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Quantum spin liquids are long-range entangled states of matter with emergent gauge fields and fractionalized
excitations. While candidate materials, such as the Kitaev honeycomb ruthenate α-RuCl3, show magnetic order
at low temperatures T , here we demonstrate numerically a dynamical crossover from magnon-like behavior at
low T and frequencies ω to long-lived fractionalized fermionic quasiparticles at higher T and ω. This crossover
is akin to the presence of spinon continua in quasi-1D spin chains. It is further shown to go hand in hand with
persistent typicality down to very low T . This aspect, which has also been observed in the spin-1/2 kagome
Heisenberg antiferromagnet, is a signature of proximate spin liquidity and emergent gauge degrees of freedom
more generally, and can be the basis for the numerical study of many finite-T properties of putative spin liquids.

I. Introduction

Quantum spin liquids (QSLs) have been one of the central
themes in condensed matter for many years.1–11 Unlike con-
ventional phases of matter, the characteristic correlations in
QSLs are non-local and cannot be detected directly by stan-
dard probes. As such, identifying the experimental signatures
of QSLs is one of the most challenging tasks in the field.12

This task has become all the more pressing in the last decade,
with the discovery of several candidate materials, including
isotropic layered kagome systems8,13–15 and the strong spin-
orbit coupled iridates and ruthenates.16–33

A promising route to detect QSLs is to look for signatures of
fractionalization in dynamical probes, such as inelastic neutron
scattering (INS),34–40 Raman scattering,41–47 resonant inelastic
x-ray scattering (RIXS),48–50 and ultrafast spectroscopy.51 Such
probes couple to multiple fractionalized quasiparticles, leading
to characteristic broad scattering profiles. However, potential
QSLs tend to be sensitive to perturbations17,52–58 and are in
fact, in many if not most cases, preempted by magnetic order
at low temperatures T .24–33

Despite this, here we establish numerically that long-lived
fractionalized quasi-particles are still present in the spectrum
at finite energies, in the same way that spinon continua survive
in quasi-1D spin chains, which also order at low T due to weak
interchain interactions.34–36,59–63 Fig. 1 illustrates the qualita-
tive picture for the case of honeycomb Kitaev materials, like
α-RuCl3, which are proximate to a gapless spin liquid charac-
terized by emergent magnetic fluxes and Majorana fermions.7

Here, the characteristic ordering temperature TN and magnon
excitation frequencies ωm are set by the perturbations that drive
the magnetic order, and are therefore much smaller than the
dominant energy scale K responsible for stabilizing the Kitaev
QSL. As such, dynamical signatures of incipient spin liquidity
are generally expected in some range of T and frequency ω,
sufficiently above TN and ωm, respectively.

As a dynamical probe we analyze the Raman scattering in-
tensity, which measures the scattering of light off the magnetic
degrees of freedom, as a function of energy and light polar-

ization.64–66 By monitoring the evolution of the intensity as
we drive the honeycomb Kitaev QSL toward a number of dif-
ferent instabilities, we show that, irrespective of the nature of
the phase the system is driven to, the response indeed follows
closely the one originating from fractionalized quasiparticles
in a wide range of T and ω, while the magnon-like response
– characteristic of the given magnetic order – appears only at
low T and ω (see also67). This crossover, which can be iden-
tified even relatively deep inside the ordered phase, is akin
to the confinement of spinons in quasi-1D spin chains at low
T .34–36,59–63.

Besides the above dynamical crossover, our results reveal
yet another manifestation of incipient spin liquidity, that of
persistent typicality68–75: both static and dynamic properties
can be captured down to surprisingly low T by propagating,
in real and imaginary time, a single, randomly chosen many-

FIG. 1. Dynamical crossover near a Kitaev QSL (schematic).
Magnon excitations, characteristic of the long-range magnetic order
at low T and ω, give way to long-lived fractionalized quasi-particles
(here Majorana fermions) at higher T and ω. This crossover is accom-
panied by a remarkable persistence of typicality to very low T near
the QSL.
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FIG. 2. Persistence of typicality near the Kitaev QSL, I. Logarithm of contributions to the partition function ζr [Eq. (3)] from 320 random
states for three points inside the Néel state, stabilized by a Heisenberg coupling J: (a) θ=0, (b) θ=0.4π and (c) θ=0.49π [J =cos θ, K =sin θ].
All data refer to the symmetric 24-site cluster of App. VI.

body quantum state. This remarkable property arises from the
spectral weight downshift and the large, low-T entropy charac-
teristic of frustrated systems with a large number of competing
low energy states and emergent gauge fields,76–78 and has also
been observed in the kagome Heisenberg antiferromagnet.79

The success of the typicality method is therefore inherently
linked to the strong fluctuations present in quantum liquids.
This therefore opens a unique route to study, on a quantitative
level, an abundance of strongly correlated materials, like, for
example, the layered kagome antiferromagnet ZnCu3(OH)6Cl2
or the honeycomb iridates and ruthenates, α-Li2IrO3, Na2IrO3
and α-RuCl3.

II. Model, Raman vertex and methods

We consider the generic situation of Fig. 1 for the honey-
comb magnet with Hamiltonian

H = K
∑

α

∑
〈i j〉∈a

S α
i S α

j +V . (1)

Here, Si and S j are nearest-neighbor (NN) (pseudo-)spins-1/2,
K is the Kitaev coupling, α = x, y, or z, depending on the
orientation of the bond 〈i j〉 (see inset of Fig. 1), and V is
a generic perturbation that destabilizes the Kitaev QSL. We
will study here two such perturbations that are believed to be
relevant in the available Kitaev materials, the NN Heisenberg
exchange coupling, J, and the symmetric part of the NN off-
diagonal exchange, Γ.55,58,80–84 The corresponding models will
be referred to below as the JK- and KΓ-model, respectively.

In the absence of V, the Hamiltonian can be reduced to a
quadratic problem of fermions moving in the background of
static magnetic fluxes, and the ground state is a gapless QSL
that lives in the zero-flux sector.7 As shown by Nasu et al,77

this state is adiabatically connected to the high-T paramagnetic
phase, but there are two characteristic crossover temperature
scales, T` ∼ K/100 and Th ∼ K, see Fig. 2 of Ref. [77] and
Fig. 1. Below T`, the system is locked into the flux-free sector,
while for T`<T <Th the Majorana fermions move on top of a
thermally disordered flux background.

Raman experiments measure the dynamical response func-
tion associated with the Raman vertex R, which, in the Loudon-
Fleury approximation,46,64,65 is given by

R =
∑
〈i j〉

(εin · di j)(εout · di j)Hi j , (2)

where di j is the displacement from site i to j, εin and εout are the
polarizations of the incoming and outgoing light, respectively,
and Hi j denotes the interactions between Si and S j. The Ra-
man intensity is the Fourier transform I(ω)=

∫
dω eiωt〈R(t)R0〉,

where 〈· · · 〉=Tr[e−βH · · · ]/Tr[e−βH ] denotes the statistical av-
erage over the Hilbert space, β=1/T is the inverse temperature,
and R(t) = eiH tRe−iH t is the time-evolved Raman vertex. In
the 3-fold symmetric models we consider here, the Raman
intensity comes entirely from the ‘xy’ and ‘x2-y2’ polarization
channels. The two channels give identical contributions, as
they belong to the two-dimensional irreducible representation
Eg, so it suffices to consider the ‘xy’ channel only.46,85

The stochastic method used here amounts to replacing the
thermodynamic trace over the Hilbert space of dimension D,
with a sampling over rm randomly chosen states |r〉, with rm�

D.86–93 The Raman correlator is then given by

〈R(t)R(0)〉≈
∑rm

r=1 dr fr(t)/
∑rm

r=1 drζr, where

fr(t)= 〈r|e−βH/2R(t)R(0)e−βH/2|r〉, ζr = 〈r|e−βH |r〉 ,
(3)

and dr is the dimensionality of the symmetry sector the given
state |r〉 belongs to. The stochastic sampling is the basis of
finite-T Lanczos,90,93 Chebyshev polynomial methods,92 and
the standard typicality approach,69–75 for which rm = 1. Here
we take rm = 320 random states (10 for each of the 32 irre-
ducible representations of the symmetry group exploited for
the symmetric 24-site cluster, see App. VI). These states repre-
sent configurations at T =∞, which then need to be propagated
in real and imaginary time in order to evaluate their contribu-
tion, fr(t) and ζr, to the dynamical correlation function and the
partition function, respectively. This is done here using the
standard Lanczos method.94–97 The results are cross-checked
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FIG. 3. Persistence of typicality near the Kitaev QSL, II. (a-b) Real time evolution of the correlator fr(t) [Eq. (3)] for 320 random
(T =∞) states |r〉, for the JK model at θ = 0.47π, with T = |K| (a) and 0.2|K| (b). (c) T -dependence of the maximum standard deviation in
〈R(t)R(0)〉=

∑
r dr fr(t)/

∑
r drζr [see Eq. (3)] for various values of θ. All data refer to the symmetric 24-site cluster of App. VI.

with the complementary low-T Lanczos method,98 which ap-
proaches the problem from low T , see App. VI.

III. Typicality

We begin by showing explicitly that the typicality hypothesis
remains valid down to very low T in the vicinity of the Kitaev
QSL points. Fig. 2 shows the logarithm of ζr defined in Eq. (3)
for 320 states |r〉, for the JK-model at θ= 0 (a), 0.4π (b) and
0.49π (c), where J = cos θ and K = sin θ. All three panels
correspond to points inside the Néel phase (the transition to the
Kitaev QSL occurs at θ'0.493π, see Ref. [53] and App. VI).
At the Heisenberg point (a), the 320 random states give almost
identical results for ζr for T & |K|. This is the essence of the
typicality hypothesis which tell us that states in the middle
part of the energy spectrum are ‘typical’ to each other, and
therefore the statistical average can be equivalently obtained
by looking at the evolution of a single random state. On general
grounds, this hypothesis can be shown90,93,99 to work extremely
well at very high T . On cooling down, the system begins to
sample the lower end of the energy spectrum, where finite-size
effects begin to play a role and the eigenstates are usually in
practise no longer typical. As a result, deviations between
the different ζr become apparent. Quite remarkably, however,
the characteristic temperature, Ttyp, below which the typicality
hypothesis breaks down gets lower and lower as we approach
the Kitaev QSL point, see panels (b-c) and sketch in Fig. 1.

This persistent typicality can also be seen in the time de-
pendent quantities fr(t) defined in Eq. (3). Figs. 3 (a-b) show
the real and imaginary parts of fr(t) for 320 states |r〉, for the
representative point θ=0.47π of the JK-model. For T = |K| (a),
the 320 random states give almost identical results for fr(t), in
the entire time region shown. As above, deviations between the
curves become visible at lower T , see panel b. Nevertheless,

as shown in panel c, the maximum standard deviation between
the different results for 〈R(t)R(0)〉 remains small down to very
low T , in the vicinity of the Kitaev point.

The success of the typicality method reflects, in essence, a
fundamental property of the proximate Kitaev QSL, the pres-
ence of low-energy emergent gauge degrees of freedom. For
conventional phases, the energy spectrum of a finite-size clus-
ter is typically very dense (see below) in the middle of the
spectrum but becomes sparse below some energy scale, pro-
portionate to the bare interaction strength. For the Kitaev QSL,
by contrast, the presence of magnetic flux sectors on one hand
(with 2N/2 fermionic states each) and the very low flux gap
(∆'0.065K7) on the other, give rise to finite-size spectra that
remain dense down to very low energies. This is demonstrated
in Fig. 4 which shows the energy spectrum of the JK-model
on the 24-site cluster in the full parameter range of θ. A direct
consequence of the spectral downshift around the Kitaev points
(θ = ±π/2) is that the system releases as much as half of its
entropy only when cooled below T ∼K/50.77,78

The exponential number of competing low-energy states in
systems with emergent gauge fields quantifies what we mean by
‘very dense’ spectrum. Indeed, as we demonstrate numerically
in App. VI, the density of states ρ(E) scales exponentially with
system size N,

ρ(E)∝eNs(E), (4)

where s(E) is the microcanonical entropy per site (defined
by ds(E)/dE = β), down to very low energies, already for
clusters with 24 or 32 spins. This must be contrasted with the
magnetically ordered regions of the phase diagram where, for
the same finite-size systems, the spectral weight is concentrated
near a restricted set of configurations (i.e., corresponding to
elementary spin flips or magnons).

The way in which the validity of relation (4) for a finite-size
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FIG. 4. Low-energy spectrum of the JK-model on the 24-site cluster. Energies are measured from the ground state energy E0(θ). The
non-linear horizontal axis is used to better highlight what happens in the narrow regions around the Kitaev QSL points θ=π/2 and 3π/2. The
various symbols correspond to the irreducible representations of the symmetry exploited here. The latter includes: i) the 12 translations, with the
symbols Γ, K∗ and M∗ corresponding, respectively, to zero momentum, the corners of the first Brillouin zone (BZ), and the midpoints of the
BZ edges. ii) real space inversion through the middle of the hexagons, with the letters ‘e’ and ‘o’ standing for the even and the odd sectors,
respectively. iii) spin inversion (global rotation around the x-axis in spin-space), with the symbols ‘Sze’ and ‘Szo’ standing for the even and
odd sectors, respectively. The numbers in parentheses give the degeneracy of each level. The spectrum is obtained by the standard Lanczos
method. Specifically, we show the 100 lowest energy states in each sector. Among these, only the lowest five are converged to the requested
high precision (here relative precision in the 9th digit). The rest give a good representation with precision that lowers as we go up in energy.

system leads to persistent typicality is discussed at length and
demonstrated explicitly based on numerical data in App. VI.
A complementary way to understand the persistent typical-
ity is to look at the mathematical predictions for the upper
bound to the relative error δB incurred in the statistical sam-
pling of an operator B. Indeed, it can be shown79,90,93,99 that
δB = O(1/

√
rm × Zeff(T )), where Zeff = Tr[e−β(H−E0)] gives the

effective number of thermally excited states at the given T , and
E0 is the ground state energy. It then follows that if (4) holds
for a given finite-size cluster and energy window (correspond-
ing to T via ds(E)/dE = β), then the relation Zeff ∝ ρ(E) leads
to an exponentially small upper bound in the error and, in turn,
to persistent typicality. This observation has also been made
by S. Sugiura and A. Shimizu in the context of the spin-1/2
kagome Heisenberg antiferromagnet.79

IV. Dynamical crossover

We now turn to the dynamical crossover announced above.
Fig. 5 shows the Raman intensities I(ω) for six different points
in parameter space. Let us first focus on the first row (panels
a-c), which show the evolution of I(ω) as we move deeper
inside one particular magnetic phase, here the Néel state stabi-
lized by a Heisenberg coupling J. As above, the JK-model is

parametrized as J =cos θ and K = sin θ, with θ=π/2 (panel a,
QSL phase), 0.47π (panel b, Néel) and 0.45π (panel c, Néel).
For the Kitaev point (a), the results are consistent with both
the exact T =0 result of Knolle et al46 (reference dashed lines)
and the T -evolution data reported by Nasu et al.47 The broad
profile with the main peak around ω∼ |K| (related to the Van
Hove singularity of the two-fermion density of states) and the
bandwidth of 3|K| are all reproduced, and the same is true for
the characteristic growth of the zero-frequency intensity with
T .47

The crucial point is that the main features of the intensity
remain the same in a wide T and ω regime also inside the
Néel phase. Additional structure, characteristic of this phase
(and the given finite-size cluster), does become visible at low
enough T , and becomes sharper as we move deeper inside the
phase. In panel c, for example, the main peak of the Kitaev
point has been depleted, and the spectral weight has been
asymmetrically transferred into two new peaks (one around
0.75|K| and the other around 1.5|K|). At the same time, there
is an appreciable gap developing at low ω, while a fourth peak
appears a little below 3|K|. While these sharper features may
depend in detail on the finite-size cluster at hand,100 they are
washed out with increasing T , and the response eventually
resembles that at the Kitaev point (panel a).

Panels d-f show that this picture remains essentially the same
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(d) (e) (f)

FIG. 5. Raman scattering intensity in the ‘xy’ polarization channel for various phases proximate to the Kitaev QSL. (a) Ideal AF Kitaev
point, (b) JK model with θ=0.47π (Néel phase), (c) JK model with θ=0.45π (Néel phase), (d) JK model with θ=0.53π (zigzag phase), (e)
JK model with θ=1.43π (FM phase), (f) KΓ model with K =−1 and Γ=0.2. Dashed lines show the analytical T =0 result at the Kitaev QSL
point.46 T and ω are in units of

√
K2+J2 =1 (a-e) or |K| (f). Results are obtained for the symmetric 24-site cluster of App. VI, by propagating

320 random (T =∞) states in real and imaginary time.

irrespective of the nature of the phase proximate to the QSL.
Here we show the intensity for three more phases, the zigzag
(d), the ferromagnetic (e), and the phase stabilized by the off-
diagonal exchange Γ (for the nature of this phase see Refs. [101–
103]). As before, at sufficiently high T the response is the same
with that of the proximate Kitaev QSL, while the response at
low T is distinctive for each of the three phases. For example,
the FM phase shows a relatively large zero-frequency weight,
and the same is true for the phase stabilized by Γ. Results
from the independent low-T Lanczos method lead to the same
conclusion, see App. VI. Altogether, these results demonstrate
the presence of a dynamical crossover from a conventional,
magnon-like picture at low T and ω, characteristic of the low-
T ordered phase, to long-lived fractionalized quasi-particles,
characteristic of the proximate Kitaev QSL.

V. Fermionic character

We now turn to the nature of these fractionalized quasiparti-
cles and show evidence for their fermionic character. To this
end, we follow the analysis of Ref.47 for the Raman intensity
at the ideal QSL point. At this point, the Raman vertex is di-
agonal in the emergent fluxes and only excites/deexcites pairs
of Majorana fermions. In particular, there are two processes
contributing to the intensity, one (type A) corresponding to the
creation of two fermions, and another (type B) to the creation
of one fermion and the annihilation of another. The amplitudes
of these processes then scale as A ∝ [1 − f (ε1)][1 − f (ε2)]

and B ∝ f (ε1)[1 − f (ε2)], respectively, where ε1,2 are the
energies of the two fermions involved in the process and
f (ε)=1/[1+exp(−ε/T )] is the Fermi-Dirac distribution. Fur-
thermore, type (A) processes were shown to dominate the
response at high frequencies, while type (B) dominate the re-
sponse at low frequencies. Following the steps outlined in
Ref.47 then, we consider the T -dependence of the integrated
intensities, nL =

∫ ω1

0 dω I(ω) and nH =
∫ ∞
ω2

dω I(ω), with
ω1 =0.25 and ω2 =0.5, and fit our numerical results for nL and
nH to the expressions, respectively,

yL =aL f (ε∗L)[1− f (ε∗L)] + bL, yH =aH[1− f (ε∗H)]2 + bH , (5)

where aL, bL, aH , and bH are fitting parameters, and ε∗L =0.42,
ε∗H = 0.58 (see detailed justification for the choice of these
parameters (and ω1,2 above) in Ref. [47]).

Figs. 6 (a-b) show two representative fits of nL and nH ,
obtained from a least-squared procedure, for two parameter
points inside the Néel phase, one very close to the bound-
ary with the Kitaev QSL phase (a) and another further away
(b). The agreement between our numerical data for the inte-
grated intensities and the approximate fermionic expressions
of Eq. (5) is very satisfactory close to the boundary, for both
nL and nH . As we depart further away from the boundary, how-
ever, the agreement remains good only for nH , showing that
the low-frequency part of the response is now controlled by
magnon-like processes with different quantum statistical prop-
erties, while the high-frequency part still tracks the behavior
expected for fractionalized fermionic excitations.
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FIG. 6. Fermionic character of the Raman response. (a-b) T -dependence of the integrated Raman intensities ntot =
∫ ∞

0
dω I(ω) (black

circles), nL =
∫ ω1

0
dω I(ω) (blue triangles) and nH =

∫ ∞
ω2

dω I(ω) (red diamonds), where ω1 =0.25, ω2 =0.5 (as in Ref. [47]), for the JK model
with θ=0.49π (a) and 0.46π (b). Solid lines are fits to Eqs. (5), with ε∗L =0.42 and ε∗H =0.58 (as in Ref. [47]) with aL, bL, aH and bH determined

by a least squared fitting procedure. (c) The standard deviations of the fits, σL =

√∑p
i=1(nL(Ti)−yL(Ti))2/p, and similarly for σH [where yL and

yH are defined in Eq. (5)], as we depart from the AF Kitaev point in the JK model parametrised as K =sin θ, J =cos θ.

This picture is more vividly presented in panel c which
shows the evolution of the normalized standard deviations for
the two fits, σL and σH (defined in the caption of Fig. 6), in
the JK-model, as a function of θ.

VI. Discussion

We have studied the Kitaev-Heisenberg honeycomb model,
also with an additional Γ-term, using high- and low-
temperature numerical approaches. We have found signatures
of the fermionic Majorana quasi-particles, characteristic of the
proximate Kitaev QSL, in the energy spectrum even when long-
range magnetic ordering at very low T is present. This is rather
direct evidence that proximate quantum spin liquid physics can
be observed at intermediate and high energies/frequencies even
when the spectrum at low frequencies is strongly rearranged
by a phase transition.

From a point of view of basic quantum statistical mechanics,
it is worth commenting on the success of the typicality ap-
proach for describing the Kitaev quantum spin liquid. Even for
system sizes as large as 24 spins, we had little trouble reaching
reduced coupling strengths K/T well in excess of 10. As we
explain in more detail in the appendix, to which we have rele-
gated a proper technical discussion, the success of this method
is based on two main ingredients. The first is the generation of
a vector ( 1

√
ζr

e−βH/2|r〉) corresponding to the coupling strength
(or, in microcanonical terms, energy density) in question. This
is achieved by subjecting a state |r〉, random in a local spin
basis (Eq. 6), to an imaginary time evolution (Eq. 9).

The second ingredient is essentially equivalent with the
eigenstate thermalisation hypothesis.104–108 This states that
such a randomly chosen eigenvector at a given energy repro-
duces correlations characteristic of a thermodynamic ensemble

at that energy.
Both of these ingredients are present if, for the finite-size

cluster under consideration, the density of states remains suf-
ficiently large at the energy in question. This is evidently a
question of ‘detail’, as the size of the eigenvectors that fit into
the computer memory in practise correspond to sizes of a few
dozen spins at best, a long way from the thermodynamic limit.
The important general insight here is that highly frustrated
systems – by their very nature – are ideal platforms for satisfy-
ing this condition (see also discussion in79). In these systems,
competing interactions lead to huge ground state degeneracies
in simple idealised model systems.109

It is this huge ground state degeneracy which underpins
much of the interest in frustrated magnets, as it renders them
unstable to a host of different correlated magnetic phases. Cru-
cially, such instabilities only lift the degeneracy of the idealised
model on the scale of the perturbation generating them. The
entropy of this degenerate manifold gets spread over only this
scale. Compared to a conventional magnet, this shows up in a
strong downshift of spectral weight to energies below that of
the leading term in the Hamiltonian. In fact, this distinguishes
frustrated magnetism from ‘low-dimensional’ routes to the sup-
pression of magnetic ordering, and indeed, this been proposed
as a practical diagnostic for this class of materials.76.

From the present perspective, this spectral weight down-
shift is precisely what is needed for the typicality method to
work. This therefore accounts for both the good convergence
of the method in the case of the pure Kitaev model; and for
its robustness in the case of proximate spin liquidity, where it
successfully accounts for the physics above the energy scale of
the perturbation. Amusingly, the breakdown of the typicality
method therefore coincides with that of the proximate spin
liquid.

This immediately implies that for the study of the ‘correlated
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paramagnetic’ behaviour of frustrated magnets, the typicality
method should be useful much more generally – what’s needed
are fluctuations over an large manifold of low-lying states, e.g.
those that obey some kind of local constraint. Well-known
examples are the low-lying singlets seen in the kagome anti-
ferromagnet110,111 and their interpretation in terms of nearest-
neighbour valence bond states,5,112–115 or the two-in/two-out
states in pyrochlore spin ice.116–119

Finally, adapting a less methodological viewpoint, it is per-
haps also interesting to try to extend the phenomena observed
here beyond highly frustrated magnets, by viewing these phe-
nomena more generally from the perspective of confinement
of fractional quasiparticles. For instance, this could be a use-
ful analogy for the confinement of spinons in quasi-1D spin
chain materials, like SrCo2V2O8,63 at very low T . Given that
the elementary magnon excitations associated with magnetic
order carry integer quantum numbers, it is tempting to think
of magnons as bound states of fractionalized quasi-particles,
and the ordering as a condensation of such bound states. In
such a scenario, the confining potential between the quasi-
particles would be most effective below TN whereas, above TN ,
deconfined quasi-particles could remain evident in the spec-
trum. This latter regime may also be accessible to the typicality
method. The capacity of the typicality method to approach the
critical coupling of such a transition, here or in the 2D case,
potentially relevant to iridates and ruthenates like α-RuCl3,
also remains to be explored.

We hope that our study will motivate further detailed studies
to a broader range of candidate quantum spin liquids, frustrated
magnets and disordered quantum magnets, opening a window
to their finite- but low-temperature properties that are otherwise
inaccessible.

Appendix A: Typicality method

As we discussed in the main text, one way to understand
the mechanism behind the success of the typicality method is
to look at the mathematical predictions for the upper bound
of the relative error incurred in the stochastic sampling of an
operator.79,90,93,99 When combined with the characteristic spec-
tral downshift and the exponentially large density of states
down to low energies, these mathematical bounds can become
exponentially small, leading to typicality. This connection has
been made previously by S. Sugiura and A. Shimizu, in the
context of the kagome Heisenberg antiferromagnet.79 Here, we
shall attempt to shed some more light into this mechanism and,
at the same time, demonstrate explicitly how and when differ-
ent starting random vectors |r〉 can deliver indistinguishable
results down to very low T . In particular, we shall demonstrate
numerically the relation (4), which is the basis for the success
of the typicality method. We shall also discuss the connection
to the eigenstate thermalization hypothesis (ETH).104–108

Let us start with a brief description of the method. For a
given finite-size cluster (see next section), we exploit symme-
tries to reduce the size of the Hilbert space. Then, for each

given symmetry sector, we choose random initial states

|r〉 =

D∑
`=1

d` |`〉/
√
ξ, (6)

where D is the dimension of the Hilbert space inside the given
sector, {|`〉, ` = 1-D} is a basis of product-like states, and
ξ=D/3 is a normalization constant. The coefficients d` are
drawn with a uniform distribution in the unit circle, with

d∗
`
d`′ = |d|2δ``′ , |d|2 = 1/3. (7)

The analogous relation for the correlations between the co-
efficients ri = 〈i|r〉, where |i〉 are the eigenstates of H with
H|i〉= Ei|i〉, is

r∗i ri′ =
1
ξ

∑
``′

d∗
`
d`′ 〈`|i〉〈i′|`′〉 = 1/D δii′ . (8)

We then propagate the random state |r〉 in imaginary time using
the standard Lanczos method,94–97 to obtain the state

|r, β〉 ≡ e−βH/2|r〉. (9)

Roughly speaking, during the imaginary time evolution, the co-
efficients ri are amplified (suppressed) depending on whether
the corresponding energy Ei is below (above) T = 1/β, re-
spectively. Ideally, at large enough β, the normalized state
|r, β〉/

√
ζr converges to the ground state ofH within the given

sector. The speed of convergence to the ground state is re-
lated to the sparseness of the spectrum, and the size of the first
excitation gap in particular.97

Fig. 7 shows the expectation value ofH in |r, β〉/
√
ζr,

〈H〉r,β ≡ 〈r, β|H|r, β〉/ζr , (10)

divided by system size N, for a large number of random states
|r〉, for three system sizes (N = 16, 24 and 32 sites), and for
two special points in parameter space, the ideal AF Heisenberg
point (panel a) and the ideal AF Kitaev point (panel b). For the
Néel state (a), the curves converge very quickly with increasing
β, and the converged values correspond to the ground state
energy for each given symmetry sector. In particular, the large
spreading in the converged values for each given cluster arises:
i) from the fact that we have taken random states in many
different sectors (24, 32 and 20 sectors for the 16-, 24- and
32-site cluster, respectively) and, more importantly, ii) from
sparseness of the energy spectrum at the Néel point, see Fig. 4
of the main text.

The situation is very different for the Kitaev point (panel b).
Here, the convergence to the ground state is much slower com-
pared to the Néel state, which reflects the very dense spectrum
at the Kitaev point and, in particular, the tiny energy gap to the
first excited state (see Fig. 4). Furthermore, the curves from
all different initial states and all different clusters fall on top of
each other, and the width of the distribution becomes narrower
as we increase the system size.

Let us now discuss why typicality works so well in the
vicinity of the Kitaev points. There are two main ingredients
behind the success of the typicality method. The first is that
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the state |r, β〉 is dominated by eigenstates |i〉, with Ei lying
inside a small window around the canonical expectation value
H , and in particular, that

〈H〉r,β ≈ Tr[e−βHH]/Tr[e−βH ] . (11)

The second ingredient for the success of typicality is that the
expectation value of some local operators A (static or dynamic)
in the state |r, β〉 is the same with the result we get with the
canonical ensemble,

〈A〉r,β ≡ 〈r, β|A|r, β〉/ζr ≈ Tr[Ae−βH ]/Tr[e−βH ] . (12)

Given the first ingredient, Eq. (12) is equivalent with the so-
called eigenstate thermalization hypothesis (ETH).104–108 We
will now show how both these ingredients are guaranteed if the
density of states is sufficiently large. To this end, we rewrite

ζr =
∑

i
|ri|

2e−βEi , 〈H〉r,β =
∑

i
|ri|

2e−βEi Ei/ζr , (13)

and then break up the sum over i into a sum over energy win-
dows [E − δE/2, E + δE/2] around E and a sum over states j
in each window,

ζr →
∑

E δN(E) e−βEgr(E),

〈H〉r,β →
∑

E δN(E) E e−βEgr(E)/ζr,
(14)

where δN(E) = ρ(E)δE and the quantity

gr(E) =

δN(E)∑
j=1

|rE, j|
2/δN(E), (15)

is the average of |ri|
2 inside the window around E. The above

way of rewriting the sums in (13) as sums over energy win-
dows has a meaning only if most of the coefficients |rE, j|

2 are
finite. If, in addition, δN(E) is large enough then we can use
the central limit theorem to make a statement for the distri-
bution of gr(E) (for fixed E). According to that theorem, in
the limit of large δN(E), the distribution of gr(E) (for fixed
E) approaches a normal distribution with standard deviation
σ2

E/δN(E), where σ2
E is the variance of the individual coeffi-

cients |rE, j|
2. Therefore, if δN(E) is large we can replace

|rE, j|
2 → |r|2 = 1/D (16)

in (15), which in turn gives gr(E)≈ 1/D, i.e. gr(E) becomes
independent of the random state |r〉, see below. The equivalence
with the canonical ensemble follows immediately.

We have already emphasised the need for a large enough
density of states. In practice, we only need this condition to
hold in a narrow region of energy that is fixed by β. Indeed,
for large enough system sizes (and finite energy density E/N),
the density of states ρ(E) scales exponentially with system size
N, namely, ρ(E) ∝ eNs(E), where s(E) is the microcanonical
entropy per site. Then, the sum over E in (14) is dominated by
a very narrow region around a characteristic energy E∗ fixed
by s′(E∗) = β. Using the steepest descent method then gives,
for example,

ζr(β) ∝ ρ(E∗)e−βE∗ . (17)

FIG. 7. Expectation value of the energy per site, 〈H〉r,β/N, in the
normalized state |r, β〉/

√
ζr [see definition in Eq. (10)] for a number of

initial random states |r〉 (10 in each irreducible representation; In total,
240 states for the 16-site cluster, 320 for the 24-site cluster, and 200
for the 32-site cluster; for the latter we only show data from the sectors
that are even under spin inversion). Panels (a) and (b) correspond to
the AF Heisenberg and the AF Kitaev point, respectively.

We can test this numerically by checking when the quan-
tity ln(ζr)/N is independent of system size and r. This is
demonstrated in Fig. 8, which shows this quantity for the same
clusters and number of initial states considered in Fig. 7. For
the Néel state (panel a), the various curves begin to deviate
from each other around J/T ∼1, which roughly coincides with
the coupling at which the quantities 〈H〉r,β begin to converge
to the ground state energy of the given sector (compare with
Fig. 7).

For the Kitaev point (panel b), on the other hand, the various
curves for the quantity ln(ζr)/N converge to each other, and
the spreading of the distribution becomes again narrower and
narrower as we increase the system size. This picture is in
essence a numerical proof of Eq. (17) and the statement that
the density of states is exponentially large with system size, at
least for the 24- and 32-site clusters. Equation (17) also says
that most of the weight of |r, β〉 comes from eigenstates within
the window around E∗, which is the first ingredient behind the
success of the typicality method.

We can proceed in a similar way to show that the second
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FIG. 8. Evolution of the quantity ln(ζr)/N, where ζr = 〈r, β|r, β〉, with
inverse temperature for a number of initial random states |r〉 (same as
in Fig. 7). Panels (a) and (b) correspond to the AF Heisenberg and
the AF Kitaev point, respectively.

ingredient, Eq. (12), is also guaranteed if (4) holds. We have

〈A〉r,β =
1
ζr
〈r, β|A|r, β〉 =

1
ζr

∑
ii′

r∗i ri′e−βEi/2e−βEi′ /2〈i|A|i′〉. (18)

As above, if the number of finite terms r∗i ri′ involved in the
above sum (and in the relevant energy regime) is large enough
we can replace with their mean value given in Eq. (8) to get

〈r, β|A|r, β〉 ≈ 1/D
∑

i

e−βEi〈i|A|i〉. (19)

The equivalence with the canonical ensemble follows imme-
diately and, as above, the sum over i is dominated by states
with Ei∼E∗. Altogether, the success of the typicality method
boils down to the presence of a large density of states ρ(E).
As discussed in the main text, this is typical for finite-size
spectra in the middle of the spectrum, but ceases to hold below
a characteristic energy scale that depends on system size and
scales with the strength of the (perturbing) interactions. The
distinctive feature of the Kitaev QSL that renders the typicality
method successful down to very low T is the remarkable spec-
tral downshift (see Fig. 4), that occurs generically in highly
frustrated systems.

Appendix B: Finite-size clusters used in our simulations

Fig. 9 shows the four main finite-size clusters with periodic
boundary conditions used in our exact diagonalizations. The
one shown in the left bottom panel has 24 sites and the full
point group symmetry of the infinite system. The stochastic
method results and the spectra shown in the main text are taken
on this cluster. The clusters shown in the left top panel and
the right panel have 16 and 32 sites, respectively, and lower
point groups than that of the infinite system. The results shown
in Figs. 7 and 8 are taken on the 16-, 24- and 32-site clusters.
The cluster in the middle panel has 24 sites but has lower point
group symmetry than the infinite system. The LTLM results of
Fig. 11 are taken on this cluster. The symmetries exploited on
these clusters include the translations and real space inversion.
For the JK-model, we have also exploited the global two-fold
rotation around the x-axis in spin space.

Appendix C: Boundaries of the Kitaev QSL in the JK model

Fig. 10 shows the ground state expectation value of Kitaev’s
six-body flux operator7 W = 26S x

1S y
2S z

3S x
4S y

5S z
6 as a function

of θ, where K = sin θ and J = cos θ. The results are obtained
from exact diagonalizations on the three clusters of Fig. 9. The
Kitaev QSL phases correspond to the regions around the ideal
Kitaev points θ = ±π/2, where 〈W〉 is very close to 1.7 The
transitions to the magnetically ordered phases correspond to
the points where 〈W〉 drops abruptly to very small values. The
shaded QSL regions in Fig. 10 correspond to the symmetric 24-
site cluster of Fig. 9 which has the full point group symmetry of
the model. The boundaries are consistent with those reported
in Ref. [53] and the reorganization of the low-lying excitation
spectra in Fig. 4 of the main text.

Appendix D: Results from low-T Lanczos method

The low-T Lanczos method (LTLM)98 is an adaptation of the
earlier, finite-T Lanczos algorithm90,93 that correctly captures
the zero temperature limit. This method delivers the response

16

24b

32

24

FIG. 9. Finite-size clusters used in our simulations. All clusters
have periodic boundary conditions, and N = 16 (left top), 24 (left
bottom and middle) or 32 sites (right). The first has the full point
group symmetry of the model.
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directly in frequency domain and the thermodynamic trace is
performed exactly at low enough T , by keeping contributions
from all low-lying excitations below an energy cutoff. Specifi-
cally, one starts again with rm random states |r〉 and obtain, for
each state, a set of M approximate eigenstates {|ε(r)

i 〉, i=1-M}
by a standard Lanczos iteration scheme.94–97 The partition
function is then approximated by

Z'
D
rm

rm∑
r

M∑
i

| 〈ε(r)
i |r〉 |

2e−βε
(r)
i , (20)

and any given spectral density C(ω)≡ 1
π

∫
dteiωt〈A†(t)A(0)〉 by

C(ω) ' D
Zrm

∑rm
r

∑M
i,l,k e−β(ε(r)

i +ε(r)
k )/2 〈r|ε(r)

i 〉 〈ε
(r)
i |A

†|ε̃(r)
l 〉

× 〈ε̃(r)
l |A|ε

(r)
k 〉 〈ε

(r)
k |r〉 δ

(
ω − ε̃(r)

l + 1
2 (ε(r)

i + ε(r)
k )

)
.

(21)

Here, D is the dimension of the full Hilbert space and |ε̃(r)
l 〉

are eigenstates of H with corresponding eigenenergies ε̃(r)
l ,

obtained by an additional Lanczos run with initial state A |ε(r)
k 〉

for each k. In practice, M ∼O(100) is sufficient to obtain ac-
curate estimates for observables of a sparse matrix H , even
for D∼O(108). Nevertheless, the computational cost is pro-
hibitive if all three sums are over Lanczos bases with M∼100.
Since higher-energy eigenvalues are exponentially suppressed
by their Boltzmann factors at low T , one can further restrict
the summations over i and k, so that εi,k < εc and the energy
threshold εc is in turn set by the condition

e−βc(εc−ε0) < εc , (22)

where εc is the high-energy fraction of the Boltzmann factors
to be truncated and βc is the lowest inverse temperature one is
interested in. For example, εc = 0.05 means that one ignores
all eigenstates that contribute 5% of the high-energy tail of
the Boltzmann weight. A good accuracy is thus guaranteed
for all β≥βc. Furthermore, the calculation can be performed
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FIG. 10. Phase boundaries in the JK-model. Ground state ex-
pectation value of Kitaev’s hexagonal plaquette operator7 W =

26S x
1S y

2S z
3S x

4S y

5S z
6 (site labeling shown in the inset) in the JK-model,

with K =sin θ, J =cos θ. Note the nonlinear horizontal axis.

(b)

FIG. 11. Results for the LTLM method. Raman response in the
xy-channel at (a) the Kitaev QSL point, and (b) θ=0.485π (within the
Néel phase). Standard error due to the sampling involved in Eq. (21)
is shown as error bars. Dashed grey lines mark the shift of the main
peak with T . Peaks are broadened with a Lorentzian of width η=0.2.

independently in each symmetry sector (as in the stochastic
method), and the final expectation value is then obtained after
an additional averaging over all sectors. Finally, the δ-peaks in
Eq. (21) are broadened into Lorentzians by a common broad-
ening parameter η. Here, the value of η has been chosen to
facilitate a comparison with results from the typicality method,
which misses the finer finite-size structure of the spectra at
very low T (due to the breakdown of typicality below Ttyp).

We have used the LTLM to study the xy-channel Raman
response of the Kitaev-Heisenberg model for periodic clusters
of up to 24 sites in the window β ≥ βc = 3, within which
numerical calculations can be performed with available
resources. Two representative set of results are shown in
Fig. 11 for the cluster labeled as ‘24b’ in Fig. 9, along with
the values of the LTLM parameters rm, M, η and εc used.
We have verified that the results do not change appreciably
when these parameters are varied. The spectra share the same
qualitative features with those from the typicality method.120

Close to the Kitaev point, but on either side of its boundary
with the Néel phase, the Raman response has two main
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features, namely, a primary peak at ω ∼ 1 and a secondary
peak/shoulder at ω ∼ 2, which disperse with increasing
T to lower and higher frequencies respectively (more
markedly for θ=0.485π). These observations are also in accor-
dance with published Monte Carlo results at the Kitaev point.47
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