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Can the mere crumpling of a “paper” produce electricity? An inhomogeneous strain can in-
duce electrical response in all dielectrics and not just piezoelectric materials. This phenomenon of
flexoelectricity is rather modest unless unusually large strain gradients are present. In this work,
we analyze the crumpling of thin elastic sheets and establish scaling laws for their electromechan-
ical behavior to prove that an extremely strong flexoelectric response is achieved at sub-micron
length-scales. Connecting with recent experiments on crumpling of a polymer paper, we argue that
crumpling is a viable energy harvesting route with applications in wearable electronics and related
contexts.

I. INTRODUCTION

Crumpling of flat sheets is ubiquitous in our daily lives.
The inevitable deposition of a used (and crumpled) pa-
per before its relegation to the recycling bin provides but
just one example. This phenomenon has attracted much
attention and heretofore studied purely as a mechanical
and geometrical problem [1–7]. Indeed, the mechanics
of crumpling is quite rich, and the intricate coupling be-
tween deformation energy stored in stretching, bending
and subtle differential geometric aspects pertaining to
2D structures has bearing on problems as diverse as the
shape of flowers to speed of earthquakes [8].

FIG. 1. Schematic of the electricity generated due to the
crumpling of a thin dielectric sheet. Large strain gradients
at the sharp tips in the crumpling sheet may polarize the
material due to the phenomenon of flexoelectricity.

Is crumpling truly a purely mechanical problem? For
materials that are not piezoelectric, the answer would
appear to be in the affirmative. However, this ignores a
rather under-appreciated phenomenon that has attracted
much recent attention. Flexoelectricity is a universal
electro-mechanical coupling between strain-gradients and
polarization [9–17]. It’s universal nature is to be empha-
sized since it exists, in principle, in all (insulating) mate-
rials and has paved the way for fascinating applications
such as piezoelectric materials without using piezoelec-
tric materials [17–20], nanoscale energy harvesting [21–
24], ferroelectric domain engineering [25–27], sensors and
actuators [28–30], defects [31], and biomedicine [32–34]
among others. In a conventional piezoelectric material,
electricity (or electric polarization, p) can be generated
through the piezoelectric effect:

pi ∼ dijkεjk, (1)

where dijk denote the components of the third-order
piezoelectric tensor and εjk are the strain tensor compo-
nents. Here we have used index notation and Cartesian
basis to make explicit the order of the material property
tensors as well make comments about symmetry. Piezo-
electricity only exists in a few special materials (that
have a non-centrosymmetric crystalline structure). In
contrast, if flexoelectricity is accounted for, the polariza-
tion takes the form:

pi ∼ dijkεjk + fijkl
∂εjk
∂xl

, (2)

where fijkl are the components of the fourth-order flex-
oelectric tensor.

A most notable characteristic of flexoelectricity is the
size-dependency inherent in its response. As numerous
works have shown, and as may be evident from its re-
liance on gradients of strain (which imparts a nonlo-
cal character to the phenomenon), the flexoelectric re-
sponse increases dramatically when the feature size of
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FIG. 2. A crumpled thin sheet: (a) The crumpled shape of
a circular paper with radius Rp resting on a cup with radius
R. The crumpled shape is generaed by applying a concen-
trated load F at the central point of the paper. Parts (b) top
view and (c) front view, show the geometry underpinning the
crumpling state.

the dielectric structure shrinks to submicron or nano-
scale [17, 21, 23, 35]. The simple bending of a thin “pa-
per” or paper-like structure ought to activate a flexo-
electric response–a fact amply demonstrated in the case
of atomically thin 2D materials like graphene and others
[20, 34, 36]. However, the electrical energy gain would be
rather modest since the flexoelectric coefficients of most
materials are rather small—unless very high curvatures
are induced. The latter is most facile when the under-
lying geometric feature size (–thickness in this instance)
is at the nanoscale. Crumpling, provides a rather inter-
esting alternative to generate large localized strain gradi-
ents (or in this context, changes in curvature). Recently,
Kodali et al. [37] proposed to generate electric power
from the crumpling of micron-thick polymer piezoelectric
foils for wearable electronics and experimentally observed
the development of a voltage (≈ 0.1V). Recognizing the
potential of crumpling to induce a significant flexoelec-
tric response, we argue that crumpling could provide a
facile route to generate electric power in thin paper-like
structures of all materials (and not just piezoelectric).
Fig. 1 shows the basic concept underlying the present
work of power production from crumpling of a thin di-
electric sheet.

Before outlining some of the novel aspects of the
present work, it is imperative to briefly recapitulate the
current understanding of the crumpling problem from a
purely mechanical and geometric viewpoint. The sim-
plest example of a crumpled sheet is a developable cone
(d-cone), which is a deformed circular sheet under a cen-
tral point force perpendicular to the original flat sheet
constrained by a cylinder. This is shown in Fig. 2(a) and
as evident, may be created on a regular office printer pa-
per. The point-like singularities (Fig. 2(b)) that appear
on a crumpling elastic sheet, as a result of stress focus-

ing, have been recently the subject of several investiga-
tions [1, 38, 39]. To analytically model the developable
cone, Cerda and Mahadevan [3, 6] presented an analytical
solution for the universal shape of a d-cone with singular-
ities and also gave a scaling relation for the core size [5].
Somewhat complementarily, Cha1̈eb and Melo [4] car-
ried out an experiment to investigate d-cones topology,
and calculated the angle (≈ 120◦) over which the devel-
opable cone is not in contact with the edge of the cylin-
der. This angle, however, is a little different from what
Cerda and Mahadevan estimated (≈ 140◦) [3], which is
shown in Fig. 2(c). Recently, Müller and Olbermann [40]
improved the scaling law of the elastic energy of d-cones
by following the work of Brandman [41].

In a departure from the works quoted in the preceding
paragraphs, Kodali et al. [37] examined crumples in com-
posite piezoelectric thin sheets. Specifically, they embed-
ded sheets of a polymer piezoelectric (PVDF) in clothing
in which power is generated by crumpling of clothes due
to human body movements. They showed that a non-
trivial voltage is generated from a single d-cone crumple
and presented a scaling law relating the geometry of the
crumpling d-cone and the generated open circuit voltage
and short circuit current.

Our work, motivated by the generated voltage in the
developable cone [37], is predicated on the observation
that at the tip of the d-cone, not only the strain is consid-
erable, but so is the strain gradient (i.e., curvature). Tak-
ing cognizance of Eq. (2), polarization may be induced
by both piezoelectricity (if the material is piezoelectric)
and flexoelectricity (in all dielectrics). So the following
questions may be asked both from the viewpoint of fun-
damental physics as well as potential applications: (1)
Given that flexoelectricity is universal, what is the cor-
rect interpretation of the experiments of Kodali et. al.
[37] on electricity generated by PVDF paper? (2) What is
the mechanics and physics of crumpling if flexoelectricity
is accounted for? (3) What are the pertinent electrome-
chanical scaling laws? (4) Is the energy harvested viable
or at least comparable to what might be obtained from
analogous crumpling of piezoelectric materials? In this
work, we seek to answer the questions posed in the pre-
ceding paragraph. In particular, in this work, we focus
on the possibility of generating electric power from the
universal flexoelectric response of a crumpling dielectric
sheet.

II. THEORETICAL FORMULATION FOR THE
CRUMPLING OF A THIN ELASTIC SHEET

WITH PIEZOELECTRICITY AND
FLEXOELECTRICITY

We now briefly sketch out the central aspects of the
theoretical formulation for crumpling of a thin elastic
sheet incorporating both flexoelectricity and piezoelec-
tricity. While the latter is not the focus of this work,
in order to connect with recent experiments, we address



3

piezoelectricity also. Most of the details related to the
theory are recorded in the Appendix. The deformation of
a crumpling sheet is shown in Fig. 2(a). A vertical force
F is applied to push the central point of the flat circular
sheet (with radius of Rp), which is centrally placed on the
supporting hoop (with inner radius R). The thin sheet
bends up to the depth d when F is very small. However,
crumpling ensues once F is increased sufficiently. Con-
sider the domain occupied by a continuum body in the
space is denoted by B with the boundary ∂B. In gen-
eral, the deformation of the body B can be expressed by
a mapping y : B → R3. A representative material point
of the body is x ∈ B. In contrast, the spatial point is
y = y(x) = x + u, where u is the displacement vec-
tor. The displacement and electric potential (ξ) bound-
ary conditions may be specified on the respective surface
domains as detailed in the Appendix.

The total potential energy associated with the de-
formed electrostatic system is given by

F [u,p, ξ] =

∫
B

{
W − 1

2
ε0|∇ξ|2 + p · ∇ξ

}
dv

−
∫
∂Bd

ξQds−
∫
∂Bt

t · uds,
(3)

where W (∇u,∇∇u,p) is the internal energy function,
ε0 is the vacuum permittivity, p is the polarization, Q is
the surface charge density, and t is the applied deadload.

The Euler-Lagrange equations and the natural bound-
ary conditions can be determined by minimizing the to-
tal potential energy: min

∀(u,p,ξ)∈S
F [u,p, ξ], where the mini-

mization is carried out over a suitable admissible space S.
We omit further details here and refer the reader to the
Appendix. After using the relevant kinematic assump-
tions for thin bodies, suitable constitutive choices and
other aspects elaborated in the Appendix, we obtain the
following key result for a thin elastic dielectric sheet. The
total energy (3) specialized to a thin sheet with thickness
h becomes

F [u] =
1

2

∫
S
Wsds− Fd, (4)

where the two-dimensional energy function Ws is

Ws = Es · CsEs + (Ks +K∗s )[tr(κ)]2. (5)

Here the coefficients Ks and K∗s are

Ks = Cb + hg − ha∗f2
s , K∗s = −ha∗f2

s (η2 + 2η) (6)

with the ratio η = dstr(Es)/[fstr(κ)].
Here, Es is the in-plane strain tensor and κ is the cur-

vature tensor. The material properties are parametrized
by Cs which is the in-plane stiffness tensor, and by
Cb which is the bending stiffness. The property g
parametrizes the elastic cost of strain gradients and in the
context of thin sheets (as opposed to three-dimensional
bodies) merely renormalizes the bending modulus. The

other terms (ds, fs, a
∗) are related to the piezoelectric-

ity, flexoelectricity and dielectric permittivity of the sheet
and are defined in detail in the SI. Typically, in the case
of non-piezoelectricity, ds = 0, the ratio η and the coef-
ficient K∗s in Eq. (6) are zero. As shown in Fig. 2, the
crumpling sheet deforms into a non-axisymmetric coni-
cal surface that is in partial contact with the supporting
hoop. To model the developable cone, the middle sur-
face S of the dielectric sheet is divided into two parts:
Sc = {x ∈ S : 0 6 ρ 6 Rc}, Sd = S \ Sc. The core
part Sc is the region near the tip of the developable cone
and Rc can be interpreted as the core size [5, 6]. The
core part of a crumpling sheet is analogous to the core of
a dislocation [3, 42]. In addition, the outer region of the
developable cone is Sd. We remark that the variation of
the local curvature along the developable cone (d-cone)
separates the d-cone into two parts [3, 4]: in terms of
the azimuthal angle (θ) the concave part (−θ1 6 θ 6 θ1)
and the convex part (θ1 6 θ 6 2π − θ1). In the con-
vex part, the surface fully contacts the hoop and forms
a near-perfect circular cone except near its tip or core;
while in the concave part the d-cone loses contact with
the supporting hoop. For the purely mechanical problem,
we note that Cerda and Mahadevan [3] predicted the an-
gle (θ1) to be: θ1 ≈ 70◦ while θ1 ≈ 60◦ was estimated by
Chaieb et al. [4]. Finally, the conical shape of a crum-
pling sheet can be completely parametrized by two non-
dimensional numbers: (α1 = d/R, α2 = Rc/R) which are
the proxies for (d,Rc): the tip displacement and the core
radius (see the Appendix). Thus the dimensionless num-
bers (α1, α2) are the two unknown quantities which are
determined by the variational principle described earlier.
Due to the nonlinear nature of the problem, the final
results are obtained numerically.

III. RESULTS AND DISCUSSIONS

Before interrogating our model for insights into crum-
pling induced energy harvesting, we believe it is worth-
while to validate its prediction against established lit-
erature for the purely mechanical case. Using identical
geometrical and material parameters as those reported
in [5], we compared the results of the prediction of our
model (see the Appendix) for the purely mechanical case
(i.e. with piezoelectricity and flexoelectricity suppressed)
and found excellent agreement for small deformation be-
tween our model predictions and the experimental data
in [5]. For relatively large deformation, the agreement is
not perfect but accounting for that is not the focus of this
work. Our central goal is to achieve sufficient accuracy
(and correct qualitative behavior) to account for piezo-
electric and flexoelectric response of crumpling sheets,
which we now discuss next.

In their experiments, Kodali et al. [37] measured
the open circuit voltage and the short circuit current
of a crumpling circular composite sheet. The compos-
ite sheet was made of a 52µm thick poly vinyldenefluo-
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FIG. 3. Comparison of the generated voltage of a crumpling
sheet predicted by our model with the experimental data of
Kodali et al. [37]. The generated voltage vs the tip depth d
of the crumpling circular sheet is plotted. In our model, we
consider both the contributions of piezoelectricity and flex-
oelectricity while the experiments can only calibrate the to-
tal voltage on the upper and bottom surfaces of a crumpling
sheet.

ride (PVDF)—a known piezoelectric polymer—with elec-
trodes on both sides and bonded to a soft cloth-plaster.
The circular sheet was placed on a supporting hoop and
then a concentrated vertical force was applied at the
sheet center to form the crumpled configuration. For dif-
ferent radii of the supporting hoop R = (12.5, 20, 25)mm,
roughly 0.1 V was measured by pushing the center of the
circular sheet (with radius 50mm) into a supporting hoop
up to the maximum depth (≈ 4mm). Kodali et al. at-
tribute the observed induced voltage to the piezoelectric
effect exhibited by PVDF. Our hypothesis is that, since
flexoelectricity cannot be “turned-off”, the observed po-
tential difference is due to both phenomena. What are
their relative contributions? We report some surprising
and interesting insights below.

In our theoretical model, the flexoelectric constant is
chosen as fs = −179Nm/C [17, 21]. The geometrical and
material parameters of a circular composite sheet in the
crumpling experiment [37] are: Rp = 50mm, h = 52µm,
E = 5GPa, d31 = 5pC/N , and ε = 88.5 × 10−12F/m.
Using our model, we partition the total voltage obtained
into that due to flexoelectricity (FL voltage) and piezo-
electricity (PZ voltage). As elaborated in the SI, the
nonlocal elastic constant g has a negligible effect on the
comparison with experiments since sheet thickness in the
experiments is quite large compared to the characteristic
nonlocal length scale.

Fig. 3 shows how the induced voltage varies with the
increase of the tip deflection d where we also compare
our model predictions with the experimental data from
Ref. [37]. The radius of the supporting hoop is taken to
be R = 12.5mm. The developed potential difference in-
creases to 0.14V as the tip deflection increases to 4mm.

Thus the electric field in the 52µm thickness film can
be as high as 3 × 103V/m, which is considerable when
placed in the context of soft dielectrics. The key insight
is that our flexoelectricity based model is able to pre-
dict the generated voltage including both piezoelectric-
ity and flexoelectricity. More importantly, both voltages
are comparable to each other and are of the same order
as the experimental data reported by Kodali et al. [37].
Notably, our model shows that the flexoelectricity leads
to a non-trivial contribution to the generated voltage of
a crumpled sheet at microscale and cannot be ignored.
In addition due to the size-dependency inherent in the
phenomenon of flexoelectricity (which is absent in piezo-
electricity), it becomes dominant when the film thickness
decreases from microscale to nanoscale. This is articu-
lated in Fig. 4 in terms of the variation of the electrome-
chanical coupling with respect to film thickness. Explic-
itly, the piezoelectricity in our model originates from the
in-plane strain Es of the core part while the flexoelectric-
ity results from the curvature of the crumpled film, see
Eq. (6) or Eq. (A20). Physically, this may be rationalized
in the following way. For a piezoelectric material (like
PVDF) attached to a very thin soft cloth, it is unlikely
that bending will contribute significantly to a piezoelec-
tric response (since compression and tension below and
above the neutral axis of the material will produce sig-
nificant cancellation). This is however not the case for
flexoelectricity. We remark that in the case of inextensi-
ble films, piezoelectricity “turns off” but flexoelectricity
does contribute, i.e., crumpling induced electricity is es-
sentially mediated by bending in the case of inextensible
materials. Needless to say that as evident from Fig. 3,
crumpling induced mechanical energy can be converted
to the electrical energy.

A major consequence of the establishment of the scal-
ing relation for flexoelectricity in crumpling is that we are
now in a position to go beyond known experiments and
examine the size-dependency of the electromechanical
coupling. As noted earlier, piezoelectricity does not pro-
duce any size-effects while the flexoelectric effect is size-
dependent c.f.[17]. We define and focus on the emergent
electromechanical coupling that is defined as the ratio of
the induced charge Q on the sheet surface in response to
the applied force F , namely deff = Q/F . Such a defini-
tion can be considered as the amount of electric charge
(including the contribution of both piezoelectricity and
flexoelectricity) produced by per unit of applied force. As
a point of comparision, for a common crystalline piezo-
electric material like barium titanate, this coefficient is
around dBaTiO3 = 78pC/N . In the crumpling of a thin
sheet with thickness h = 52µm used in Fig. 3, for in-
stance, the effective effect at a tip deflection d = 4mm is
found to be deff = 250pC/N from the experimental data
[37]. As demonstrated in Fig. 4, as the thickness of the
sheet is reduced to around 100nm, the electromechani-
cal coupling reaches values close to 65000pC/N . In the
plot, we chose the same basic parameters in Fig. 3 as the
starting point, and the geometry of the sheet was scaled



5

FIG. 4. Flexoelectric and piezoelectric effects vs the sheet
thickness h. The effective effect (electromechanical coupling)
is defined as deff = Q/F , and is normalized by deff

0 = 652pC/N
that is calculated by the geometrical and material parame-
ters in Fig. 3 at tip depth d = 4mm. The experimental data
(solid circle, deff/deff

0 = 0.38) of the effective effect of a thin
sheet with thickness h = 52µm is also plotted for compari-
son between different thicknesses. The reported piezoelectric
coefficient of barium titanate is around dBaTiO3 = 78pC/N .

as: (Rp : R : h : d) = γ(50mm : 12.5mm : 52µm : 4mm),
where γ is a nondimensional scale factor and γ = 1 cor-
responds to the size of thin sheet in Fig. 3. By changing
the scale factor γ, we can make the sheet thickness h
ranging from 10nm to 100µm. We chose deff

0 = 650pC/N
to normalize the effective piezoelectric and flexoelectric
effects in Fig. 4 at different thicknesses. The piezoelectric
effect is insensitive to the scale of thin sheets, however,
the flexoelectric effect remarkably increases (two orders)
as the thickness decreases from several microns to a few
nanometers.

APPENDICES

Appendix A: The detailed theoretical formulation

1. Energy minimization of an electrostatic system

The domain occupied by a continuum body in the
space is denoted by B with the boundary ∂B. In general,
the deformation of the body B can be expressed by a
mapping y : B → R3. A representative material point
of the body is x ∈ B. In contrast, the spatial point is
y = y(x) = x+ u, where u is the displacement vector.

The boundary conditions of the displacement u and
the displacement gradient ∇u are

u = u0, n · (∇u)n = n · (∇u0)n on ∂Bu, (A1)

where n is the outward unit normal to the surface
∂Bu, u0 is the prescribed displacement vector, and

the normal derivative of the displacement vector is
also prescribed. For simplicity, we assume that the
displacement boundary and normal derivative boundary
conditions are at ∂Bu. In contrast, the traction bound-
ary and higher-order traction boundary conditions are
at ∂Bt = ∂B \ ∂Bu.

The electric boundary condition of the electric poten-
tial ξ is

ξ = ξ0 on ∂Bξ, (A2)

where ξ0 is the prescribed potential. The surface charge
boundary condition is at ∂Bd = ∂B \ ∂Bξ.

The total potential energy associated with the de-
formed electrostatic system is given by

F [u,p, ξ] =

∫
B

{
W − 1

2
ε0|∇ξ|2 + p · ∇ξ

}
dv

−
∫
∂Bd

ξQds−
∫
∂Bt

t · uds,
(A3)

where W (∇u,∇∇u,p) is the internal energy function,
ε0 is the vacuum permittivity, p is the polarization, Q is
the surface charge density, and t is the applied dead load.

The Euler-Lagrange equations and the natural bound-
ary conditions can be determined by minimizing the total
potential energy:

min
∀(u,p,ξ)∈S

F [u,p, ξ], (A4)

where the admissible space S for (u,p, ξ) is given by

S =

{
Eq.(A1), Eq.(A2),

∫
B
|∇u|2, |∇∇u|2, |p|2, |∇ξ|2 < +∞

}
.

The minimization problem leads to the zero first vari-
ation δF = 0, namely

δF [u,p, ξ] :=
d

dτ
F [u+ τu1,p+ τp1, ξ + τξ1]|τ=0 = 0,

(A5)
where τ ∈ R, and u1, p1, ξ1 are the admissible variations
of u, p, ξ, respectively. The variations (u1,p1, ξ1) have
to satisfy the following conditions

u1 = 0, n · (∇u1)n = 0 on ∂Bu, (A6a)

ξ1 = 0 on ∂Bξ, (A6b)

and{∫
B
|∇u1|2, |∇∇u1|2, |p1|2, |∇ξ1|2 < +∞

}
. (A6c)
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Direct consequences of the zero first variation (A5),
together with (A6), are

∇ · (TI −∇ · TII) = 0 in B,
Wp +∇ξ = 0 in B,

∇ · (−ε0∇ξ + p) = 0 in B,
(TI −∇ · TII)n−∇ · ([TII ]n) = t on ∂Bt,

[TII ]n = 0 on ∂Bt,
(−ε0∇ξ + p) · n = Q on ∂Bd.

(A7)

Here “∇·” is the divergence operator and Wp = ∂W
∂p .

TI is the second-order stress tensor and TII is the third-
order stress tensor, namely

TI =
∂W

∂∇u
, TII =

∂W

∂∇∇u
. (A8)

With a linearized setting, the internal energy function
W (∇u,∇∇u,p) can be written as [18, 43]

W = W elast+
1

2
p ·ap+p ·dI2 +p ·fI3 +

1

2
I3 ·gI3, (A9)

where W elast is the purely elastic energy function, I2 =
I2(∇u) is a second-order tensor related to the strain, and
I3 = I3(∇∇u) is a third-order tensor related to the strain
gradient. Material parameter a corresponds to the recip-
rocal dielectric susceptibility, other parameters d, f , and
g are related to the piezoelectric, flexoelectric, and strain
gradient effects, respectively.

2. Large deflection of thin films

Consider a flat disc thin film with radius Rp and thick-
ness h. The domain occupied by the flat film is

B = {(ρ, θ, z) ∈ R3 : 0 6 ρ 6 Rp, 0 6 |θ| 6 π, 0 6 z 6 h},
(A10)

where (ρ, θ, z) are cylindrical coordinates with unit basis

(ρ̂, θ̂, ẑ). The material point in cylindrical coordinates is
x = ρρ̂+ zẑ ∈ B. The middle surface of the disc film is

S = {x ∈ B : z = h/2} (A11)

while the upper and lower surfaces are

Su = {x ∈ B : z = 0} and Sl = {x ∈ B : z = h}.
(A12)

In addition, the surrounding surface is represented by
Ss = ∂B \ (Su ∪ Sl).

Consider the deformation of the middle surface S. A
material point x ∈ S is deformed to a spatial point y =
x + u ∈ R3. The displacement vector u : S → R3 is
assumed as

u = us + u⊥, (A13a)

where us is the in-plane displacement

us = uρ(ρ, θ)ρ̂+ uθ(ρ, θ)θ̂ (A13b)

and u⊥ is the out-of-plane deflection

u⊥ = ζ(ρ, θ)ẑ. (A13c)

The in-plane strain tensor of the thin film is defined as
[44]

Es =
1

2

(
∇sus + (∇sus)T +∇sζ ⊗∇sζ

)
, (A14a)

where ∇s = ρ̂∂ρ + θ̂ρ−1∂θ is the two-dimensional (in-
plane) gradient operator. By (A13b) and (A13c), the
matrix form of Es in (A14a) is

Es :=

(
Eρρ Eρθ
Eθρ Eθθ

)
, (A14b)

where the entries are

Eρρ = ∂ρuρ +
1

2
(∂ρζ)2, (A14c)

Eθθ =
uρ
ρ

+
∂θuθ
ρ

+
1

2

(∂θζ)2

ρ2
, (A14d)

Eρθ = Eθρ =
1

2

(
∂θuρ
ρ
− uθ

ρ
+ ∂ρuθ +

∂ρζ∂θζ

ρ

)
.

(A14e)

The (linearized) curvature tensor of the thin film is

κ = −∇s∇sζ(ρ, θ) :=

(
κρρ κρθ
κθρ κθθ

)
, (A15a)

where the entries are

κρρ = −∂ρρζ, (A15b)

κθθ = −∂ρζ
ρ
− ∂θθζ

ρ2
, (A15c)

κρθ = κθρ = −∂ρθζ
ρ

+
∂θζ

ρ2
. (A15d)

3. Maxwell’s equations and electric boundary
conditions of thin films

We only consider the electric quantities in the thickness
direction, namely

p = p(z)ẑ, −∇ξ = −ẑ∂zξ = e(z)ẑ. (A16)

It follows from (A16) that the Maxwell equation (A7)3
becomes ∂z(ε0e + p) = 0, 0 < z < h. Since the (free)
surface charge Q = 0 is zero here, the boundary condition
(A7)6 reads ε0e+p = 0 at z = 0, h. The reduced Maxwell
equation and boundary condition lead to the relation

e(z) = −p(z)/ε0. (A17)

For thin film problems, the electric field e(z) and the
polarization p(z) can be assumed approximately constant

in the thickness direction, i.e., e =
∫ h

0
e(z)dz/h and p =∫ h

0
p(z)dz/h.
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4. Energy formulation of thin films

The internal energy function (A9) can be recast as

W = W elast +
1

2
ap2 + pdsI2s + pfsI3s +

1

2
gI23s (A18)

for thin film problems. Here we choose the parameters
as I2s = tr(Es) and I3s = tr(κ), that is, the trace of
the in-plane strain tensor Es in (A14) and the trace
of the curvature tensor κ in (A15). The parameter a
corresponding to the reciprocal dielectric susceptibility
is a = 1/(ε − ε0), ε0 is the vacuum permittivity and ε
is the material permittivity. Other parameters ds, fs,
and g are related to the piezoelectric, flexoelectric, and
strain gradient effects, respectively.

It follows from (A7)2, (A16) and (A18) that

ap+ dsI2s + fsI3s − e = 0. (A19)

By (A17) and the parameters I2s = tr(Es) and I3s =
tr(κ), we further have

p = −a∗ [dstr(Es) + fstr(κ)] , (A20)

where a∗ = 1/(a + ε−1
0 ). Typically, (A20) shows that

the polarization is proportional to the mean curvature
1
2 tr(κ) in the case of non-piezoelectricity ds = 0. Such
a relation between the polarization and curvature is
reported in a crystalline membrane [45] and in the
biological context [15, 46].

For a thin dielectric disk, the thickness h is much
smaller than the in-plane dimensions, we recast the elas-
tic energy in (A3) as [44]∫
B
W elastdv =

1

2

∫
S
Es · CsEsds+

1

2

∫
S
Cb[tr(κ)]2ds.

(A21)
The first term on the right-hand side is the stretching

energy while the second term is the bending energy.
Here Es is the in-plane strain tensor (A14), κ is the
curvature tensor (A15), Cs is the in-plane stiffness
tensor, and Cb is the bending stiffness.

The potential work associated with the applied dead
load in (A3) can be approximately as

−
∫
∂Bt

t · uds ≈ − lim
∆s→0

(t · u)∆s = −Fd, (A22)

where F is the vertical point force acting on the center
of the disc film and moving at a vertical distance d.

By Eq.(A18)-Eq.(A22), the total energy Eq.(A3) spe-
cialized to the film problem becomes

F [u] =
1

2

∫
S
Wsds− Fd, (A23)

where the two-dimensional internal energy function Ws

is

Ws = Es · CsEs + (Ks +K∗s )[tr(κ)]2. (A24)

Here the coefficients Ks and K∗s are

Ks = Cb +hg−ha∗f2
s , K∗s = −ha∗f2

s (η2 + 2η) (A25)

with the ratio η = dstr(Es)/[fstr(κ)]. Typically, in the
case of non-piezoelectricity, ds = 0, the ratio η and the
coefficient K∗s in Eq.(A25) are zero.

5. Units analysis

Here we would like to briefly discuss the units of sym-
bols in the three-dimensional energy (A3) and (A9), and
in the two-dimensional energy (A21), (A24), and (A25).
We list the relation

1 J = 1 N ·m = 1 C · V.

In SI base units and the Named SI derived units, J
represents the Joule (energy), N represents the Newton
(force), m is the Metre (length), C is the Coulomb (elec-
tric charge), V is the Volt (voltage), etc. In these (three-
and two-dimensional) symbols, we simply write

p, p→ C

m2
, e, e→ V

m
, ε0, ε→

C

V ·m
,

W elast, p · ap, p · f∇∇u, ∇∇u · g∇∇u→ N ·m
m3

,

ap2, pdstr(Es), pfstr(κ), g[tr(κ)]2 → N ·m
m3

,

∇u→ 1, ∇∇u, tr(κ)→ 1

m
,

a, a→ N ·m2

C2
=
V ·m
C

, a∗ → C

V ·m
,

ds →
V

m
, f , fs →

N ·m
C

=
C · V
C

= V,

g, g → N, Cs →
N

m
, Cb → N ·m, Ks → N ·m.

6. Ansatz of the cone-like shape

As shown in Fig. 2 in the main paper, the initially flat
sheet deforms into a cone-like shape and the surface is in
partial contact with the supporting hoop. To model the
developable cone, the middle surface S of the disc film in
(A11) is divided into two parts:

Sc = {x ∈ S : 0 6 ρ 6 Rc}, Sd = S \ Sc. (A26)

The core part Sc is the region near the tip of the de-
velopable cone and Rc can be interpreted as the core size
[5, 6]. The core part of a crumpling sheet is analogous
to the core of a dislocation [3, 42]. In addition, the outer
region of the developable cone is represented by Sd.
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To model the conical shape of a crumpling sheet,
in cylindrical coordinates, the out-of-plane deflection in
(A13c) is assumed as follows:

ζ(ρ, θ) =

{
ζ∗(ρ, θ) on Sc,
ρψ(θ) on Sd.

(A27)

Here ψ(θ) is the tangent of the slope angle of the sheet
with θ the azimuthal angle, i.e. ψ(θ) = d/R if there is
no crumpling and the sheet always contact the support-
ing hoop. The variation of the local curvature along the
developable cone (d-cone) separates the d-cone into two
parts [3, 4]: the concave part (−θ1 6 θ 6 θ1) and the
convex part (θ1 6 θ 6 2π − θ1). In the convex part,
the surface that fully contacts the supporting hoop and
forms a near-perfect circular cone except near its tip or
core; while in the concave part the d-cone loses contact
with the supporting hoop. Cerda and Mahadevan [3]
predicted the angle (θ1) to be: θ1 ≈ 70◦ while θ1 ≈ 60◦

was estimated by Chaieb et al. [4]. Here we adopt the
model by Cerda and Mahadevan [3], then ψ(θ) in (A27)
is written as

ψ(θ) = α1ψ
∗(θ). (A28)

Here α1 is the ratio

α1 =
d

R
(A29)

of the tip deflection d to the radius R of the supporting
hoop. And the function ψ∗(θ) is

ψ∗(θ) = H∗(|θ| − θ1) + ψ̃(θ)H∗(θ1 − |θ|), (A30)

where H∗ is the Heaviside function, and

ψ̃(θ) =
sin θ1 cosαθ − α sinαθ1 cos θ

sin θ1 cosαθ1 − α sinαθ1 cos θ1
. (A31)

Here α and θ1 are two constants related to the shape of
crumpling sheets. As reported: α ≈ 3.8, θ1 ≈ 1.21 rad (≈
70◦) in [3]. Further, the ratio α2 = Rc/R defines an-
other dimensionless number. The quantities (d,Rc) and
their dimensionless proxies (α1, α2) are the two unknown
quantities which are determined by the variational prin-
ciple described earlier.

a. Strain and curvature tensors

The curvature of the core part is substantially large
and there exist large strain and strain gradient, especially
near the tip. Based on the observed deformed shape, for
small deformation, the order of the strain tensor Es and
the order of the curvature tensor κ in the cone part Sc
are approximated to [5, 6]

|Es| ∼
(
α1
Rc
R

)2

, |κ| ∼ α1

Rc
on Sc. (A32)

Here the norm of a tensor is defined as |Es| =
√
Es ·Es.

Since only the orders of the two physical quantities
(|Es| and |κ|) are given approximately in (A32), their
exact magnitudes are still unknown. To amend these
simplifications, we introduce two parameters λE , λκ ∈ R
that correspond to the purely mechanical behavior of
a crumpling sheet. And the magnitude of the strain

tensor is approximately |Es| ≈ λE
(
α1

Rc

R

)2
while the

magnitude of the curvature tensor is approximately
|κ| ≈ λκ α1

Rc
. In the example of a crumpling steel sheet in

Fig. A1, these two parameters are calculated as λE = 5.5
and λκ = 5, and our numerical results agree well with
the experimental data at small deformation. Some other
values of λE and λκ, 1 < λE , λκ < 10, are also studied
and the numerical results qualitatively agree with the ex-
perimental data but some quantitative discrepancy exist.

By (A15), (A27) and (A28), we can have the cur-
vature tensor κ in the outer region Sd. In addition,
the condition of inextensibility requires that the stretch-
ing strains vanish in this region at moderate deflections
[3, 44]. Thus, in the outer region Sd of the developable
cone, we have

Es = 0, κ :=

0 0

0 −α1

ρ
Ψ∗(θ)

 on Sd. (A33)

where Ψ∗(θ) = ∂θθψ
∗(θ) + ψ∗(θ).

b. Energy of the core and outer parts

By (A32) and (A23)-(A25), the energy stored in the
core part Sc is∫
Sc

Wsds =
1

2
πR2

c

{
Csλ

2
E

(
α1
Rc
R

)4

+ (Ks +K∗s )λ2
κ

α2
1

R2
c

}
.

(A34)
The coefficients Ks and K∗s are defined in (A25), and η

in K∗s here is η = η̄α1

(
Rc

R

)3
with η̄ = RdsλE/(fsλκ).

By (A33) and (A23)-(A25), the energy stored in the
outer part Sd is∫

Sd

Wsds =
1

2
Ksα

2
1

(
ln
Rp
Rc

)∫ π

−π
[Ψ∗(θ)]2dθ. (A35)

Appendix B: Scaling of the theoretical model

The non-dimensional variables are defined by

α1 =
d

R
, α2 =

Rc
R
. (B.1)

Here R is the radius of the supporting hoop, d is
the unknown deflection of the disc center, and Rc is
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the unknown radius of the core part. Also, other non-
dimensional quantities are

R̄p =
Rp
R
, h̄ =

h

R
, ρ̄ =

ρ

R
, θ̄ =

θ

π
, (B.2)



κ̄ = κ
/ 1

h
, ā = a

/ 1

ε0
, ā∗ = a∗/ε0,

f̄s = fs

/√ 1

ε0

Cb
h
, ḡ = g

/Cb
h
,

K̄s = Ks/Cb =
(
Cb + hg − ha∗f2

s

)/
Cb,

C̄s = Cs

/Cb
h2
, W̄s = Ws

/Cb
h2
,

ha∗f2
s

/
Cb = ā∗f̄2

s ,

K̄∗s = −ha∗f2
s (η2 + 2η)

/
Cb = −ā∗f̄2

s (η̄2α2
1α

6
2 + 2η̄α1α

3
2).

(B.3)

1. Dimensionless energy

By using the non-dimensional quantities (B.1)−(B.3),
the dimensionless energy of the core part (A34) becomes∫
Sc

Wsds
/(1

2
πR2Cb

h2

)
= C̄sλ

2
Eα

4
1α

6
2 + K̄sh̄

2λ2
κα

2
1 − ā∗f̄2

s h̄
2λ2
κ(η̄2α4

1α
6
2 + 2η̄α3

1α
3
2)

(B.4)
and the dimensionless energy of the outer region (A35)
reads∫
Sd

Wsds
/(1

2
πR2Cb

h2

)
= I1K̄sh̄

2α2
1 ln(R̄pα

−1
2 ), (B.5)

where I1 =
∫ 1

−1
[Ψ∗(πθ̄)]2dθ̄. The dimensionless energy

associated with the external force (A22) is

−FRα1

/(1

2
πR2Cb

h2

)
= −F̄α1. (B.6)

Finally, the dimensionless total energy reads

F̄ [α1, α2] = F [α1, α2]
/(1

2
πR2Cb

h2

)
= C̄sλ

2
Eα

4
1α

6
2 + K̄sh̄

2
[
λ2
κ + I1 ln(R̄pα

−1
2 )
]
α2

1

− F̄α1 − ā∗f̄2
s h̄

2λ2
κ(η̄2α4

1α
6
2 + 2η̄α3

1α
3
2).

(B.7)

2. The governing equations

The first variation of the total energy (B.7) now reads
δF̄ [α1, α2] = 0, yields

∂F̄ [α1, α2]

∂α1
= 0,

∂F̄ [α1, α2]

∂α2
= 0. (B.8)

Solution of the two algebraic equations in (B.8) gives
the center deflection α1 = d/R and the core radius
α2 = Rc/R. Thus the curvature of each part (the core
part Sc and the outer part Sd) can be obtained by using
(A32) and (A33). After obtaining the curvature, we can
have the generated polarization p through the relation
(A20). We can define the average polarization through
paver =

(∫
S pds

)
/(πR2

p). And by using the relation
(A17), the average electric field is −paver/ε0 and the
average voltage difference between the upper and lower
surfaces of the crumpling thin film is determined as
|∆ξ| = |hpaver/ε0|.

Appendix C: Validation of the theoretical model

1. The purely mechanical crumpling

Before interrogating our model for insights into crum-
pling induced energy harvesting, we believe it is worth-
while to validate its prediction against established lit-
erature for the purely mechanical case. In our model,
the dimensionless tip deflection α1 = d/R and the ra-
dius of core part Rc = Rα2 are calculated by solving the
two algebraic equations in (B.8). The geometrical and
material parameters are set to be the same as those re-
ported in [5], thin sheets of steel with bending stiffness
7.76 × 10−3Nm and thickness h = 0.075mm. Excellent
agreement between our numerical results and the experi-
mental data in [5] is found for small deformation (circles
in Fig. A1). For relatively large deformation (rhombi in
Fig. S1(a) with α1 > 0.1), the agreement is not perfect
but accounting for that is not the focus of this work.
Our central goal is to achieve sufficient accuracy (and
correct qualitative behavior) to account for piezoelectric
and flexoelectric response of crumpling sheets, which we
discuss in the main paper.

2. The generated voltage of crumpling sheets on
different supporting hoops

In a recent work, Kodali et al. [37] experimented
to measure the open circuit voltage and the short
circuit current of a crumpling circular composite sheet.
The composite sheet was made of a 52µm thick poly
vinyldenefluoride (PVDF)—a known piezoelectric
polymer—with electrodes on both sides and bonded to
a soft cloth-plaster. The circular sheet was placed on a
supporting hoop and then a concentrated vertical force
was applied at the sheet center to form the crumpling
shape. For different radii of the supporting hoop
R = (12.5, 20, 25)mm, as shown in Fig. A2, roughly 0.06
V was measured by pushing the center of the circular
sheet (with radius 50mm) into a supporting hoop up to
the maximum depth (≈ 4mm).
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(a)

(b)

FIG. A1. Comparison of our model with the experimental
data reported in [5] for the purely mechanical problem of a
crumpling sheet. (a) The dimensionless tip deflection α1 =
d/R vs the radius of core part Rc = Rα2 of a crumpling sheet.
(b) The dimensionless tip deflection α1 vs the vertical force
F applied on the center of a thin sheet of steel. The vertical
force is approximately linear with the tip deflection for small
deformation. This linear relation is analogous to the relation
between the center load and the maximum deflection of a
simply supported beam. Note the notation difference that, in
[5], the tip deflection (horizontal axis) is denoted by ε = d/R.

In our theoretical model, the flexoelectric con-
stant is chosen as fs = −179Nm/C [21]. By the
scaling analysis in (B.3), the length scale related
to the flexoelectricity can be approximately cal-
culated as: ∼ |fs|/

√
E/ε0. With the parameters

|fs| = 179Nm/C, ε0 = 8.85 × 10−12F/m, and Young’s
modulus E = 5GPa in the experiment [37], we have

|fs|/
√
E/ε0 = 7.53 × 10−9m ∼ 10nm. Thus the length

scale of flexoelectricity is in nanoscale. We can also
simply study the flexoelectric effect by checking the
coefficient Ks in (A25) as follows: the ratio of the bend-
ing stiffness to the flexoelectric part, i.e., Cb/(ha

∗f2
s ).

In the microscale h ∼ 10−6m, the bending stiffness
Cb ∼ Eh3 ∼ 5 × 10−9Nm, and the flexoelectric part
ha∗f2

s ∼ 10−6×8.85×10−12×1792Nm ∼ 2.8×10−13Nm,
thus Cb is 104 times higher than the flexoelectric part
at the microscale. In the nanoscale h ∼ 10−9m,
Cb ∼ Eh3 ∼ 5×10−18Nm, and ha∗f2

s ∼ 2.8×10−16Nm,
the flexoelectric part is 102 times higher than Cb
at the nanoscale, which cannot be omitted. The
nonlocal elastic constant g related to the material
length l0 as g = El20, where E is Young’s modulus of
the composite sheet and l0 is the radius of gyration
of PVDF. The magnitude of l0 in PVDF is about
10nm to 100nm, and Young’s modulus of PVDF is
E = 5GPa. Thus, g = El20 ∼ 109 · 10−16N = 10−7N ,
which is the same of order of g for PVDF used in the
work [21]. In the numerical calculation, we choose
l0 = 20nm. The sheet thickness used in the exper-
iment [37] is h = 52µm ∼ 10−5m and the bending
stiffness Cb ∼ Eh3 ∼ 109 · 10−15Nm = 10−6Nm. Since
Cb ∼ 10−6Nm � gh ∼ 10−7 · 10−5Nm = 10−12Nm in
(A25), the effect of the nonlocal elastic constant g on the
deformation is negligible. We also have confirmed this
negligible effect by setting g = 0 in an extra numerical
calculations. The geometrical and material parameters
of a circular composite sheet in the crumpling exper-
iment [37] are: Rp = 50mm, h = 52µm, E = 5GPa,
d31 = 5pC/N , and ε = 88.5 × 10−12F/m. Using our
model, we partition the total voltage obtained into that
due to flexoelectricity (FL voltage) and piezoelectricity
(PZ voltage).

In Fig. A2, there are three different supporting hoops,
R = (12.5, 20, 25)mm, and the voltage is measured when
the tip deflection d increases to 4mm in each supporting
hoop. The measured voltage can be found in Fig. 2(g)
in [37]. With the ratio α1 = d/R, the experiments with
three different supporting hoops correspond to, respec-
tively, α1 = 0.32, 0.20, 0.16. In Fig. A2, at a fixed tip
deflection 4mm, both the theoretical and experimental
results show that the generated voltage of crumpling
sheets gradually decreases with the increase of the radius
R of the supporting hoop. Furthermore, the generated
voltage of the crumpling sheet decreases with the
decrease of the ratio α1. In the limiting case α1 → 0, the
generated voltage from the trend shown in Fig. A2 would
decrease to zero. The prediction of the limiting case can
be understood as follows: A sufficiently large hoop radius
R corresponds to a large circular sheet (Rp > R), and a
small deflection d cannot make the large sheet crumpled
when the supporting hoop is also sufficiently large;
therefore, a small deflected sheet (α1 → 0) with small
strain and strain gradient can only have a diminutive
electromechanical coupling and generate a negligible
voltage. From the above discussion, we find that the
generated voltage decreases as the decrease of the ratio
α1. In other words, a higher voltage corresponds to
a larger ratio α1, and one can obtain a high voltage
by increasing the tip deflection d and making a more
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FIG. A2. Comparisons of the generated voltage of a crum-
pling sheet predicted by our model with the experimental data
by Kodali et al. [37] with different supporting hoops. In our
model, we consider both the contributions of piezoelectricity
and flexoelectricity while the experiments can only calibrate
the total voltage on the upper and lower surfaces of a crum-
pling sheet.

crumpled sheet. This prediction is also verified both the-
oretically and experimentally in Fig. 3 in the main paper.

It is evident that the experimental data are lower

than the theoretical results in Fig. A2. One cause of
the discrepancy is the presence of the load impedance in
experiments and the measured voltage depends on the
velocity of the actuator. However, the experimental data
in Fig. A2 correspond to a actuator velocity 0.2mm/s
and the load impedance makes the measured voltage
much lower than the real generated one as well as the
theoretical results. In figure 2(d) in [37], for example, the
measure voltage at d = 4mm is about 0.15V when the ac-
tuator velocity is 2mm/s, which is much higher than the
voltage 0.06V that is calibrated at a velocity 0.2mm/s.
Although there is some quantitative discrepancy between
the theoretical and experimental results in Fig. A2 due
to the existence of impedance in calibration, there is
no qualitative change, and the quantitative departure
from the experimental results is insignificant from an
engineering viewpoint (and given the other uncertain-
ties in material properties used in our theoretical model).
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