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Two-dimensional interacting electrons exposed to strong perpendicular magnetic fields generate
emergent, exotic quasiparticles phenomenologically distinct from electrons. Specifically, electrons
bind with an even number of flux quanta, and transform into composite fermions (CFs). Besides
providing an intuitive explanation for the fractional quantum Hall states, CFs also possess Fermi-
liquid-like properties, including a well-defined Fermi sea, at and near even-denominator Landau level
filling factors such as ν = 1/2 or 1/4. Here, we directly probe the Fermi sea of the rarely studied
four-flux CFs near ν = 1/4 via geometric resonance experiments. The data reveal some unique
characteristics. Unlike in the case of two-flux CFs, the magnetic field positions of the geometric
resonance resistance minima for ν < 1/4 and ν > 1/4 are symmetric with respect to the position
of ν = 1/4. However, when an in-plane magnetic field is applied, the minima positions become
asymmetric, implying a mysterious asymmetry in the CF Fermi sea anisotropy for ν < 1/4 and
ν > 1/4. This asymmetry, which is in stark contrast to the two-flux CFs, suggests that the four-
flux CFs on the two sides of ν = 1/4 have very different effective masses, possibly because of the
proximity of the Wigner crystal formation at small ν.

Ultra-low-disorder two-dimensional electron systems
(2DESs) subjected to a perpendicular magnetic field
(B⊥) give rise to a plethora of quantum many-body
phases of matter. Many of these phases can be under-
stood based on composite fermions, quasiparticles com-
prised of an electron and an even number of flux quanta
[1–3]. Near Landau level (LL) filling factor ν = 1/2, e.g.,
an electron merges with two flux quanta to form a two-
flux composite fermion (2CF). While the electron system
is highly interacting and is in a high B⊥, the 2CFs behave
as essentially non-interacting particles and only feel an
effective magnetic field B∗ = B −Bν=1/2, where Bν=1/2

is the field at ν = 1/2. Importantly, these 2CFs occupy
a Fermi sea at ν = 1/2 and can execute cyclotron mo-
tion near ν = 1/2 at small B∗, similar to their fermion
counterparts near B = 0 [3]. With the application of
a one-dimensional periodic perturbation to the 2DES, if
the 2CFs can complete a cyclotron orbit ballistically, then
they exhibit a geometric resonance (GR) when their or-
bit diameter equals the period of the perturbation. Such
a resonance provides a direct and quantitative way to ex-
plore some of the fundamental properties of 2CFs [4–9].
For example, recent GR measurements of 2CF Fermi sea
revealed an unexpected asymmetry between the two sides
of ν = 1/2 [9]. This asymmetry, and more generally the
question of particle-hole symmetry, inspired renewed in-
terest in the physics of a half-filled LL [10–27]. Notable
among the new studies is the theory involving a Dirac
fermion description [10, 15–19, 21–27].

Qualitatively similar to the case of ν = 1/2, at ν = 1/4
electrons merge with four flux quanta and form a four-
flux CF (4CF) Fermi sea. Unlike ν = 1/2, there is no ob-
vious particle-hole symmetry at ν = 1/4 [28]. This pro-
vides motivation for studies of 4CFs whose physics could

be distinct from 2CFs. However, measurements of 4CFs
are very scarce [29–31], partly because they require very
high magnetic fields, and also because of the proximity
of ν = 1/4 to the Wigner crystal formation near ν = 1/5
[32–34]. Therefore, many fundamental questions have
remained unanswered: Do 4CFs have properties similar
to the 2CFs? Do 4CFs show an asymmetry in the field
positions of the GR minima similar to 2CFs [9]? What
happens to the 4CF Fermi sea when the Fermi sea for
zero-field electrons is highly anisotropic? Our GR mea-
surements reported here provide answers to these funda-
mental questions, and reveal surprises for 4CFs.

Our experimental platform is a molecular beam epi-
taxy grown 2DES, with density n = 1.78 × 1011 cm−2

and low-temperature mobility 1.4×107 cm2/Vs, confined
to a modulation-doped, 40-nm-wide, GaAs quantum well
[35]. In our GR measurements, we impose a minute pe-
riodic density modulation, the estimated magnitude of
which is about 0.5% [36]. As illustrated in Fig. 1(a), this
is achieved by fabricating a one-dimensional superlattice
of period a = 240 nm, consisting of stripes of negative
electron-beam resist on the surface of a lithographically-
defined Hall bar [8, 9, 35–46]. Thanks to the piezoelectric
effect in GaAs, the strain from this surface superlattice
propagates to the 2DES which is 235 nm underneath the
sample surface and leads to a small density modulation.

Weakly-interacting CFs subjected to an effective per-
pendicular magnetic field B∗ execute circular cyclotron
motion with an orbit radius of R∗c = ~k∗F /eB∗, the size
of which is determined by the magnitude of the Fermi
wave vector of the CFs, k∗F [47]. If the CFs have a suffi-
ciently long mean-free-path so they can complete a bal-
listic cyclotron orbit, then a GR occurs when the orbit
diameter becomes commensurate with the period (a) of
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FIG. 1. GR features for 4CFs near ν = 1/4. (a) Lateral
surface superlattice of period a, inducing a periodic density
perturbation in the 2DES. When the 4CFs’ cyclotron orbit
becomes commensurate with the period of the perturbation,
the i = 1 GR occurs. (b) Magneto-resistance trace reveal-
ing GR features near ν = 1/4 and ν = 1/2. Inset: The L-
shaped Hall bar along [110] and [1̄10] directions used for the
measurements. (c) Magneto-resistance near ν = 1/4 demon-
strating the i = 1 4CF GR features, resistance minima flank-
ing ν = 1/4. Black solid and orange dashed lines mark the
expected positions for the i = 1 GR for fully spin-polarized
4CFs with circular Fermi contour assuming k∗F =

√
4πn and

k∗F =
√

4πn×
√
B/Bν=1/4, respectively. The extra minimum

near B⊥ = 29.75 T stems from the i = 2 GR.

the modulation; see Fig. 1(a) for a schematic illustration.
More quantitatively [6–9, 42, 43], when 2R∗c/a = i+ 1/4
(i = 1, 2, 3, ...), GRs manifest as minima in magneto-
resistance at B∗i = 2~k∗F /ea(i + 1/4). Thus, k∗F can be
deduced directly from the positions of B∗i . Such direct
measurement of k∗F not only provides a proof for the ex-
istence of a CF Fermi sea and a measure of its spin polar-
ization but also enables one to quantitatively investigate
how the anisotropy of the electron Fermi sea transfers to
the CF Fermi sea [6–9, 42–46]. Here, we apply this tech-
nique in very high magnetic fields (using a 45 T hybrid
magnet) to investigate the 4CFs near ν = 1/4.

We first show in Fig. 1(b) a representative magneto-
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FIG. 2. Tilt evolution of the 4CF GR features near ν =
1/4 along (a) [110] and (b) [1̄10] directions. The insets show
the orientation of the Hall bars, and the 4CF cyclotron orbit
for the i = 1 GR. Magneto-resistance traces are vertically
offset for clarity; the tilt angle θ is given for each trace. The
expected positions for the i = 1 4CF GRs are marked with
vertical dotted lines assuming that k∗F =

√
4πn. In both

panels, the scale for the applied external field B⊥ is shown on
bottom while the top scale is the effective magnetic field B∗⊥
experienced by the 4CFs.

resistance trace, exhibiting well-developed GR features
flanking symmetrically a deep V-shaped minimum at ν =
1/4. Figure 1(c) zooms in around ν = 1/4. From the
period of the modulation, a = 240 nm, we determine the
expected positions for the primary i = 1 GR resistance
minima according to B∗i=1 = 2~k∗F /ea(1 + 1/4) where
B∗i=1 = Bi=1−Bν=1/4. We assume a fully spin-polarized
CF sea and mark the expected positions for Bi=1 in Fig.
1(c) considering two possibilities: (i) black solid lines for
k∗F =

√
4πn, and (ii) orange dashed lines for k∗F changing

according to the magnetic length, i.e., k∗F =
√

4πn ×√
B/Bν=1/4 [3, 10, 15, 16, 21, 22, 26, 27]. The difference

between the expected Bi=1 for the two assumptions is
very small and cannot be resolved in our experiments.
From Fig. 1(c), it is clear that the observed GR minima
positions are in excellent agreement with the expected
Bi=1, confirming that the 4CFs near ν = 1/4 are fully
spin polarized [48]. More importantly, unlike the 2CF
GRs flanking ν = 1/2 [9], the GR features for 4CFs are
quite symmetric around ν = 1/4. This is reasonable,
considering that the minority carrier density, which was
found experimentally in Ref. [9] to determine k∗F for
2CFs, is the same on the two sides of ν = 1/4 and is
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equal to n [49].
A fundamental question regarding emergent quasipar-

ticles such as CFs in high magnetic fields is how an
anisotropy in the Fermi sea of the electrons at zero
field affects the CF Fermi sea [7, 8, 50–60]. To address
this question, we apply an in-plane magnetic field (B||)
which, through its coupling to the out-of-plane motion of
the electrons in a quasi-2D system, severely distorts the
Fermi sea of the low-field electrons [61–63]. The applica-
tion of B|| shrinks the real-space cyclotron orbit diame-
ter in the in-plane direction perpendicular to B||, thereby
shrinking the Fermi sea in the direction of B||.

The subsequent anisotropy of the CF cyclotron orbit
can be determined in a straightforward manner via mea-
suring the positions of the CF GR minima along the two
perpendicular arms of the L-shaped Hall bar [inset of
Fig. 1(b)]. Since the reciprocal-space (k-space) orbits
are expected to be a scaled version of the real-space tra-
jectories, rotated by 90o [64], our GR measurements then
directly probe the Fermi sea shape. In our experiments,
we tilt the sample so that B|| is always along [110], with
θ denoting the angle between the field direction and the
normal to the 2D plane [Fig. 1(b) inset].

As seen in Fig. 2, the application of B|| affects the po-
sitions of the 4CF GR minima. Traces for the two arms
of the Hall bar along [110] and [1̄10] are shown in Figs.
2(a) and 2(b). In both panels, the vertical dotted lines
mark the expected positions of the i = 1 CF GR minima
for spin-polarized 4CFs with a circular Fermi sea, i.e.,
B∗i=1 = 2~

√
4πn/ea(1 + 1/4). These lines match the ob-

served positions of the resistance minima for the bottom
traces of Fig. 2, which were taken at θ = 0o. When we in-
crease θ and thereby B||, for the [110] arm [Fig. 2(a)], the
positions of the two GR minima shift away from ν = 1/4
to larger values of |B∗⊥|. In contrast, the GR minima for
the [1̄10] arm [Fig. 2(b)] move towards smaller |B∗⊥|. Us-
ing the field positions of the GR minima along the [110]
and [1̄10] directions, we directly extract the magnitude
of the Fermi wavevector k∗F along [1̄10] and [110], respec-
tively; we use the expression: k∗F = B∗i=1ea(1 + 1/4)/2~.

The most surprising finding of our study emerges in
Fig. 3 where we show the deduced k∗F , normalized to k∗F0,
the value of k∗F at B|| = 0. We observe a remarkable dif-
ference in the deduced k∗F for ν > 1/4 and ν < 1/4. For
both cases, with increasing B||, k

∗
F along [1̄10] increases

while along [110] it decreases. However, for ν < 1/4, the
change is much slower compared to ν > 1/4. This is dif-
ferent from the 2CF Fermi sea at ν = 1/2 where both
sides show similar anisotropy with increasing B|| [7, 8].
The difference is particularly puzzling considering that
2CFs and 4CFs form in the same LL.

Before discussing the asymmetry observed in Fig.
3 data, we emphasize that our measured Fermi sea
anisotropy for 4CFs is qualitatively different from the
electron Fermi sea anisotropy at B⊥ = 0. The com-
parison is summarized in Fig. 4 where we show the
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FIG. 3. (a) Normalized 4CF Fermi wave vectors k∗F from the
positions of B∗⊥ for the primary 4CF GR minima along the
[110] and [1̄10] directions. Open and filled symbols represent
the data for ν < 1/4 and ν > 1/4, respectively. The typi-
cal error bar for the data points is of the order of 3%. (b)
Anisotropy of the 4CF Fermi sea for ν < 1/4 (open symbols)
and ν > 1/4 (filled symbols) deduced from dividing the (in-
terpolated) measured values of k∗F along [1̄10] by those along
[110]. Orange lines correspond to the theoretical estimate of
the anisotropy using Eq. (1) assuming m|| = 2.5, 1.9, 1.4,
and 1.0 (see text). Inset: Geometric mean of the measured

values of k∗F (k̃∗F =
√
k∗F [110]× k∗F [1̄10]) along the two direc-

tions normalized to k∗F0 for ν < 1/4 and ν > 1/4 denoted by
solid and dashed lines, respectively. Up to the highest B||,

k̃∗F /k
∗
F ' 1 to within 5%, implying that the measured Fermi

seas are nearly elliptical.

Fermi contours of the electrons (top panels), calculated
self-consistently based on the 8 × 8 Kane Hamiltonian
[62, 63, 65], and the 4CF Fermi contours deduced from
our measurements (bottom panels). For electrons, the
Fermi sea becomes severely distorted with increasing B||
and even splits into two tear-shaped seas, signaling the
formation of a bilayer system, as confirmed in experi-
ments [62, 63]. In stark contrast, the 4CFs Fermi sea is
much less anisotropic and remains connected even at the
highest B|| = 30 T. This is similar to what was seen for
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FIG. 4. Comparison between the evolution with B|| of the cal-
culated Fermi contour of electrons (a-d) and measured Fermi
contour of 4CFs near ν = 1/4 (e-h). For simplicity, in (a-d)
only the majority-spin contour is shown. In (e-h), solid and
dotted contours denote the 4CF Fermi contours for ν < 1/4
and ν > 1/4, respectively. Even though the electron Fermi
sea completely splits at large B||, the 4CF Fermi sea near
ν = 1/4 remains intact.

2CFs except that our measured Fermi sea anisotropy for
4CFs is even smaller than for 2CFs for the same quantum
well width [8]. At B|| = 25 T, e.g., k∗F /kF0 = 1.9 for the
2CFs [8] while the 4CFs exhibit k∗F /kF0 = 1.3 and 1.6
for ν < 1/4 and ν > 1/4, respectively.

For an understanding of the qualitative difference be-
tween the Fermi sea anisotropies of electrons and 4CFs,
we use a simple model, inspired by Fermi liquid theory.
Developed in Ref. [8] to explain 2CF data, this model
takes into account the coupling of B|| to the out-of-plane
(orbital) motion of the quasi-2D charged particles con-
fined to a quantum well of width w, and provides an
estimate for the Fermi sea anisotropy [66]. In the limit
of a small anisotropy where this model is valid, it yields
an elliptical Fermi contour with minor and major Fermi
wave vectors:

kx,y =

√
n

π

(
1− 210

35π6

e2B2
||

~2
w4mz

m||

)±1/4
. (1)

Here B|| is along the x direction, and m|| and mz are the
particles’ effective mass in the 2D plane and out-of-plane,
respectively. It is reasonable to expect that the physics
of CFs characterizes the in-plane dynamics of the quasi-
particles in our experiments. According to Fermi liquid
theory, m|| should then be approximately the effective

mass of CFs that contains electron-electron interaction
and is about unity [1, 3, 67, 68]. (All effective masses
are in units of the free electron mass.) On the other
hand, the quantized perpendicular motion of the quasi-
particles giving rise to the formation of electric subbands
should reflect the band dynamics which is characterized
by the band mass of electrons in GaAs, mz = 0.067. The
approximate validity of this simple model for the 2CFs
was demonstrated in Ref. [8] where the much smaller
measured 2CF Fermi sea anisotropy compared to that
of the zero-field electrons and its dependence on w was
explained.

In Fig. 3(b) we show the predictions of Eq. (1) (or-
ange curves) using different values of m||, with mz fixed
at 0.067. The curve with m|| = 2.4 fits the ν < 1/4
data reasonably well. For ν > 1/4, none of the curves fit
the experimental data well [69], but a comparison with
the data suggests that m|| is smaller than 2.4, namely
that there is an asymmetry between m|| for ν < 1/4
and ν > 1/4. It is noteworthy that a qualitatively simi-
lar asymmetry in 4CF mass (m∗) was also deduced from
measuring the temperature dependence of the strengths
of fractional quantum Hall states near ν = 1/4 [31]. For
ν > 1/4, the measured m∗ for 4CFs was found to be con-
sistent with the value expected based on the 2CF mass
(after scaling with m∗ ∝

√
Bν to take into account that

m∗ is proportional to the Coulomb energy [1, 3, 67, 68]).
However, for ν < 1/4, a much larger m∗ was deduced and
was attributed to the formation of the pinned, magnetic-
field-induced Wigner crystal (WC) which manifests as an
insulating phase near ν = 1/5 [33, 34].

For our sample, the expected m∗ for 4CFs near ν = 1/4
based on the 2CF m∗, and using the m∗ ∝

√
Bν scaling,

is ' 1.4 [70]. The data of Fig. 3(b) suggest that m∗ for
ν < 1/4 is larger than this value, qualitatively consistent
with the data of Ref. [31]. While the proximity to the
WC formation as suggested in Ref. [31] and confirmed
by numerical calculations [71] might be a possible expla-
nation for the larger 4CF m∗ on the ν < 1/4 side in our
sample also, we would like to emphasize an important
point. The m∗ measured in Ref. [31] and calculated in
Ref. [71] were in the range 0.237 > ν > 0.222, relatively
close to the insulating phase that sets in at ν = 0.21
[31, 33, 34]. In contrast, we observe GR resistance min-
ima in the range 0.246 > ν > 0.242, reasonably far from
0.21, and very close to ν = 1/4. It would therefore be
surprising if the WC formation would affect the 4CFs so
significantly [35]. We hope that our data would stimu-
late theoretical work for a quantitative understanding of
4CF properties and, in particular, the strong asymmetry
we observe for the 4CFs Fermi sea anisotropy on the two
sides of ν = 1/4.

We acknowledge support through the National Science
Foundation (Grants DMR 1709076 and ECCS 1508925)
for measurements, and the National Science Foundation
(Grant No. MRSEC DMR 1420541), the U.S. Depart-



5

ment of Energy Basic Energy Science (Grant No. DE-
FG02-00-ER45841), and the Gordon and Betty Moore
Foundation (Grant No. GBMF4420 for sample fabrica-
tion and characterization. This research is funded in part
by QuantEmX travel grants from the Institute for Com-
plex Adaptive Matter and the Gordon and Betty Moore
Foundation through Grant No. GBMF5305 to M. S. H.,
M. K. M., and M. S. A portion of this work was per-
formed at the National High Magnetic Field Laboratory,
which is supported by National Science Foundation Co-
operative Agreement No. DMR-1644779 and the State
of Florida. We thank S. Hannahs, T. Murphy, J. Park,
H. Baek, and G. Jones at NHMFL for technical support.
We also thank J. K. Jain, W. Pan, M. Ippoliti, and R.
N. Bhatt for illuminating discussions.

[1] J. K. Jain, Composite fermions.(Cambridge University
Press, New York, 2007).

[2] J. K. Jain, Composite-fermion approach for the fractional
quantum Hall effect, Phys. Rev. Lett. 63, 199 (1989).

[3] B. I. Halperin, P. A. Lee, and N. Read, Theory of the
half-filled Landau level, Phys. Rev. B 47, 7312 (1993).

[4] R. L. Willett, R. R. Ruel, K. W. West, and L. N. Pfeiffer,
Experimental demonstration of a Fermi surface at one-
half filling of the lowest Landau level, Phys. Rev. Lett.
71, 3846 (1993).

[5] W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin,
and K. W. West, How real are composite fermions? Phys.
Rev. Lett. 71, 3850 (1993).

[6] J. H. Smet, S. Jobst, K. von Klitzing, D. Weiss, W.
Wegscheider, and V. Umansky, Commensurate compos-
ite fermions in weak periodic electrostatic potentials: di-
rect evidence of a periodic effective magnetic field, Phys.
Rev. Lett. 83, 2620 (1999).

[7] D. Kamburov, Y. Liu, M. Shayegan, L. N. Pfeiffer, K.
W. West, and K. W. Baldwin, Composite fermions with
tunable Fermi contour anisotropy, Phys. Rev. Lett. 110,
206801 (2013).

[8] D. Kamburov, M. A. Mueed, M. Shayegan, L. N. Pfeif-
fer, K. W. West, K. W. Baldwin, J. J. D. Lee, and R.
Winkler, Fermi contour anisotropy of GaAs electron-flux
composite fermions in parallel magnetic fields, Phys. Rev.
B 89, 085304 (2014).

[9] D. Kamburov, Y. Liu, M. A. Mueed, M. Shayegan, L.N.
Pfeiffer, K.W. West, and K.W. Baldwin, What deter-
mines the Fermi wave vector of composite fermions?
Phys. Rev. Lett. 113, 196801 (2014).

[10] D. T. Son, Is the composite fermion a Dirac particle?
Phys. Rev. X 5, 031027 (2015).

[11] M. Barkeshli, M. Mulligan, and M. P. A. Fisher, Particle-
hole symmetry and the composite Fermi liquid, Phys.
Rev. B 92, 165125 (2015).

[12] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, Mir-
ror symmetry and the half-filled Landau level, Phys. Rev.
B 92, 235105 (2015).
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[52] B. Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, and F.
D. M. Haldane, Band mass anisotropy and the intrinsic
metric of fractional quantum Hall systems, Phys. Rev. B
85, 165318 (2012).

[53] H. Wang, R. Narayanan, X. Wan, and F. Zhang, Frac-
tional quantum Hall states in two-dimensional electron
systems with anisotropic interactions, Phys. Rev. B 86,
035122 (2012).

[54] K. Yang, Geometry of compressible and incompress-
ible quantum Hall states: Application to anisotropic
composite-fermion liquids, Phys. Rev. B 88, 241105(R)
(2013).

[55] A. C. Balram and J. K. Jain, Exact results for model
wave functions of anisotropic composite fermions in the
fractional quantum Hall effect, Phys. Rev. B 93, 075121
(2016).

[56] I. Jo, K. A. Villegas Rosales, M. A. Mueed, L. N. Pfeiffer,
K. W. West, K. W. Baldwin, R. Winkler, M. Padman-
abhan, and M. Shayegan, Transference of Fermi contour
anisotropy to composite fermions, Phys. Rev. Lett. 119,
016402 (2017).

[57] M. Ippoliti, S. D. Geraedts, and R. N. Bhatt, Numerical
study of anisotropy in a composite Fermi liquid, Phys.
Rev. B 95, 201104(R) (2017).

[58] M. Ippoliti, S. D. Geraedts, and R. N. Bhatt, Connec-
tion between Fermi contours of zero-field electrons and
ν = 1/2 composite fermions in two-dimensional systems,
Phys. Rev. B 96, 045145 (2017).

[59] M. Ippoliti, S. D. Geraedts, and R. N. Bhatt, Composite
fermions in bands with N-fold rotational symmetry, Phys.
Rev. B 96, 115151 (2017).

[60] K. Lee, J. Shao, E. A. Kim, F. D. M. Haldane, and E.
H. Rezayi, Pomeranchuk instability of composite Fermi
liquids, Phys. Rev. Lett. 121, 147601 (2018).

[61] D. Kamburov, M. Shayegan, R. Winkler, L. N. Pfeiffer,
K. W. West, and K. W. Baldwin, Anisotropic Fermi con-
tour of (001) GaAs holes in parallel magnetic fields, Phys.
Rev. B 86, 241302(R) (2012).

[62] D. Kamburov, M. A. Mueed, M. Shayegan, L. N. Pfeif-
fer, K. W. West, K. W. Baldwin, J. J. D. Lee, and R.
Winkler, Anisotropic Fermi contour of (001) GaAs elec-
trons in parallel magnetic fields, Phys. Rev. B 88, 125435
(2013).

[63] M. A. Mueed, D. Kamburov, M. Shayegan, L. N. Pfeiffer,
K. W. West, K. W. Baldwin, and R. Winkler, Splitting
of the Fermi Contour of quasi-2D electrons in parallel
magnetic fields, Phys. Rev. Lett. 114, 236404 (2015).

[64] N. W. Ashcroft and N. D. Mermin, Solid state physics
(Holt, Rinehart and Winston, Philadelphia, 1976), Chap.
12.

[65] R. Winkler, Spin-orbit coupling effects in two-
dimensional electron and hole systems (Springer, Berlin,
2003).

[66] F. Stern, Transverse Hall effect in the electric quantum
limit, Phys. Rev. Lett. 21, 1687 (1968).

[67] R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and



7

K. W. West, Experimental evidence for new particles in
the fractional quantum Hall effect, Phys. Rev. Lett. 70,
2944 (1993).

[68] H. C. Manoharan, M. Shayegan, and S. J. Klepper, Sig-
natures of a novel Fermi liquid in a two-dimensional com-
posite particle metal, Phys. Rev. Lett. 73, 3270 (1994).

[69] The experimental data also show a clear “kink” in the
4CF Fermi sea anisotropy near B|| ' 25 T; this is not

explained by Eq. (1) either.
[70] Equation (1) also explains why 4CFs have a smaller Fermi

sea anisotropy than 2CFs in the same sample at a given
B||. This is because 4CFs have a larger m∗.

[71] X. Zu, K. Park, and J. K. Jain, Masses of composite
fermions carrying two and four flux quanta: Differences
and similarities, Phys. Rev. B 61, R7850(R) (2000).


