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Majorana zero modes are a promising platform for topologically protected quantum information
processing. Their non-Abelian nature, which is key for performing quantum gates, is most promi-
nently exhibited through braiding. While originally formulated for two-dimensional (2d) systems,
it has been shown that braiding can also be realized using one-dimensional (1d) wires by forming
an essentially two-dimensional network. Here, we show that in driven systems far from equilibrium,
one can do away with the second spatial dimension altogether by instead using quasienergy as the
second dimension. To realize this, we use a Floquet topological superconductor which can exhibit
Majorana modes at two special eigenvalues of the evolution operator, 0 and π, and thus can realize
four Majorana modes in a single, driven quantum wire. We describe and numerically evaluate a
protocol that realizes a topologically protected exchange of two Majorana zero modes in a single
wire by adiabatically modulating the Floquet drive and using the π modes as auxiliary degrees of
freedom.

Non-equilibrium systems have recently been shown
to host a variety of novel phenomena with no equilib-
rium system equivalent. One of the early examples was
discussed in Ref. 1, which demonstrated that a driven
p-wave superconducting wire can possess not only the
well-known Majorana zero modes (MZMs) at zero en-
ergy [2, 3], but also so-called Majorana π modes (MPMs)
at frequency ω/2, with ω the frequency of the exter-
nal drive. These are but an example of a broader class
of anomalous Floquet topological phases [4, 5], with no
analogue in static (time-independent) systems. Other
examples include Floquet symmetry-protected topologi-
cal (Floquet-SPT) phases [6–9], and the closely related
time-crystals [10–15], where periodically driven interact-
ing and disordered systems show a response at a multiple
of the drive period. In all these systems, discrete time-
translation symmetry protects novel quantum states.

It is natural to ask whether the topological degrees of
freedom that emerge in driven systems can be used to
supplement equilibrium topological phases. Particularly
interesting are Majorana zero modes [16–20]. It is well-
known that they exhibit non-Abelian statistics: When
several MZMs are present, the many-body ground state
becomes degenerate, and adiabatically exchanging two
well-separated MZMs carries out a non-trivial unitary
transformation within the ground state manifold [21, 22].
Such braiding operations form the basis of topological
quantum computation [23, 24]. Physically, MZMs are re-
alized as zero-energy excitations in one- [2, 25–28] and
two- [29–32] dimensional topological superconductors.
While these systems are of great interest for quantum
computing, non-Abelian braiding itself remains a tanta-

lizing fundamental effect, and demonstrating it would be
a tremendous breakthrough.

In the following, we show that MPMs emerging in
driven systems allow for remarkable new braiding pro-
tocols, going beyond what is possible in equilibrium sys-
tems. Strictly speaking, braiding is only possible beyond
one spatial dimension: two quasi-particles cannot be ex-
changed on a single wire while being distant from each
other. In this work, however, we show that in periodi-
cally driven systems, quasienergy provides an additional
synthetic dimension that can be used in conjunction with
real space. Roughly speaking, the two kinds of Majorana
states in Floquet superconductors – MZMs and MPMs –
live a parallel existence at two different frequencies. As
pointed out first in Ref. [1], they are precisely decou-
pled from each other as long as the drive is invariant
under time-translation by one period. It follows that
half-frequency pulses can be used to couple the MZMs
and MPMs [33].

Refs. [34, 35] also propose using a combination of
MZMs and MPMs as well as half-frequency pulses to
simulate braiding operations. However, the scheme we
perform here is a non-local braid rather than the local op-
eration at one end of the system proposed in Refs. 34 and
35. The non-locality of our scheme leads to topological
protection, which is the essence of topological quantum
computation, as it allows storing and processing quan-
tum information in a way that is protected against all
local noise sources.

Floquet braiding—We begin with a 1d topological su-
perconductor, which under a period-T drive may enter a
Floquet topological superconducting phase [1, 36]. As a
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function of material and drive parameters, each edge of
the system may have no MZMs, one MZM and/or an-
other Majorana mode with energy at the Floquet zone
boundary. We denote this quasienergy by π/T and re-
fer to the corresponding Majorana mode as a Majo-
rana π mode (MPM). A time-periodic system only allows
quasienergies inside the Floquet zone, −π/T ≤ ε < π/T .
Therefore, particle-hole symmetry requires that Majo-
rana modes come in pairs at all energies except zero and
π/T , which is where unpaired Majorana modes can be
found. Moreover, as long as time periodicity is con-
served, the MZMs and MPMs do not hybridize even if
their wavefunctions overlap in space. This property al-
lows us to move them past each other and enables the
procedure, which does not require any fine-tuning of the
Hamiltonian or its time dependence [37].

There are several experimental schemes for MZM ex-
change. The simplest one is to physically move the
MZMs [38]. Alternatively, consider a system made up
of four MZMs at fixed locations, but with tunable inter-
actions between them [39–42]; in this case, at any time
during the braid two of the four Majorana modes are
strongly coupled, but the dominant coupling is changed
in a particular order to effectively perform a braid op-
eration. Similarly, a sequence of 2-MZM measurements
can be used to implement measurement-only variants of
braiding [43–45]. In either case, at least two quantum
wires are required.

Our proposed braiding protocol is most closely akin to
an approach with four MZMs, of which two are coupled at
any time. Our four states, however, are a pair of MZMs
and another pair of MPMs. To introduce interactions
between MZMs and MPMs, we apply a time-dependent
perturbation in restricted regions, thus locally breaking
the time-translation symmetry that protects the MPMs.
We numerically confirm below that such a perturbation
acts only locally even though time-translation symmetry
is a global symmetry. We then combine this with moving
the MZMs and MPMs to achieve braiding.

Two-part drive model—Let us consider the Kitaev
Hamiltonian:

H(µi, wi,∆i) =
∑
i

[
−µic†i ci −

wi
2

(
c†i ci+1 + h.c.

)]
+
∑
i

∆i

2
(cici+1 + h.c.) (1)

and construct the Floquet operator with period T

UF = e−iH0T/2e−iH1T/2 (2)

H0 = H(µi = 0, wi = 2πλ0/T,∆i = −2πλ0/T ) (3)

H1 = H(µi = 2πλ1/T,wi = 0,∆i = 0) , (4)

where H0 is the Hamiltonian of a Kitaev chain at the
“sweet spot” of the topological phase (see below) and H1

is the Hamiltonian of a trivial phase with only chemical
potential. For couplings λ0, λ1 ∈ [0, 1] (~ = 1 through-
out), this gives rise to the phase diagram [12] (Fig. 1)

λ0 λ1

1. 2λ1
0 = 1− δ 2λ1

1 = 1

2. 2λ2
0 = 1 2λ2

1 = 1− δ
3. 2λ3

0 = 1 2λ3
1 = 1 + δ

4. 2λ4
0 = 1 + δ 2λ4

1 = 1

FIG. 1. Left: Phase diagram of the Floquet system in terms of
the strength of the topological (trivial) Hamiltonian H0(H1)
in the two-part drive, see Eqs. (3),(4). It is possible to realize
4 phases characterized by the presence of zero or π modes: 1)
trivial 2) MZMs 3) MPMs 4) MZMs and MPMs. The gray
crosses mark the sweet spots of the corresponding phases with
vanishing correlation lengths. Right: Parameterization used
in Eq. (2) to obtain the phase diagram. The parameter δ
quantifies the distance to the critical point and the direction
of increasing δ is indicated in the left panel.

with the four phases characterized by the presence or ab-
sence of MZMs and MPMs. Each phase contains a point
of vanishing correlation length, aka ‘sweet spots,’ where
the MZM and/or MPM states are localized on a single
site. The sweet spots are indicated by the gray crosses
in Fig. 1. These points are discussed in Sec. A of the
Supplemental Material. A convenient choice of parame-
ters is given by that of the right panel of Fig. 1, where
the superscript refers to the phases as follows: 1–trivial
phase, 2–MZM only, 3–MPM only, and 4–both MZMs
and MPMs. The parameter δ quantifies the distance of
all the phases to the critical point and is connected to
the correlation length, with δ = 0 corresponding to the
critical point and δ = 1 to the points with vanishing cor-
relation length (the black arrows in the left panel of Fig. 1
indicate the direction of increasing δ). Throughout, we
consider UF to encode an elementary Floquet cycle with
period T .

To implement the Floquet braiding protocol, consider
an inhomogeneous systems, where different regions are
in different phases with the possibility to move phase
boundaries. Let ~p be a vector whose elements pi ∈
{1, 2, 3, 4} indicate that the parameters of the bond i cor-
respond to phase pi. We can then generalize the Floquet
drive of Eq. (2) to the inhomogeneous case:

UF (~p) = e−iH0(~p)T/2e−iH1(~p)T/2 (5)

H0(~p) = H(µi = 0, wi = 2πλpi0 /T,∆i = −2πλpi0 /T ) (6)

H1(~p) = H(µi = 2πλpi1 /T,wi = 0,∆i = 0). (7)

In an inhomogeneous system, MZMs and MPMs also
form at the interfaces between phases with different topo-
logical order. For example, half of the system could be
in phase 2 (MZM), and the other half in phase 4 (MZM
and MPM). In such a case, the MZMs will form at the
end of the system, one MPM will form at one end of the
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system, and the other one in the middle of the system.

To move the spatial phase boundaries as a function of
time, we interpolate between two different systems de-
scribed by vectors ~p and ~q by continuously tuning a pa-
rameter s ∈ [0, 1] and applying Floquet drives analogous
to Eq. (5), but with H0 = (1− f(s))H0(~p) + f(s)H0(~q),
and similarly for H1. Here, f(s) is a function with
f(0) = 0 and f(1) = 1; in our simulations, we choose
f(s) = sin(sπ/2)2. We evolve from s = 0 to s = 1 over
Ns time steps. For sufficiently large Ns, if the initial state
of this operation is an eigenstate of UF (~p), the final state
will be an eigenstate of UF (~q). This can be considered a
version of adiabaticity for driven systems [46–48] and be
understood by the formal relation between each UF to a
Floquet Hamiltonian HF = i(logUF )/T . The spectrum
of HF corresponds to the quasi-energy spectrum of the
Floquet unitary. We can therefore relate the deforma-
tion from UF (~p) to UF (~q) to a deformation of the cor-
responding Floquet Hamiltonian from HF (~p) to HF (~q).
The adiabatic condition can then be formulated with re-
spect to the quasienergy spectrum of HF . Dynamically
changing the Floquet operator weakly breaks the time-
translation symmetry that protects the MPMs similar
to how energy conservation is broken in time-dependent
equilibrium systems. To reduce the corresponding er-
rors in the braiding protocol, we choose a smooth evolu-
tion that changes the Floquet operator in each cycle and
strongly suppresses the π/T components as Ns becomes
large except for the desired local perturbations discussed
below.

As a final ingredient to our protocol, we need to be
able to couple nearby MZMs and MPMs. To explicitly
introduce such a coupling, we insert a perturbation op-
erator Upert after two elementary Floquet cycles. The
coupling can be understood by considering that eigen-
vectors corresponding to quasi energies 0 and π/T in UF
all correspond to quasienergy 0 in U2

F , and are therefore
susceptible to perturbations. The effect of the pertur-
bation is independent of the details as long as the per-
turbation is sufficiently generic; for our specific choice,
see Sec. B of the Supplemental Material. The strength
of the perturbation is quantified by a coupling strength
λpert. Importantly, if Upert acts only in a specific re-
gion of the system, it will only couple a pair of nearby
MZMs and MPMs in that region while leaving the ones
far away unperturbed. We numerically probe this fact,
which amounts to locally breaking time-translation sym-
metry, in the Supplemental Material.

Braiding protocol—We now turn to the full braid pro-
tocol. We start and end in a configuration where the
entire system is in the regular, undriven, Kitaev phase,
exhibiting MZMs at the system’s edge. This allows state
preparation in an undriven system. We then turn on the
Floquet drive to perform a braid operation by following
the steps in Fig. 2. Since all the Floquet-drive phases
(2) are gapped around the respective 0 or π modes, and
the protocol never drives extended regions of the sys-
tem through the phase transition at once, the Floquet

0 10

Position

0

20

40

60

S
te

p

trivial

MZM

MPM

MZM

& MPM

FIG. 2. Left: Full braid protocol for a system of L = 20 sites.
The colors correspond to different phases; green (red) crosses
indicate the locations of MZMs (MPMs). Right: Schematic
representation of the braiding process of two MZMs. In the
center region it is possible to convert between MZMs (de-
noted by 0) MPMs (denoted by π). After the right MZM has
been converted into a MPM is can be safely moved past the
left MZM in the region where time-translational symmetry is
preserved.

quasienergy spectrum at each step of the evolution re-
mains gapped. Therefore adiabaticity is maintained even
in the thermodynamic limit by choosing Ns which in-
terpolates the move of the phase boundary by one site
sufficiently large.

Throughout the evolution, the system contains at least
a pair of MZMs, and, at intermediate stages, an addi-
tional a pair of MPMs. In the case where both MZMs
and MPMs and hence a total of four modes are present,
we need to fix which pair encodes the quantum informa-
tion. To achieve this, we apply a local time-translation-
symmetry-breaking perturbation in a region in the mid-
dle of the system. Therefore, when both an MZM and
an MPM are in the middle, they are split to finite energy
and only two low-energy modes remain, which thus carry
the encoded quantum state. When three modes, e.g. two
MPMs and an MZM, are in the perturbed regime, one
mode (which is a linear combination of the three modes)
remains unperturbed while two are split away to finite
energy. This enables us to effectively convert a MZM to
a MPM mode and vice versa as indicated in Fig. 2.
Numerical results—A numerical implementation of the

dynamical braiding is summarized in Fig. 3. Since the
Hamiltonian is quadratic, the evolution of operators of
the form ~v ·~γ, where ~γ is a vector of Majorana operators
such that 2ci = γ2i−1 + iγ2i, can be represented by an
orthogonal matrix Ū . Over the entire process, ~v·~γ evolves
into (Ū~v) · ~γ (see Sec. C of the Supplementary Material
for details).

To define the relevant error measures, let γ1,2 = ~v1,2 ·~γ
be initial (and final) MZMs. Then, we compute the 2×2
matrix (Ur)α,β = ~vTα Ū~vβ (α, β = 1, 2), which encapsu-
lates how the entire time evolution acts on the low-energy
Majorana subspace. In the ideal limit, Ur = iσy, where
σy denotes the usual Pauli matrix. We quantify devia-
tions from this using two measures: ∆diab = |U†rUr − 1|
captures deviations from unitarity, in particular diabatic
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FIG. 3. Errors in the braid protocol, measured by the devia-
tion from unitarity of the evolution in the low-energy subspace
(left panel) and deviation in the applied phase (right panel,
see main text for definitions of ∆diab and ∆phase) as a func-
tion of the number of interpolation steps between stages of
the protocol. In the limit of Ns → ∞, adiabaticity is recov-
ered. The errors generally vanish with a lower-law, however
for fast protocols (Ns < 200) an exponential transient behav-
ior is observed. In the phase error, the dependence on Ns is
non-monotonic: for sufficiently slow protocols, the evolution
becomes adiabatic with respect to the residual finite-size split-
ting of Majorana modes. Parameters used are λpert = 0.2.

corrections that excite fermions from the low-energy sub-
space to the excited states. Secondly, we compute the two
eigenvalues of Ur as (r1e

iφ1 , r2e
iφ2). In the ideal case, we

expect r1 = r2 = 1 and φ1 = −π/2, φ2 = π/2. We define
deviations from this as ∆phase = |φ1 + π/2|+ |φ2 − π/2|,
where we sort eigenvalues such that φ1 ≥ φ2. Both mea-
sures are chosen to be independent of the basis choice for
the Majorana subpsace since it is not unique in the case
when they are exactly degenerate.

Fig. 3 shows that increasing Ns to perform a slower
protocol improves the errors. At short times, the ac-
curacy improves exponentially, while at long times a
power-law behavior is observed, consistent with the non-
analytic time-dependence of the driving Hamiltonian. In-
terestingly, the two error measures can exhibit qualita-
tively different behavior, as shown in the long-time be-
havior for L = 40, δ = 0.5: while the diabatic cor-
rections continue to decrease, the error in the applied
phase reaches a minimum value beyond which it increases
again. This occurs because very slow protocols resolve
the splitting of the low-energy manifold. For larger sys-
tem sizes, such as L = 80 and δ = 0.9, this crossover
would occur at much slower protocol times (larger Ns).
In most relevant parameter regimes, the error is domi-
nated by diabatic corrections and not finite-size correc-
tions, i.e. the error is independent of system size for all
but the smallest systems. Details of the dependence of
∆diab on other parameters such as δ and λpert can be
found in Sec. D of the the Supplemental Material.

Topological protection & Outlook—To conclude, we dis-
cuss in what sense braiding as described here is topo-
logically protected. Just as many other new phenom-

ena in periodically driven systems, MPMs are protected
by time-translation symmetry. Therefore, braiding of
MPMs is topologically protected only if no processes that
break the periodicity of the drive are present. A subtle is-
sue is that the braid process itself breaks time-translation
symmetry and thus gives rise to dynamical corrections,
but as we have shown above these can be systematically
suppressed by adiabatically changing the drive parame-
ters. Similar diabatic errors may also occur in the braid-
ing of MZMs if operations are performed away from the
adiabatic limit [49–60].

Importantly, unlike other symmetries that can give
rise to multiple MZMs in a single wire, our Floquet ap-
proach does not require careful tuning of the instanta-
neous Hamiltonian. Thus it is much more experimentally
accessible. We provide a perspective towards such real-
izations in systems based on superconducting quantum
dot chains [61–63] in the Supplemental Material, where
in particular we discuss a model that is able to implement
the same behavior but requires time-dependent control
of only a single parameter (see sec. E of the Supplemen-
tary Material). Perhaps the simplest realization, how-
ever, would be using a quantum wire proximity coupled
to two superconductors, one grounded, and the other at
a finite voltage. The AC Josephson effect gives rise to
the time dependence leading to MPM’s [64].

An important caveat is that we relied on the absence
of heating. While this assumption is appropriate for
the non-interacting limit, it is well-known that driven
interacting systems generically heat to infinite temper-
ature [65–67]. However, there are known mechanisms
such as many-body localization [67–70] as well as the
pre-thermalization [71–78] which can be used to avoid
heating and stabilize the results discussed here. While
the details of this interacting scenario are an interesting
open question left to future work, we note that a quan-
tum dot chains would be particularly promising to reach
the prethermal regime. As outlined in the Supplemental
material, control over two parameters (e.g. hopping and
chemical potential) of the quantum dot chain is sufficient
to reach the sweet spot regime of all 4 different phases
(see Sec. F of the Supplementary Material). Close to the
sweet spots, the bands of the continuum states become
flat and are thus expected to show prethermalization.
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