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The valley-contrasting orbital magnetic moment of Bloch electrons allows the lifting of valley
degeneracy by an out-of-plane magnetic field. We demonstrate that this leads to negative magne-
toresistance, utilizing a gapped two-dimensional multi-valley model as an example. An intuitive
physical picture in terms of the increased carrier density from a magnetic gating effect is proposed
for this negative magnetoresistance. In particular, giant negative magnetoresistance is achieved
after one of the two valleys is depleted by the magnetic field. This new mechanism of negative mag-
netoresistance is argued to be relevant in ionic-liquid gated gapped graphene with small effective
mass.

The geometry of Bloch wave functions, especially the
Berry curvature, has profound implications on the elec-
tronic transport of crystalline solids [1–4]. The anoma-
lous velocity of a Bloch electron resulted from the Berry
curvature leads to the anomalous Hall effect [5–7] and
valley Hall effect [8, 9] in time-reversal broken and space-
inversion broken systems, respectively. In contrast to the
substantially studied Berry curvature, the importance of
the orbital magnetic moment in inducing novel transport
behaviors has been noticed most recently. The orbital
magnetic moment can be pictorially thought of as aris-
ing from the self-rotation of a wave-packet representing
a semiclassical Bloch electron [10], and it couples to the
magnetic field through a Zeeman-like interaction. There-
fore, it plays a central role in magneto-transport in the
low-frequency regime, such as the gyrotropic magnetic
effect [11, 12] and dynamical magnetopiezoelectric effect
[13].

The coupling between the orbital magnetic moment
and the valley degree of freedom in two-dimensional
inversion-broken systems leads to the valley-contrasting
orbital magnetic moment, which induces novel phenom-
ena [14, 15], such as the valley-polarized zeroth Landau-
level in the high-field limit [16, 17] and the strain-induced
valley magnetization [18]. The valley-contrasting orbital
magnetic moment enables the lifting of the valley de-
generacy by an out-of-plane magnetic field [19], and yet
how it affects the semiclassical magneto-transport has
not been fully revealed. Recently, Sekine and MacDonald
addressed the valley-dependent magnetoresistance [20].
However, the role played by the orbital magnetic moment
was not discussed in their article.

This rapid communication aims to address the ef-
fect of the orbital magnetic moment, in addition to the
Berry curvature, on transverse magnetoresistance in two-
dimensional (2D) inversion-broken multi-valley systems.
Based on the calculation for a 2D massive Dirac model
[8] within the semiclassical transport theory, we pre-
dict a negative transverse magnetoresistance (orthogo-
nal electric and magnetic fields, with the magnetic field
perpendicular to the plane of the 2D system) emerges
and strengthens with the increasing magnetic field. In

relatively strong magnetic fields, we uncover that it is
the orbital magnetic moment that dominates the be-
havior of magnetoresistance through valley-contrasting
band-energy shift of Bloch electrons from Zeeman cou-
pling, rather than the Berry curvature corrected phase
space measure or the anomalous velocity. This valley-
contrasting band-energy shift further causes a magnetic
gating effect when it is associated with the energy-
dependent density of states. Especially, a giant negative
magnetoresistance appears from the efficacious magnetic
gating effect when carriers in one of the two valleys are
depleted by this band shift. At last, an ionic-liquid gating
experiment involving gapped graphene with small effec-
tive mass such as graphene on hexagonal boron nitride
(hBN-graphene) is discussed for possible observing of the
predicted phenomenon.

Preliminaries for semiclassical magneto-transport.—
The semiclassical transport theory of Bloch electrons has
three basic ingredients, namely the semiclassical equa-
tions of motion, the phase-space measure, and the oc-
cupation function which satisfies the semiclassical Boltz-
mann equation.

The semiclassical equations of motion of a Bloch wave-
packet are given by [1]

ṙ = ṽ − k̇ ×Ω, (1a)

~k̇ = −eE − eṙ ×B, (1b)

where ṽ = 1
~∂kε̃ is the group velocity modified by the

Zeeman-like coupling between the magnetic moment m
and the weak external magnetic field through ε̃ = ε0 −
B ·m. Here ε0 is the ordinary band energy, m generally
consists of both the orbital and spin magnetic moments.

On the other hand, the semiclassical measure for the
number of quantum states per unit volume in the phase-
space is corrected by a factor of Dk = 1 + e

~B · Ω in
systems with non-zero Berry curvature Ω, to guaran-
tee the conservation of phase-space volume [21]. With
this correction, the occupation function fk of a wave-
packet state, labeled by the crystal momentum k (the
band index is abbreviated), still complies with the stan-
dard Boltzmann equation, which reduces to the following
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form for homogeneous systems at steady state,

∂fk
∂k

· k̇ = −fk − f0
τ

. (2)

The collision term is treated simply by relaxation time
(τ) approximation, since we focus on effects of band geo-
metric quantities. fk = f0 + gk, with f0 and gk the equi-
librium and non-equilibrium part of occupation function,
respectively. Specifically, f0 is defined as

f0 = f0(ε0 −B ·m− µ) = f0(ε̃− µ). (3)

Note that in Eq. (3) a shift of δµ in chemical poten-
tial µ is possible in the presence of the Berry-curvature
[21] and Zeeman-like coupling [22], if charge neutrality
is required, for instance, in three-dimensional (3D) topo-
logical systems. As for 2D systems, charge neutrality is
not always necessary since one can control the chemical
potential within a proper range by gating. Moreover,
with ionic-liquid gating [23, 24], a fixed chemical poten-
tial is practical in 2D multi-valley systems with small
band gaps. Justification of δµ = 0 is present in the dis-
cussion section of this Rapid Communication.

In the semiclassical transport framework, the electric
current is given by

J = −e
∫

[dk]Dkṙfk, (4)

with [dk] an abbreviation for dk/ (2π)
2
. In the linear

response to electric fields, one has Ji =
∑

j σijEj , where
i, j = x, y refer to the spatial indices and σxx (σxy) refers
to the longitudinal (Hall) electrical conductivity. Once
the conductivity components are obtained, it is intuitive
to illustrate the magnetic-field effect on transport from
the perspective of magnetoresistance, which is defined by

MR ≡ ρxx(B) − ρxx(0)

ρxx(0)
, (5)

if one recalls that the conventional result for the magne-
toresistance of a single-band system is zero, although the
conductivities are B-dependent. This is so because the
resistivity is converted from the conductivity by

ρxx =
σxx

σ2
xx + σ2

xy

, (6)

and ρxx = ρxx(0) = 1/σxx(0), provided with the relations
σxy = −ωcτσxx and σxx = σxx(0)/(1 + ω2

cτ
2) for single

band systems without geometric effects involved. How-
ever, magnetoresistance is not zero any more for systems
with non-zero Berry curvature or magnetic moment, as
we shall demonstrate below.

Qualitative picture: magnetic gating effect from valley-
contrasting orbital magnetic moment.—A minimal model
for 2D inversion-broken multi-valley systems is the mas-
sive Dirac model adopted in [8, 20], which describes hBN-
graphene [25] or graphene on SiC substrate [26] with

Hamiltonian

H = ~vF (τzkxσx + kyσy) + h0σz, (7)

where 2h0 is the band gap, σi are Pauli matrices repre-
senting the sub-lattice. In particular, τz = ±1 denotes K
and K ′ valley, respectively, indicating valley-contrasting
physics [8].

Noting that the Berry curvature and orbital magnetic
moment in a 2D system are always in the normal (z)
direction of the 2D (xy) plane, therefore, for conduction
bands of model (7) one has [1, 8]:

Ωz = −~2v2Fh0
2ε3

τz, morb
z = −e~v

2
Fh0

2ε2
τz, (8)

with ε =
√

(~vF )2(k2x + k2y) + h20. For the same reason,

the magnetic field B = Bẑ is applied along z direction to
enable the couplings of the Berry curvature and orbital
magnetic moment with B.

In systems with small band gaps and low Fermi level,
the spin splitting in a magnetic field can be neglected,
considering the orbital magnetic moment near the band
edge is generally much greater than the spin moment
[8]. Therefore, the Zeeman energy term contains only
the orbital magnetic moment, leading to

ε̃ = ε0 −Bmorb
z . (9)

The valley (τz) dependence of the Berry curvature and
orbital magnetic moment in Eq. (8) gives rise to valley-
contrasting effects on transport. For example, the cor-
rection term of the phase-space measure e

~BΩz for K
and K ′ valley carries different signs, suggesting that the
response to a magnetic field for the two valleys is also
opposite in sign. More importantly, due to the valley-
contrasting orbital magnetic moment, the orbital Zeeman
energy −Bmorb

z shifts energy bands of the two valleys to
the opposite directions, i.e. if the energy band of K valley
shifts up, then the energy band of K ′ valley shifts down,
and vice versa, resulting in valley-contrasting band en-
ergy shift, as shown in Fig. 1.

This valley-contrasting energy shift induces a so-called
magnetic gating effect by increasing the total carrier den-
sity in the system, noticing the asymmetry of the den-
sity of states of K and K ′ valleys at the Fermi level in
the presence of a finite magnetic field. As illustrated in
Fig. 1, when B is positive, the density of states at the
Fermi level in K ′ valley DK′ (µ) is always larger than
that in K valley DK (µ) (specially, in the case of Fig.
1(b), DK (µ) = 0), since the density of states increases
with energies. Thus, the change of the carrier density is
approximately proportional to

δne ∼ [DK′ (µ) −DK (µ)]χB > 0, (10)

where morb
z = −χτz. This δne is positive definite, indi-

cating that the total carrier density increases with the
magnetic field, resulting in a magnetic gating effect.
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FIG. 1. (a) Chemical potential lies far from conduction band
bottom. (b) Chemical potential sits closely to the conduction
band bottom. In both (a) and (b), the solid (black) lines
represent the band energy ε0 without magnetic field, while
the dashed (red) lines represent the orbital Zeeman energy
corrected band energy ε̃, as shown in Eq. (9), for K and K′

valleys. In addition, the green arrows illustrate the directions
of band shift due to orbital Zeeman energy, and the horizontal
dotted (black) lines indicates where the chemical potential
resides.

From the increasing carrier density, we can anticipate
the negative magnetoresistance immediately, given that
the resistance is inversely proportional to the carrier den-
sity. Furthermore, because the orbital magnetic moment
of the conduction band is mostly concentrated around
the band bottom, the negative magnetoresistance is ex-
pected to be strong when the Fermi level lies closer to the
band bottom. More dramatically, after carriers in one of
the two valleys are completely depleted, as illustrated in
Fig. 1(b), corresponding to DK(µ) = 0 in Eq. (10), the
the resistance reduction is much more efficient since the
carrier density increases with higher efficiency than that
prior to depletion.

Quantitative results from Boltzmann calculation.—
Now we support the above physical picture with quan-
titative analysis. In 2D systems with the magnetic field
along z direction, equations of motion (1) lead to

Dkṙ = ṽ +
e

~
E ×Ω, (11a)

Dkk̇ = − e
~

[E + ṽ ×B]. (11b)

It is worth noting that we do not expand ṙ and k̇
in Eqs. (11) in terms of the magnetic field, because
the magnetic field enters these equations through sev-
eral mechanisms, such as orbital Zeeman energy, phase-

space measure, anomalous velocity, and Lorentz force.
These mechanisms may be governed by distinct charac-
teristic magnetic fields with various magnitudes, thus, a
given magnetic field may be weak for one mechanism but
strong for another. Therefore, it is challenging to ensure
the validity of a simple expansion with respect to the
magnetic field prior to understanding these characteris-
tic scales. In fact, the semiclassical magneto-transport
theory without the aforementioned expansion agrees well
with the experimental data for the longitudinal magne-
toresistance 3D topological insulators in a wide regime
of magnetic fields [27], while the theory with the afore-
mentioned expansion failed in accomplishing comparable
agreement [28].

With the Eq. (11b), the semiclassical Boltzmann equa-
tion (2) can be simplified to the form below:

− 1

~Dk

∂f0
∂k

· eE − 1

~Dk
(eṽ ×B) · ∂gk

∂k
= −gk

τ
. (12)

Considering the case with negligible intervalley scatter-
ing (this is reasonable in gapped graphene of high elec-
tronic quality [29]), it is reasonable to simply solve the
Boltzmann equation for each valley separately in a 2D
isotropic system, where the following ansatz for gk

gk = (−∂f0
∂ε̃

)(−τ‖(B, ε̃)eE − τ⊥(B, ε̃)ẑ × eE) · ṽ (13)

in linear response to the electric field can be employed.
Plugging Eq. (13) into Eq. (12) yields:

τ‖ =
τ̃

1 + ω̃2
c τ̃

2
, (14a)

τ⊥ =
ω̃cτ̃

1 + ω̃2
c τ̃

2
τ̃ = ω̃cτ̃ τ

‖, (14b)

with τ̃ = τ/Dk and ω̃c = eB/m̃. Here m̃(ε̃)ṽ = ~k,
where m̃ is a magnetic field dependent (through ε̃) quan-
tity with the dimension of mass. Here we point out that
the solution of gk reduces to the result of conventional
Hall effect [30] immediately in systems with neither Berry
curvature nor magnetic moment.

Then, the electrical conductivities are obtained from
Eq. (4) as

σxx = e2
∫

[dk]ṽ2x(−∂f0
∂ε̃

)τ‖, (15)

and

σxy = −e
2

~

∫
[dk]Ωzf0 − e2

∫
[dk]τ⊥ṽ2y(−∂f0

∂ε̃
). (16)

The second term of σxy resembles the ordinary Hall con-
ductivity from Lorentz force, but with corrections from
the Berry curvature and orbital moment. The first term
in Eq. (16) is the integral of the Berry curvature over oc-
cupied states. This term does not contribute to the total
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Hall conductivity in the presence of time-reversal sym-
metry if one adds the contributions from the two valleys
together [8], but can be nonzero here because the valley-
contrasting energy shift due to the orbital magnetic mo-
ment (Eq. (3)) breaks the time-reversal symmetry ex-
plicitly.

To evaluate the behavior of magnetoresistance, we nu-
merically calculate σxx and σxy for each valley. Then we
add contributions from two valleys together to get the
full conductivity components. The longitudinal resistiv-
ity ρxx and transverse magnetoresistance are calculated
from Eq. (6) and Eq. (5).
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FIG. 2. (a) MR varies with the magnetic field for case (1)
µ = 36 m eV. (b) MR for case (2) µ = 27 m eV. In both
(a) and (b), the parameters are chosen as h0 = 26 m eV,
~vF = 3.0 eVÅ, τ = 10−13 s, T = 1.5 K.

Given the discussions above, we adopt h0 = 26 m eV to
achieve a band gap of 52 m eV for hBN-graphene [25] and
compare the magnetoresistance for two different cases:
(1) Fermi level lies relatively far from the band bottom,
as shown in Fig. 1(a); (2) Fermi level lies closely to
the band bottom, as shown in Fig. 1(b). For case (1),
the negative magnetoresistance from geometric effects is
vanishingly small as expected, about −0.11% at B =
2 T, as shown in Fig. 2(a), when µ = 36 m eV. For
case (2), the geometric effects on magnetoresistance are
significant: MR reaches about −70% at B = 2 T from
Fig. 2(b), when µ = 27 m eV.

This giant negative magnetoresistance results from the
efficient magnetic gating effect after carriers in one val-
ley is completely depleted by the magnetic field through
orbital Zeeman shift. The critical magnetic field Bc re-
quired to deplete carriers in one valley can be estimated
by Bcm

orb
z = µ− h0, and it locates at the turning point

from a rather flat quadratic-like curve to a more dramatic
decreasing rate of 1/B in Fig. 2(b).

In relatively weak magnetic fields, that is when B is
smaller than Bc mentioned above, the negative magne-
toresistance is attributed to the non-zero Berry curva-
ture in phase space measure, orbital moment corrections
to energy and group velocity, and the entanglement of
the Berry curvature and orbital magnetic moment in the
anomalous Hall term in Eq. (16). Among these con-
tributions, neither Berry curvature nor orbital magnetic

moment dominates the total negative magnetoresistance.
In this case, one could summarize these contributions as
geometric contribution and expand the conductivity ac-
cording to the order of the magnetic field, as shown in
[22, 31]. However, in relatively strong magnetic fields,
specifically when B is greater than Bc, it is ambitious to
justify an expansion according to the order of the mag-
netic field, as we discussed previously. Fortunately, in
this regime, we are able to identify (by virtually turning
on only either the Berry curvature or orbital magnetic
moment at one time in numerical calculations) that it is
the orbital magnetic moment that dominates the nega-
tive magnetoresistance [32], through the valley contrast-
ing band shift and magnetic gating effect.

Summary and discussion.—In summary, we demon-
strate that the valley-contrasting orbital magnetic
moment induces giant negative magnetoresistance in
spacial-inversion broken multi-valley systems by a mag-
netic gating effect, emerging from the combination of the
valley contrasting band shift and the energy dependent
density of states. According to our knowledge, this mech-
anism for negative magnetoresistance has not been no-
ticed in previous researches.

This new mechanism of negative magnetoresistance
is a result of valley-contrasting magnetic gating effect,
which essentially provides more carriers as the magnetic
field increases while keeping the chemical potential un-
changed. Although it seems challenging to satisfy δµ = 0
for many experimental setups, it is certainly practical
in the context of ionic-liquid gating, where the effec-
tive capacitance at ionic-liquid gate can be as high as
CILG = 7.8 × 10−6 F cm−2, estimated from the reported
ionic-liquid gate coupling efficiency for a 2D few-layer
MoS2 transistor [24]. The quantum capacitance of the
2D material we study here is CQ = gvm

∗e2/π~2 ≈
6.1×10−7 F cm−2 with effective mass m∗ = 4.7×10−3me

for a gapped graphene model with band gap 53 m eV [25].
In this case, with CQ � CILG, the effective band shift δE
induced by the orbital Zeeman energy δEB = −Bmorb

z is
given by δE = δEB/(1+CQ/CILG) ≈ δEB , guaranteeing
δµ = δE − δEB ≈ 0 as stated previously. Thus, ionic-
liquid gated gapped graphene with small effective mass is
a compelling candidate for realizing the predicted giant
negative magnetoresistance. In systems that do not sat-
isfy the condition CQ � Cgate, e.g. systems with larger
effective mass (larger quantum capacitance) or systems
with smaller gating capacitance Cgate, the chemical po-
tential will not stay fixed. The change in chemical po-
tential compensates the energy band shift from orbital
Zeeman energy, resulting in a weaker magnetic gating ef-
fect, thereby weakening the negative magnetoresistance.

Lastly, we discuss the validity of the relaxation time
approximation, a simplified treatment regarding the dis-
order scattering adopted during solving the Boltzmann
equation. As is well known from studies on the anoma-
lous Hall effect and orbital magnetoelectric response
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[5, 33], this simplification includes the key geometric ef-
fects while neglecting two accompanying delicate scatter-
ing processes: the side-jump and skew scattering. How-
ever, neglecting these two scattering effects does not
appear to curtail the excellent agreements between ex-
perimental results and theoretical predictions based on
merely geometric mechanisms in systems that the Fermi
level locates near the band edges, as shown by measure-
ments of valley Hall effect in hBN-graphene [29]. Thus,
in our study of magnetoresistance, the relaxation time
approximation, which captures the geometric contribu-
tions, is adequate to comprehend the essential physics.
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