the unidirectional CDW is marginally
consistent.

The effect of CDW phase disorder on the semiclassi-
cal spectrum can be expressed in terms of a contribu-
tion to a Berry phase each time an electron Bragg scat-
ters off the CDW. This formulation leads to a remark-
able real-space structure to the local density of states in
the case of a locally commensurate CDW punctuated by
well-separated, sharp discommensurations (DCs). For a
commensurability m CDW, the Landau level spectrum is
shifted by ±~ωc/m in a region of width Rc about the DC
– something which should be directly observable in scan-
ning tunneling spectroscopy. In terms of the spectrum of
QOs, this has the unusual consequence that while most
of the harmonics are suppressed by the same sort of Din-
gle factor already discussed, if disordering of the CDW is
caused entirely by randomly spaced DCs, the p = m har-
monic (and all multiples of it) are not affected at all. To
verify this result, we have reproduced it by exact solution
of an explicit lattice-scale model.

Returning to YBCO, this raises the possibility that the
dominant 540 T QO frequency observed in experiment



2

might actually be the sixth harmonic of a 90 T funda-
mental. We make no serious assertion that this major
re-interpretation of the data is correct – but it is an inter-
esting possibility naturally suggested by our results, and
which could resolve other experimental discrepancies.

The remainder of this paper is organized as follows.
We introduce a model Hamiltonian in Sec. II, which we
use throughout to illustrate our argument, and as a basis
for numerics. In Sec. III, we briefly review the semiclassi-
cal theory of QOs in conventional metals. We introduce a
heuristic “scattering picture” to derive an expression for
an extra phase γ that enters the semiclassical quantiza-
tion condition in Sec. IV. The resulting expression is gen-
eralized and evaluated for Fermi surface reconstructions
relevant to the cuprates in Sec. V and VI, respectively.
In Sec. VII, we show that γ may also be obtained as a
Berry phase. In Sec. VIII we derive the Dingle factor and
Dingle field, including a discussion of higher harmonics
for a random DC array. These theoretical results are con-
firmed by numeric simulations in Sec. IX. We then apply
these results to experiments in YBa2Cu3Oy in Sec. X.
Finally, we summarize our main conclusions in Sec. XI.

II. MODEL

Throughout this paper, we describe weak CDW or-
der by an effective Hamiltonian H = H0 + U , where
H0 describes the underlying crystal and U is the CDW
potential. Here, we introduce a specific model used to
illustrate our results. We take

H0 = −t
∑
〈r′,r〉

(
c†r′cr + h.c.

)
, (3)

where c†r creates an electron at position r = (x, y) on a
square lattice and 〈r′, r〉 denotes nearest neighbors. H0

can be diagonalized as

H0 =
∑
k

E0(k)c†kck (4)

where c†k creates an electron in the Bloch state with crys-
tal momentum k and

E0(k) = −2t [cos(akx) + cos(aky)] , (5)

where a is the lattice constant.

For EF < 0, this yields a roughly circular electron-like
Fermi surface centered at k = 0. For the CDW potential,
we take

U = 2V
∑
r

cos[Q · r + φ(r)]c†rcr (6)

where V > 0 and φ(r) is the local phase of the CDW. The
assumed CDW is “weak” in the sense that V/|EF | � 1.

III. REVIEW OF SEMICLASSICAL ANALYSIS
IN THE ABSENCE OF A CDW

We first consider the the problem in the absence of a
CDW, i.e. V = 0. Assuming the band under consider-
ation has no Berry curvature, the equations of motion
(EOM) for the mean position r (now treated as a con-
tinuous variable) and gauge invariant crystal momentum
k of a wave packet are12

ṙ =
1

~
∇kE0(k) (7)

~k̇ = −eṙ×B. (8)

Combining the above,

k̇ =
e

~2
B ×∇kE0(k), (9)

so the k-space orbit coincides with the Fermi surface.
Since we are considering a problem with a closed Fermi
surface, the wave packet executes periodic cyclotron mo-
tion in k-space. In real space

ṙa =
~
eB

εabk̇b (10)

where ε is the Levi-Cevita symbol and the sum over b =
x, y is implicit. Therefore, to switch between k-space and
real space we simply rotate and re-scale the trajectory.

There is an infinite family of cyclotron orbits, each
labeled by its time-independent guiding center

Ra = ra −
~
eB

εabkb. (11)

Periodic cyclotron motion gives rise to a discrete quan-
tum energy spectrum, determined by the semiclassical
quantization condition

S(En) = 2π

(
n+

1

2

)
, (12)

where the action

S(E) =

∮ (
k − e

~
A(r)

)
· dr (13)

can loosely be thought of as the phase picked up by a
wave packet over the course of a cyclotron period. Using
the EOM, it is straightforward to obtain

S(E) =
~A(E)

eB
(14)

where A(E) is the area of the Fermi surface. Thus,

~A(En)

eB
= 2π

(
n+

1

2

)
. (15)

If the Fermi energy is fixed, Landau levels cross EF
periodically in 1/B. This happens with frequency

F =
~A(EF )

2πe
. (16)

As most properties of a metal depend on the density of
states at EF , this gives rise to conventional QOs.
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FIG. 1. Reconstruction by a Q = (1/3)(2π/a) CDW in the
model Hamiltonian. Top: k-space cyclotron orbit, visualized
in terms of scattering across the unreconstructed Fermi sur-
face. For clarity, each scattering process is folded back into
the first Brillouin zone. Bottom: corresponding real-space
orbit.

IV. SEMICLASSICAL ANALYSIS WITH A
CDW: SCATTERING PICTURE

Here, we use a heuristic “scattering picture” to un-
derstand dynamics and quantization in the presence of
a weak CDW, which may be disordered. This discus-
sion is closely related to work by Pippard on QOs in the
presence of lattice dislocations13.

A. Dynamics

In a weak CDW, a wave packet evolves along the Fermi
surface of H0 essentially as in the absence of the CDW
except at discrete “scattering points” defined by the nest-
ing condition E0(k) = E0(k ± Q). Assuming the wave
packet is fully scattered from momentum k into k ± Q
(i.e., no magnetic breakdown), the following simplified
picture applies: k follows the Fermi surface (of H0) until
it hits a scattering point, then jumps by ±Q across the
Fermi surface, then follows the Fermi surface until the
next scattering point, and so on. This is illustrated in
Fig. 1. Stitching together the segments of the orbit we
obtain a closed k-space figure which we identify as the
reconstructed Fermi surface; when rotated and re-scaled
it gives the real space orbit, also indicated in Fig. 1.

Above, we implicitly assumed that the wave packet can
scatter only through momenta ±Q. This is true if we re-
strict our attention to first order processes. Higher order
processes can scatter the wave packet through arbitrary
nQ, but the scattering rate will be suppressed relative
to first order by powers of V/t. Therefore, we expect a
broad range of magnetic fields where the the probability
of magnetic breakdown is small for first order scattering,
but nearly equal to one for higher order scattering. As
shown in Appendix A, the appropriate range is(

V

EF

)2(
V

vF

)2

� eB

~
�
(
V

vF

)2

(17)

where vF is a characteristic Fermi velocity of the under-
lying band structure.

Since only first order scattering enters the dynamics,
there is no distinction between commensurate and in-
commensurate CDWs. Moreover, since the CDW is so
weak that it only affects the wave packet at the scatter-
ing points, the only effect of slightly phase-disordering
the CDW is a possible small displacement of the scatter-
ing points. A random array of sharp DCs is special in
this regard: the semiclassical dynamics are entirely un-
affected, except for rare orbits whose scattering points
intersect DCs.

B. Quantization

To quantize this motion, we need to compute the total
phase, S(E), picked up by a wave packet of energy E as
it executes a single closed orbit:

S(E) = SF (E) + θR + θL (18)

where SF is the action associated with evolution along
the Fermi surface, and θR, θL, are the phase shifts suf-
fered at the right and left scattering points on the Fermi
surface. We denote the corresponding real-space points
by rR, rL, as in Fig. 1.

Let us ignore the possible displacements mentioned
above; this is justified in Appendix D. Then SF is unaf-
fected by disorder. However, θR/L depend on the CDW
phase at the corresponding scattering points, φ(rR/L).

We can understand this dependence as follows. Ac-
cording to scattering theory, the reflected wave is ob-
tained by integrating the incoming wave against the scat-
tering potential. Now let us consider the effective scat-
tering potential felt by a wave packet near rR/L, that is,
within the blue regions (exaggerated in size for clarity)
indicated in Fig. 2. First consider R. The momentum
transfer picks out the plus component of the CDW, and
since the phase of the CDW is essentially constant in the
blue region, we can make the replacement φ(r)→ φ(rR).
Hence the effective potential is

UR = V ei(Q·r+φ(rR)) (19)
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FIG. 2. Effective scattering near real space scattering point.

For L, the momentum transfer picks out the minus
component, and we can make the replacement φ(r) →
φ(rL), giving

UL = V e−i(Q·r+φ(rL)). (20)

It follows that

θR = φ(rR) + . . . (21)

θL = −φ(rL) + . . . (22)

(23)

where the piece of the phase shift contained in . . . is in-
dependent of the CDW phase. Putting these pieces to-
gether,

S(E) = S0(E) + φ(rR)− φ(rL) (24)

= S0(E) + ∆φ (25)

where S0(E) is the action for a uniform CDW. Since

S0(E) =
~A(E)

eB
(26)

with A(E) the area of the stitched-together k-space orbit
(plus possible small corrections), we conclude that

S(E) =
~A(E)

eB
+ ∆φ(R) (27)

where we have emphasized that the phase difference de-
pends on the guiding center R of the orbit under con-
sideration. This extra orbit-dependent phase will gener-
ically smear out the QO signal. Before discussing this
point more quantitatively, we generalize this result to ar-
bitrary dispersion and CDW order, and show that ∆φ is
a Berry phase.

V. GENERAL RESULT

Consider a general dispersion and a CDW with order-
ing vectors Q1, . . . ,QM , and corresponding phases φj(r).
Generically, scattering across the Fermi surface of H0

yields multiple closed orbits. Let us focus our atten-
tion on one of them. The different real-space scattering
points can be labeled r1, . . . rN (ordered sequentially).
At scattering point α, the wave packet scatters in k-space
by some ηαQjα , where ηα ∈ {±1} and jα ∈ {1, . . .M}.
Then the effective scattering potential at scattering α is

Uα = eiηα(Qjα ·r+φjα (rα)), (28)

so we conclude

S(E) =
~A(E)

eB
+ γ(R) (29)

with

γ(R) =

N∑
α=1

ηαφjα(rα). (30)

VI. RECONSTRUCTIONS IN THE CUPRATES

Let us apply these results to the Fermi surface recon-
structions proposed for the cuprates. Consider recon-
struction by a bidirectional CDW4,14 with Q1 = (Q, 0),
Q2 = (0, Q), and Q ≈ (1/3)(2π/a), indicated in Fig 3.
Then in evaluating γ,

j1 = j3 = 1 (31)

j2 = j4 = 2 (32)

η1 = η2 = −η3 = −η4 = −1, (33)

so

γ(R) = −[φ1(r1)− φ1(r3) + φ2(r2)− φ2(r4)] (34)

= −[∆φ1(R) + ∆φ2(R)], (35)

with ∆φ1(R) the phase difference in component 1 be-
tween right and left scattering points, and ∆φ2(R) the
phase difference in component 2 between top and bottom.

Consider now reconstruction by a unidirectional CDW.
This proposal presupposes a substantial nematic distor-
tion of the underlying Fermi surface to obtain the req-
uisite electron-like pocket7. The resulting reconstruction
is indicated in Fig. 4. Since the topology of the recon-
structed orbit is the same as in the model Hamiltonian,
γ(R) = ∆φ(R) as before.

VII. BERRY PHASE APPROACH

Here we solve the problem using a fully semiclassical
approach, accounting for the CDW as part of the band
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Q � 2⇡ ⇠= Q

k-space

Real space

FIG. 3. Proposed reconstruction by bidirectional order in
the cuprates.

Q � 2⇡ ⇠= Q

Q � 2⇡ ⇠= Q

�Q + 2⇡ ⇠= �Q

FIG. 4. Proposed reconstruction by unidirectional order
in YBCO, with nematic distortion of the underlying Fermi
surface.

structure. In this picture, the extra phase γ appears as
a Berry phase.

We follow the general theory of Berry phases in solid-
state systems developed by Sundaram and Niu15. For
the sake of definiteness, consider the model Hamiltonian.
Drawing on insight from the scattering picture, we con-

struct a wave packet from the Bloch-like states

|ψk(r)〉 = c1(k, r) |k〉+ c2(k, r) |k + Q〉 , (36)

which diagonalize the projection of the local Hamiltonian
near r onto the span of {|k〉 , |k + Q〉}. Explicitly, the
vector of coefficients c = (c1, c2) satisfies Hc = Ec, where
the effective Hamiltonian is

H(r,k) =

(
E0(k) V e−iφ(r)

V eiφ(r) E0(k + Q),

)
(37)

and E is the local band energy. In the uniform limit, the
upper band yields the reconstructed Fermi surface.

The band energy E is unaffected by CDW phase dis-
order, so the leading order effect is entirely due to Berry
phase terms. These appear in the classical Lagrangian
which governs the evolution of r and k. Its calculation
proceeds exactly as in Ref. 15, except the cell periodic
function is everywhere replaced by c. This Lagrangian,
along with further elaboration on the Berry phase ap-
proach, are presented in Appendix B.

The Berry phase terms imply that the total action is
now a sum of ~A(EF )/(eB) and a Berry phase γ, which
we compute here directly from the Berry connection. In
Appendix B, γ is obtained from the associated Berry cur-
vature.

Let us parameterize the orbit by t ∈ [0, T ], where T is
the cyclotron period, and consider the total Berry con-
nection

A(t) =

〈
c(r,k)

∣∣∣∣i d

dt

∣∣∣∣c(r,k)

〉
, (38)

where bra-ket notation involving c means the usual inner
product on C2. We are free to demand that c ≈ (1, 0)
on the right half of the Fermi surface and c ≈ (0, 1) on
the left half of the Fermi surface. In this partially fixed
gaugeA(t) vanishes except at the left and right scattering
points. Then the Berry phase is

γ =

∫ T

0

dtA(t) =

∫
IL

dtA(t) +

∫
IR

dtA(t) (39)

where IL/R are small time intervals about the left and
right scattering points.

Consider the integral over IR = [ti, tf ]. The boundary
conditions are c(ti) ≈ (1, 0), c(tf ) ≈ (0, 1). In addition,
the phase is essentially constant over this interval, so we
can substitute φ(r) → φ(rR) in Eq. (37). As shown in
Appendix C, this fixes the value of the integral:∫

IR

dtA(t) = φ(rR). (40)

Similarly, ∫
IL

dtA(t) = −φ(rL) (41)

so that γ = ∆φ, reproducing Eq. (29). More generally,
either the CDW or the underlying band structure may
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break inversion symmetry. Then a Berry phase appears
even in the uniform limit, and γ as defined in Eq. (29) is
the piece induced by CDW disorder. Above, we neglected
the modification to the semiclassical trajectories; this is
justified in Appendix D.

In a recent paper on semiclassical dynamics in
quasicrystals16, Spurrier and Cooper have also obtained
an expression for the Berry phase as a sum of Bragg scat-
tering phase shifts. In that context, a non-zero Berry
phase appears because the Bragg scattering points may
be connected non-trivially in momentum space – whereas
here, it is a consequence of a spatially varying CDW
phase.

VIII. DINGLE FACTORS

In this section, we find the Dingle factor and Dingle
field. In a uniform system, the density of states is

ν(EF , B) =
A′(EF )

(2π)2

∑
p

(−1)p exp [ipS(EF )] . (42)

In a disordered system, we should average this over all
orbits, so that

ν(EF , B)

=
A′(EF )

(2π)2

∑
p

(−1)pRD(p) exp

[
ip

(
2πF

B
+ θ(p)

)]
.

(43)

where

RD(p) =
∣∣∣eipγ∣∣∣ (44)

θ(p) = arg(eipγ) (45)

and the bar denotes an average over different orbits.

A. Fundamental

Here we consider the fundamental, RD ≡ RD(p= 1).
In the unidirectional case,

RD,1Q =
∣∣∣ei∆φ∣∣∣ (46)

is the CDW correlation function evaluated at the distance
between left and right scattering points. Letting 2Rc
denote this distance,

RD,1Q ∼ e−2Rc/ξ. (47)

In the bidirectional case

RD,2Q =
∣∣∣ei(∆φ1+∆φ2)

∣∣∣. (48)

Assuming the two CDW components are independent,
this factors into a product of two correlation functions,
so

RD,2Q ∼ e−2Rc/ξ × e−2Rc/ξ (49)

∼ e−4Rc/ξ (50)

where 2Rc is again the distance between left and right
scattering points, or, equivalently, top and bottom scat-
tering points.

In terms of the Dingle field, where RD = e−BD/B ,

BD =
2n~kF
eξ

, (51)

where n = 1 for the unidirectional reconstruction, n = 2
for the bidirectional reconstruction, and 2kF is the dis-
tance between scattering points in momentum space.

B. Higher harmonics

The result for the first harmonic depends only on the
correlation length, and not on the microscopic details of
the CDW – in particular, it does not matter whether the
phase fluctuates smoothly throughout the sample, or if
there is instead a random array of sharp DCs.

The higher harmonics are, however, sensitive to this
distinction. In the smoothly fluctuating case, RD(p) de-
creases rapidly with p. For instance, if ∆φ is Gaussian
distributed, then

RD(p) = exp
(
−2p2Rc/ξ

)
. (52)

Note that in contrast to what is expected for poten-
tial scattering17 the exponent in the Dingle factor is
quadratic in p, not linear.

For a random DC array, however, certain harmonics
are completely unaffected by phase disorder. Consider,
for the sake of definiteness, a unidirectional reconstruc-
tion (in either our model Hamiltonian or YBCO) with
local wave vector Q = (l/m)(2π/a), with l, m relatively
prime positive integers. Then the phase difference be-
tween any two points in the sample is ∆φ = 2πn/m for
some integer n. Therefore RD(p) = 1 whenever p is an
integer multiple of m. All other harmonics are generi-
cally damped. As a consequence, higher harmonics can
be significantly stronger than the fundamental.

One way understand this result is that after m periods
all electrons in the sample have gained the same phase
modulo 2π. The signal may also be understood as a
superposition of conventional QO signals offset by integer
multiples of 1/m times the period, leading to multiple
peaks per oscillation period instead of de-phasing. Below,
we examine the real-space Landau level spectrum in the
presence of DCs, showing explicitly how different parts
of the sample contribute to the density of states.
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IX. NUMERICS

In this section, we test (and confirm) the above predic-
tions by exact numeric experiments on our model Hamil-
tonian.

A. Numeric technique and setting up the model

We use a recursive Green’s function method, which al-
lows computing the density of states of 1-D systems with
computational effort scaling linearly in length14,18,19. By
choosing the Landau gauge A = (0, Bx), and consider-
ing a CDW that is perfectly correlated in the y-direction,
we can preserve translation symmetry in the y-direction.
Therefore we can reduce the problem to independent 1-D
chains labeled by canonical momentum py.

Explicitly, we start with

H =
∑
r

[
−
(
c†r+x̂cr + e−i2πBxc†r+ŷcr + H.c

)
+ 2V cos[Qx+ φ(x)]c†rcr

]
(53)

For this section, we use units where a = t = h/e = 1.
Introducing the operator c†x,py which creates a state

localized in the x-direction and with crystal momentum
py in the y-direction,

H =
∑
py

∑
x

[
−
(
c†x+1,py

cx,py + H.c
)

+
(
− 2 cos[py + 2πBx]

+ 2V cos[Qx+ φ(x)]
)
c†x,pycx,py

]
(54)

In Ref. 19, it is shown that for a uniform CDW, for
generic B the density of states is independent of py in the
thermodynamic limit. This is because the role of py is
just to specify the minima of the effective cosine potential
in the second line of Eq. (54), but the offset of the minima
relative to the lattice will drift throughout the sample
even if we do not average of py. For a disordered CDW,
the density of states is still independent of py, by self-
averaging.

We generate the phase φ(x) of the CDW by computing
a 1-D random walk. To generate a smoothly varying
phase, we allow the increment at each step to be Gaussian
distributed. For a random DC array, we allow only a
discrete jump at each step. In each case the resulting
phase is smoothed out.

B. Dingle field for smoothly varying phase

Here we present results for a smoothly varying phase;
we extract values of BD, and compare them with the
theoretical predictions.

2000 2050 2100 2150 2200 2250 2300 2350
1/B
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FIG. 5. Numerically computed QOs in the density of states
for several values of ξ. Parameter values indicated in the main
text.

We set Q = 2π/3 and consider 2V = 0.175 and
2V = 0.11, values that compromise between maintaining
well-defined Bragg scattering points and avoiding mag-
netic breakdown. We compute the density of states at a
fixed energy, E = −0.22, as a function of B. To confirm
that the density of states is sufficiently insensitive to the
absolute phase of the CDW even in this commensurate
case, we add a small linearly varying phase and find a
slight shift in the QO frequency, but no damping.

For 2V = 0.175, results for CDW correlation length
ξ = 1500, 700, 500 and 400 are shown in Fig. 5, together
with results for a uniform CDW. Note that we added a
small imaginary part to the energy in order to broaden
out singularities. As a result, the signal amplitude de-
creases with 1/B even for the uniform CDW.

To extract the numerically observed Dingle field Bnum
D ,

we Fourier transform over several 1/B windows, obtain-
ing the 1/B dependence of the amplitude of the funda-
mental. The amplitude at each field is normalized by the
amplitude at the same field for a uniform CDW, and the
log of the result is fit to a straight line. Comparison with
the predicted Dingle field (Eq. 51) is shown in Table I.
The results are in very good agreement; the consistent
underestimate for 2V = 0.175 reflects the relatively large
CDW amplitude, which leads to additional de-phasing
effects not captured by our theory.

C. Persistent oscillations for a sharp array of DCs

Here we present results for a random array of sharp
DCs. Still with Q = 2π/3, we generate a correlation
length ξ by an appropriate density of ±Q phase DCs.
QOs for ξ = 400, 100 are shown in Fig. 6, where they
are compared against a CDW with the same correlation
length but a smoothly varying phase. For ξ = 400, the
harmonic content for DCs is already highly unusual; by



8

ξ BD × 104 Bnum
D × 104 Bnum

D × 104

(2V = 0.175) (2V = 0.11)

1500 1.94 2.12 ± 0.02 1.93 ± 0.02

700 4.16 4.47 ± 0.04 4.14 ± 0.05

500 5.82 6.22 ± 0.03 5.81 ± 0.05

400 7.28 7.78 ± 0.04 7.33 ± 0.06

TABLE I. Comparison of theoretically expected Dingle field
BD, and numerically observed Dingle field Bnum

D . Error bars
are the standard error of the least-squares fit.
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FIG. 6. Comparison of QOs for disordering via DCs and
smoothly varying phase, for ξ = 400 (top) and ξ = 100 (bot-
tom)

ξ = 100 the oscillations have apparently tripled in fre-
quency while oscillations in the smoothly varying case
are undetectable. This is precisely what was predicted in
Sec. VIII B.

D. Real-space Landau level structure near a
discommensuration

Here we demonstrate the real-space Landau level struc-
ture near a DC. Consider a commensurate CDW with
Q = 2π(l/m). Take a phase configuration φ(x) such that
φ(x) = 0 for x < 0, and φ(x) = ±2π/m for x > 0 – that
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FIG. 7. Position resolved density of states with a single
DC at x = 0, whose phase slips by +2π/3 (top) or −2π/3
(bottom) as x increases. Red dashed lines mark ±Rc.

is, a single, (minimal) DC at x = 0. Then for all Landau
levels with guiding center Rx such that |Rx| > Rc γ = 0,
but for the remaining Landau levels with |Rx| < Rc,
γ = ±2π/m. Aside from the difference in γ, nearly every
orbit is unaffected by the DC. Individual guiding-center
resolved energy levels are well defined, with quantization
condition

~A(En)

eB
+ γ(R) = 2π

(
n+

1

2

)
, (55)

so Landau levels with |Rx| > Rc are unaffected by the
DC, but all Landau levels with |Rx| < Rc are shifted in
energy by ∓~ωc/m.

Taking Q = 2π/3, we demonstrate this by computing
the position-resolved density of states for a single DC
in Fig. 7. The levels are shifted through ±1/3 of their
spacing, with the expected sign. Note that for a sharp
DC, the spectrum in the vicinity of the DC does not bend
down to meet the spectrum away from the DC; instead,
density of states from the shifted levels dies off while
density of states from the un-shifted levels simultaneously
picks up. This is because a Landau level with guiding
center Rx contributes density of states for all x ∈ [Rx −
Rc, Rx +Rc].

This striking Landau level structure is a consequence
of the Berry phase being uniquely defined by the phase
difference between the two scattering points; the effect
should be observable in scanning tunneling spectroscopy
on a suitable CDW system, similar to recent experiments
which observe defect-shifted Landau levels20.
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X. APPLICATION TO YBCO

Here we apply the present theoretical results to the
case of the QOs seen in YBa2Cu3Oy. It is a rational
supposition, but not one which is directly confirmed in
experiment, that the small Fermi surface areas apparent
in the QOs reflect a Fermi surface reconstructed by one or
the other of the observed CDW orders (phenomenological
descriptions of these orders may be found in Ref. 21–23).
However, given that the CDW correlation lengths are
at best comparable to the cyclotron radius, it is worth
asking whether the observed Dingle factors are consis-
tent with these correlation lengths. In this context, we
consider the Dingle factors computed above to represent
an upper bound on the QO amplitude – other forms of
disorder (in addition to that represented by the phase-
disordering of the CDW) will only reduce the amplitude
of the QOs further.

We denote by Bexp
D the actual Dingle field observed in

QO experiments on YBa2Cu3Oy. Consistency requires

Bexp
D > BD, (56)

where CDW phase disorder alone would produce the Din-
gle field

BD =
2n~kF
eξ

, (57)

where for unidirectional (bidirectional) order n = 1
(n = 2) and ξ = ξ1Q (ξ = ξ2Q) is the relevant correla-
tion length extracted from x-ray data. Note that since
n = 1 in the unidirectional case whereas n = 2 in the
bidirectional case, we expect more strongly damped QOs
in the bidirectional case, even before taking into account
the difference in correlation length.

A. Evaluating BD

First, we rewrite the above in terms of the QO fre-
quency F as

BD =
2nα

ξ

√
2~F
e

(58)

where α depends on the geometry of the reconstructed
orbit, and is defined by the relation

kF = α
√
A(E)/π, (59)

so that for a circular Fermi surface, α = 1. For the
diamond-like orbits in Fig. 3 and 4, the value α ≈ 1.25
would be appropriate. However, since the precise shape
of the reconstructed Fermi surface is at present unknown,
we opt for a face-value analysis with α = 1.

For bidirectional order, Ref. 10 finds ξ2Q ≈ 100 Å in
y = 6.67, at 17 T and 2 K. For unidirectional order,
Ref. 11 finds ξ1Q ≈ 190 Å in y = 6.60 and ξ1Q ≈ 310 Å in

y = 6.67, both at ≈ 17 T. With these correlation lengths,
F ≈ 540T, and α = 1, we find

BD,2Q ≈ 340 T y = 6.67 (60)

BD,1Q ≈
{

90 T y = 6.60

55 T y = 6.67
(61)

Uncertainty in these values is due to uncertainty in α and
ambiguity in the way that ξ is extracted from the struc-
ture factor; the references above define ξ as the inverse
standard deviation of a Gaussian fit.

B. Measured Dingle field

In Table II, we report experimental Dingle field mea-
surements in YBa2Cu3Oy for several dopings.

y p (doping) Bexp
D (T)

6.51 0.092 260 ± 25

6.59 0.110 110 ± 20

6.67 0.125 420 ± 40

6.75 0.135 460 ± 45

6.80 0.140 560 ± 55

6.86 0.152 750 ± 75

TABLE II. Observed Dingle fields Bexp
D . The error bars are

represent the uncertainty due to multiple oscillation frequen-
cies. Data from Ref. 24 and 25.

Except for y = 6.59, the Dingle field is extracted by fit-
ting the background-removed data to a Lifshitz-Kosevich
(LK) form. For y = 6.59 – where the strongest oscilla-
tions are observed down to the lowest fields – the presence
of multiple frequencies of comparable amplitude com-
plicates the fit. Instead, we first divide out the known
temperature-dependent LK factor, and then scale the os-
cillations by a factor e+BD/B , choosing BD so that the
amplitude of the signal is as constant as possible over the
relevant field range. This procedure is presented, along
with the raw data, in Fig. (8).

C. Consistency check

Consider first reconstruction via bidirectional order.
Zero field measurements indicate ξ2Q does not de-
pend strongly on doping27,28; assuming this holds in-
field as well, we compare all QO measurements against
BD,2Q ≈ 340 T. While the lower bound in Eq. (56) is
satisfied by most dopings, it is violated by Bexp

D = 110 T
in y = 6.59. This violation is quite severe, as the Din-
gle field enters the amplitude through an exponent: the
observed QO signal drops in amplitude by a factor of 50
going from 70 T down to 20 T, whereas the predicted
drop assuming a bidirectional reconstruction is by a fac-
tor of at least 2× 105. We conclude that it is not easy to



10

FIG. 8. Raw (top) and background-removed (bottom) data
for y = 6.59. We extract BD from the 4 K data, where
the second harmonic is suppressed by temperature. We di-

vide out the factor RT = 2π2kBT
~ωc / sinh

(
2π2kBT

~ωc

)
, where the

cyclotron frequency ωc = eB/m? is known from previous

measurements26. The data is then scaled by e+BD/B , with
BD chosen so that the amplitude is field-independent.

reconcile the experimental observations with reconstruc-
tion by the bidirectional CDW.

Consider now reconstruction by unidirectional order,
where we compare Bexp

D in y = 6.67 against BD,1Q in
the same doping, and Bexp

D in y = 6.59 against BD,1Q in
y = 6.60. The lower bound in Eq. (56) is satisfied in both
cases, although it comes close saturation in y = 6.59.
Reconstruction by the unidirectional CDW is therefore
at least marginally consistent; the near saturation in y =
6.59 could indicate this doping has very little disorder
besides CDW phase disorder.

The above analysis relied on correlation lengths mea-
sured at only 17 T, but pulsed-field measurements (which
are less accurate, but can access higher fields) indi-
cate ξ2Q is roughly constant above 15 T, whereas ξ1Q
grows21,29. Therefore, considering the field dependence
of ξ does not change the conclusions above.

D. Interpreting the main peak as a harmonic

Soon after quantum oscillations were discovered in
YBCO it was pointed out that three primary fre-
quencies are apparent in the Fourier transform of the
oscillations30. The main frequency is approximately
540 T, with two side lobes situated at approximately
±90 T. Measurements over a broader field range reveal
a second set of side lobes, situated a further ±90 T from
the first two side lobes9. Combined with the reported
solitary frequency at 95 ± 10 T31, this presents the un-
usual scenario of 6 oscillation frequencies that are all mul-
tiples of approximately 90 T.

Our result that certain harmonics of the quantum os-
cillations can be undamped by phase disorder raises the
interesting possibility that all observed frequencies are
harmonics of a single pocket with area ≈ 90 T. As
shown in section VIII B, a random array of DCs in a
locally-period-3 CDW would leave the 3rd and 6th har-
monics undamped. Indeed, the 6th harmonic– 540 T –is
the dominant frequency observed. The lack of a signifi-
cant 3rd harmonic could be explained by considering the
Zeeman-splitting factor of QOs, or the inclusion of other
damping coefficients including those due to regular dis-
order and temperature. It is therefore not inconceivable
that the complex but regularly-spaced spectral structure
in the QO Fourier transform, and the dominance of the
540 T frequency, is due to the special damping factor
from random DCs in a locally-period-3 CDW. Indeed,
random DCs have been directly observed in the cuprate
BSCCO using scanning tunneling microscopy32, making
it plausible that the CDW in YBCO has the requisite
microscopic character.

One appealing corollary of a small fundamental pocket
size in YBa2Cu3O6.59 pertains to the heat capacity. The
95 tesla pocket reported by Doiron-Leyraud et al. 31 has
a cyclotron mass of only m? = 0.45 ± 0.1 me—not too
far from 1/6th of the mass measured in YBa2Cu3O6.59

(m?/6 ≈ 0.3 me
26). Assuming a single pocket per copper

oxide plane, with two planes per unit cell in YBCO, the
electronic contribution to the heat capacity would be γ =
0.9 mJ/mol K2. As open sheets would further contribute
to the heat capacity but would not be seen in QOs, this
is consistent with the experimental value of ≈ 4 mJ/mol
K2 observed in the normal state of YBa2Cu3O6.59 in high
magnetic fields33,34.

XI. SUMMARY

In this work, we investigated whether the correlation
lengths of the unidirectional and bidirectional CDW in
YBCO are long enough to account for the observed Fermi
surface reconstruction. To address this question, we con-
sidered more generally the problem of quantum oscilla-
tions in a CDW with finite correlation length. We found
that a spatially varying CDW phase induces a Berry
phase, Eq. (30), which depends on the local phase of
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the CDW at discrete Bragg scattering points along a cy-
clotron orbit.

From this we derived an explicit expression for an ef-
fective Dingle field, Eq. (51), which when combined with
the correlation lengths measured in x-ray scattering ex-
periments sets a lower bound, Eq. (60) and (61), on the
experimentally observed Dingle field. Comparing with
Table (II), we found that the lower bound is typically re-
spected by either CDW – except in YBa2Cu3O6.59, where
the lower bound is violated assuming the bidirectional
CDW is responsible for the reconstruction, but just sat-
isfied assuming the unidirectional CDW is responsible.

We also considered the Landau level spectrum near a
DC in a locally-period-m CDW. We found that levels
within roughly Rc of the DC are uniformly shifted in
energy by ±~ωc/m, as demonstrated in Fig. (7). This
effect is consistent with the surprising prediction that for
a CDW disordered by a random array of such DCs, ev-
ery mth QO harmonic would be unaffected in amplitude.
Combined with the observation that all the QO frequen-
cies measured in YBCO are approximately multiples of
90 T, this raises the possibility that the dominant 540 T
peak could be a sixth harmonic of a 90 T fundamental –
its dominance explained by the unusual damping factor
associated with locally commensurate CDW order.

Though this interesting re-interpretation of the data
deserves further investigation, our primary conclusion
regarding YBCO remains as follows: the correlation
lengths reported to date for the bidirectional CDW are,
prima facie, too short to account for the observed Fermi
surface reconstruction, whereas the correlation lengths
for the unidirectional CDW are just long enough.
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Appendix A: Magnetic breakdown

Here we derive Eq. (17). At an nth order scatter-
ing point, the CDW opens a gap ∆ between E0(k)
and E0(k ± nQ). Magnetic breakdown near the avoided
crossing may be neglected as long as

eB

~
�
(

∆

vF

)2

(A1)

is satisfied12. Conversely, there is nearly full MB if the re-
verse inequality is satisfied. Moreover, ∆ ∼ V (V/EF )n−1

at an nth order scattering point, so it is possible to have
negligible magnetic breakdown at nth and lower order

scattering points but nearly full magnetic breakdown at
(n+ 1)th and higher order scattering points if(

V

vF

)2(
V

t

)2n

� eB

~
�
(
V

vF

)2(
V

t

)2n−2

. (A2)

Similar conditions were invoked in Ref. 16 and 19. Choos-
ing the case n = 1 above yields Eq. (17).

Appendix B: Details of the semiclassical formalism

Here we discuss the details of the semiclassical formal-
ism as applied to our model Hamiltonian. We work in
units where ~ = 1.

1. General formalism

The Lagrangian which generates the EOM Eq. (36)
is15

L = −E + ṙ · (k − eA) + ṙ · Ar + k̇ · Ak. (B1)

Strictly speaking, the energy E includes gradient correc-
tions and the wave packet Zeeman energy. However, the
former produces effects that are parametrically small in
V/t, while the latter vanishes in our model Hamiltonian,
so these terms will be ignored; that is, we take E as the
band energy. The Berry connections are

Ar = 〈c|i∇r|c〉 (B2)

Ak = 〈c|i∇k|c〉 . (B3)

The EOM are

ṙ =∇kE −
(

Ωkrṙ + Ωkkk̇
)

(B4)

k̇ = −eṙ×B +
(

Ωrrṙ + Ωrkk̇
)
. (B5)

where the Berry curvature tensors are, for example,

(Ωkr)ab =
∂(Ar)b
∂ka

− ∂(Ak)b
∂ra

. (B6)

Since the energy E(k) is conserved, the k-space orbits
coincide with the Fermi surface as in the absence of CDW
disorder.

2. Berry curvatures

Start with the eigenstate

c =

e−iφ(r)/2
√

1
2 (1 + ∆E0

∆E )

eiφ(r)/2
√

1
2 (1− ∆E0

∆E )

 (B7)

for the upper band of H, where

∆E0(k) = E0(k)− E0(k + Q) (B8)
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and ∆E is the difference in energy between the upper and
lower bands. Then the Berry curvatures may be directly
evaluated:

Ωrr = 0 (B9)

Ωkk = 0 (B10)

(Ωkr)ab =
1

2

[
∂

∂ka

(
∆E0
∆E

)]
∂φ

∂rb
. (B11)

This simplifies in the strict V/t→ 0 limit, where

(Ωkr)ab = δ(kx − k̄x)

[
δax

∂φ

∂rb

]
, (B12)

and

k̄x =
π

a
− Q

2
(B13)

is the vertical line ∆E0 = 0. Small but finite V/t broad-
ens the δ-function slightly, rounding out singularities or
discontinuities that appear in the strict V/t→ 0 limit.

3. Effect on classical trajectories

In the presence of disorder, the k-space orbit still co-
incides with the Fermi surface, but Eq. (10) is replaced
by

ṙa =
1

eB
εab

(
k̇b + (Ωkr)cbk̇c

)
(B14)

which reduces in the V/t→ 0 limit to

ṙa =
1

eB
εab

(
k̇b +

∂φ

∂rb

d

dt
θ(kx − k̄x)

)
. (B15)

This equation describes the displacement of the scat-
tering points in the case where the CDW phase varies
smoothly throughout. As a simple example, consider
φ = (δQ)x, δQ � Q. This describes a uniform CDW
with wavevector Q+ δQ, so we expect that the top leg of
the real-space orbit is displaced upward by δQ/eB rela-
tive to constant φ. Integrating the equation above, this
is indeed the case.

Using Eq. (B15), we also find that after a single period,
the guiding center drifts by

∆Ra = − 1

eB
εab

∂γ

∂Rb
. (B16)

This is perpendicular to ∂γ/∂Ra , so, on average, γ is
conserved and R follows lines of constant γ. This average
behavior may also be obtained by regarding the local
Landau level energy

En(R) = −ωc
γ(R)

2π
+ constant (B17)

as a classical Hamiltonian, where Rx and Ry satisfy the
Poisson bracket {Rx, Ry} = 1/eB.

4. Berry phase

In addition to possibly perturbing the classical trajec-
tories, the Berry curvature gives to a Berry phase

γ =

∫
Ar · dr +Ak · dk. (B18)

Using the generalized stokes theorem, this can be written
as:

γ =

∫
R

d2r eBTr(Ωkr), (B19)

where R is the interior of the real-space orbit, and the
argument k of Ωkr is expressed in terms r using Eq. (11).
Written in this way, we may think of the electron as feel-
ing a spatially fluctuating magnetic field b = eB Tr(Ωkr)
that depends on the guiding center of the orbit under con-
sideration, but not on its energy. In the strict V/t → 0
limit

b = δ(y − ȳ)
∂φ

∂x
(B20)

where ȳ is the horizontal reflection axis of the orbit. In
this limit, we directly obtain γ = ∆φ.

In this loose analogy, the case of an orbit crossing a
DC corresponds to inserting a flux tube in the center of
the orbit. As in the Aharanov-Bohm effect, this leaves
the semiclassical dynamics unaffected, but modifies the
action and the energy spectrum.

Appendix C: Berry phase across scattering point

Here we evaluate the Berry phase picked up after pass-
ing through a scattering point. Let us consider the
interval IR = [ti, tf ] in Sec. (VII). To reiterate, the
boundary conditions are c(ti) ≈ (1, 0), c(tf ) ≈ (0, 1).
The simplest eigenstate for the upper band of H in
the vicinity of the scattering point is obtained by sub-
stituting φ(r) → φ(rR) in Eq. B7. This has zero
Berry connection, but the wrong boundary condition:
c(ti) ≈ (e−iφ(rR)/2, 0) and c(tf ) ≈ (0, eiφ(rR)/2) at the

end. To fix this, multiply by e−iα(t) where α is any func-
tion satisfying α(ti) = −φ(rR)/2 and α(tf ) = φ(rR)/2
at late times. This gauge transformation then changes
the Berry phase to α(tf )− α(ti) = φ(rR).

Appendix D: Perturbed action and open orbits

In the main text, we assumed that we could neglect
changes in the semiclassical trajectory produced by a spa-
tially varying CDW phase, and thus focused entirely on
the change in the Berry phase. This assumption is triv-
ially justified in the case of an array of sharp DCs, where
(in the appropriate limit of a weak CDW potential) the
semiclassical trajectory is unaffected by disorder.
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In the case where the CDW phase varies smoothly,
however, the trajectories are slightly modified: the
scattering points are displaced by a distance of order
l2B ∂φ/∂r , where lB =

√
~/eB is the magnetic length.

Moreover, the modified trajectories drift, so, strictly
speaking, there is no closed orbit to quantize. Neverthe-
less, the effect of these modifications on the quantized
energy levels is negligible, as we now demonstrate.

Firstly, in order to start with closed orbits we define a
slightly modified reference Hamiltonian:

H̃ = H + eE · r, (D1)

where E is chosen so that near some point r0, the re-
sulting E × B drift cancels the local drift due to CDW
disorder. This requires

E ∼
(
ωcl

2
B

∂φ

∂r

)
B. (D2)

Since the family of orbits of H̃ with guiding centers near
r0 is closed, we can obtain the corresponding energy lev-
els semiclassically.

Adding an electric field to Eq. (B1), the classical wave

packet Lagrangian associated with H̃ is

L̃ = −E + ṙ · (k − eA) +
[
−eE · r + ṙ · Ar + k̇ · Ak

]
.

(D3)
Assume we have picked coordinates so that r0 = 0 (that
is, the electric field is a small perturbation to the or-
bits under consideration). Then the terms in the brack-
ets may be accounted for using semiclassical perturba-
tion theory. Specifically, if a Lagrangian is perturbed,

L→ L+ δL, then the classical orbits are perturbed such
that the total change in action is

δS =

∫ T

0

dt δL. (D4)

A derivation for the case without Berry phases can be
found in Ref. 35. For the problem at hand,

δS = −eE · 〈r〉T + γ (D5)

where angled brackets denote the time average of r.
This gives the obvious shift in the quantization condi-

tion for H̃. Now, however, the energies of the correspond-
ing states in H must be corrected perturbatively in the
strength of the electric field. To first order, its expecta-

tion value in an eigenstate of H̃ yields −eE · 〈r〉, can-
celing the shift in the energy levels due to the first term
in Eq. (D5). This leaves behind the effect of the Berry
phase γ, plus corrections δE which appear in higher or-
der perturbation theory. Since the energy gap is ~ωc and
the matrix elements to higher/lower Landau levels scale
as eElB ,

δE

~ωc
=

(
eElB
~ωc

)2

(D6)

=

(
lB
∂φ

∂r

)2

� 1, (D7)

so that, under the assumption that the phase disorder
is short-range correlated, to excellent approximation the
energy spectrum can be obtained by simply shifting each
orbit’s action by γ.
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