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We present a joint experiment-theory study on the role of fluorine adatoms in spin and momentum
scattering of charge carriers in dilute fluorinated graphene and bilayer graphene. The experimental
spin-flip and momentum scattering rates and their dependence on the density of fluorine and carrier
doping are obtained through weak localization and conductivity measurements, respectively, and
suggest the role of fluorine as resonant magnetic impurities. For the estimated fluorine concen-
tration of a few 100 ppm, the observed spin lifetimes are in the range of 1-10 ps. Theoretically,
we established tight-binding electronic structures of fluorinated graphene and bilayer graphene by
fitting to density functional supercell calculations and performed a comprehensive analysis of the
spin-flip and momentum scattering rates within the same devices, aiming to develop a consistent de-
scription of both scattering channels. We find that resonant scattering in graphene is very sensitive
to the precise position of the resonance level, as well as to the magnitude of the exchange coupling
between itinerant carriers and localized spins. The experimental data point to the presence of weak
spin-flip scatterers that, at the same time, relax the electron momentum strongly, nearly preserving
the electron-hole symmetry. Such scatterers would exhibit resonance energies much closer to the
neutrality point than what density functional theory predicts in the dilute limit. The inclusion
of a magnetic moment on fluorine adatoms allowed us to qualitatively capture the carrier density
dependence of the experimental rates but predicts a greater (weaker) spin (momentum) relaxation
rate than the measurements. We discuss possible scenarios that may be responsible for the discrep-
ancies. Our systematic study exposes the complexities involved in accurately capturing the behavior
of adatoms on graphene.

PACS numbers: 72.80.Vp,72.10.Fk

I. INTRODUCTION

Surface functionalization, which exploits the all-
surface nature of two-dimensional atomically thin layers,
is a powerful tool to engineer desired properties absent
in pristine materials. Adatoms and molecular groups on
graphene, for example, are shown to induce a band gap,
modify its optical emission and enhance its solubility in
aqueous solution1–3.

Chemisorbed adatoms, such as H, introduce isolated
magnetic moments4,5 and strong local spin-orbit cou-
pling (SOC) to graphene6–14. Owing to the gapless Dirac
bands, adatoms on graphene and bilayer graphene can
form sharp impurity states situated close to the charge
neutrality point. As a result, the interaction between
the impurities and the mobile carriers is resonantly en-
hanced15–18. The impurity’s resonant nature depends
on the valence orbitals and the adsorption site of the
adatom10,19–22. We adopt the terminology that resonant
impurities are to be distinguished from strong midgap
scatterers which are described by a deep potential well
of finite radius15,16,23 and therefore influence the charge
scattering sector much more than simple vacancies22.
Both vacancies and strong midgap scatterers induce res-
onance levels directly at the charge neutrality point.

Due to the aforementioned resonant enhancement,
adatom-induced magnetic moments on graphene can be
a very effective source of spin-flip scattering, the unin-

tentional presence of which provides a possible explana-
tion for ultra-fast spin relaxation in pristine graphene
devices24,25. Local SOC induced by adatoms can also be
a source for spin relaxation and manipulation26. Engi-
neering adatoms thus provides a potential route to in-
still magnetic and spintronic functionalities in graphene.
Here, fluorination provides an attractive opportunity.
For example, first-principles calculations predict a siz-
able local SOC of about 10 meV in dilute fluorinated
graphene12.

Experimentally, the fluorination of graphene is rel-
atively straightforward. Heavily fluorinated graphene
exhibits a large band gap27–30 and is spin-half para-
magnetic31. In the dilute limit, fluorination on sin-
gle layer and bilayer graphene (SLG and BLG) induces
strong midgap state scattering in the measured conduc-
tivity32–34, which are electron-hole symmetric. These
data are reproduced in Figure 7 in Appendix A. Us-
ing weak localization (WL) as a probe, previous experi-
ments by some of us also uncovered an anomalous large
dephasing rate τ−1

φ in fluorinated SLG32. This obser-
vation points to the existence of fluorine-induced mag-
netic moments, similar to hydrogenated graphene35, al-
though a quantitative and mechanistic assessment has
yet to be made. Unlike hydrogen4,36, the formation of a
magnetic moment in fluorinated graphene remains incon-
clusive among first-principle studies37,38 presumably due
to the self-interaction error in the exchange-correlation
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functionals39,40. Furthermore, both fluorine concentra-
tion and carrier doping41 can play a role, making the
magnetic properties of fluorine adatoms a complex issue
to address.

In this joint experiment-theory study we attempted to
provide a quantitative model to simultaneously capture
the effect of fluorine adatoms on both spin and charge
scattering. We are motivated by the availability of a
complete set of conductivity and WL measurements on
fluorinated SLG and BLG devices. These come from our
previous studies32–34 and new data reported in Sec. II.
Theoretical investigations are built upon our previous
calculations discussing the spin24,25 and momentum22 re-
laxations of resonant impurities in graphene. Fluorinated
SLG and BLG are described in a tight-binding (TB)
model motivated by density functional theory (DFT) cal-
culations.

Our systematic comparison of measurement and mod-
eling revealed several insights. The theory and experi-
ment consistently describe the carrier density dependence
of the scattering rates, supporting the resonant scatter-
ing mechanism for both spin and momentum relaxation.
But we also find considerable quantitative differences,
with our theory finding a greater spin relaxation rate
than the experiment and underestimating the momen-
tum relaxation rate. The high experimental momentum
relaxation rate is consistent with fluorine being a strong
midgap scatterer with electron-hole symmetry while our
DFT results on large supercells of fluorinated graphene
show a broad resonance away from the charge neutrality
point. In plain terms, the DFT induced exchange cou-
pling is much greater, while the position of the resonance
level far off, than what would be needed to account for
the measured data. The difficulty to capture the experi-
mental observations has motivated us to examine several
potentially relevant scenarios. In particular, the varying
local curvature of the graphene sheet may play an im-
portant role, the effect of which on the electronic struc-
ture and magnetic screening of fluorine should be care-
fully examined. Similarly, we see a need to investigate
the magnetic and momentum scattering of adatom clus-
ters, as they could produce resonances close to the charge
neutrality point and thus a better match to the strong
midgap scatterer model than individual adatoms. In ad-
dition, it is worthwhile to reexamine whether it is appro-
priate to use an independent scattering approximation
for weakly resonant states such as fluorine in our DFT
calculations. We hope that our work stimulates further
studies in these directions.

The paper is organized as follows. Section II describes
the new WL data in fluorinated BLG, while Sec. III in-
troduces the basic theory for the DFT and TB model of
fluorinated SLG and BLG and the calculation of the spin
and momentum relaxation rates. Results, comparison
to experiments and discussion are presented in Sec. IV.
Here, we point out the major differences between model
and experiment and speculate on possible reasons. We
conclude in Sec. V. Technical details and supplemented

studies are presented in the Appendices.

II. EXPERIMENT

The recipe used for fluorination and device fabrica-
tion and the characteristics of fluorinated SLG and BLG
devices were described in previous studies32–34. Refer-
ences 32 and 34 found that a dilute fluorine adatom
concentration gives rise to a momentum relaxation of
charge carriers consistent with strong midgap scatter-
ing15,16,34 which is characterized by resonance levels at
the zero energy, i.e. the charge neutrality point, and
consequently electron-hole symmetric conductivity σ, in
agreement with experimental observations.

Here, we first describe new data on the density-
dependent dephasing rate τ−1

φ (n) in fluorinated BLG.

Measurements of σ(n) and τ−1
φ (n) in the same devices en-

able us to investigate the effect of a single fluorine adatom
on both charge and spin relaxation quantitatively in a
self-consistent manner and in both SLG and BLG. This
is the central objective of this work.

Fluorine concentrations of nF = 2.2, 3.8, and 4.4 ×
1012 cm−2 were obtained for the BLG devices W38, W02,
and W03, respectively, using Raman spectroscopy and
conductivity measurements in Ref. 34. We obtain τ−1

φ (n)

using magneto-conductance measurements σs(B) simi-
lar to that described in Ref. 32 in the carrier density
regime of n > nF in each device. The WL expression
for BLG42 accurately describes our magneto-conductance
data, from which we determine the phase decoherence
length lφ and subsequently the dephasing rate τ−1

φ (see

Appendix A). We obtained τ−1
φ (n) over a range of carrier

densities in the 1012-1013 cm−2 regime at a fixed temper-
ature T = 1.7 K. We have also obtained through extrap-
olation the T = 0 limit τ−1

sat (n) in W03 by a temperature
dependence study (see Figure 8 in Appendix A).

Figure 1 plots τ−1
φ (n) of all BLG devices at T = 1.7 K.

The magnitude of τ−1
φ ranges from 0.1 to 1 ps−1 which is

more than one order of magnitude larger than what is re-
ported in the literature for pristine BLG42. Figure 1 also
shows that τ−1

φ is approximately electron-hole symmet-

ric, as is the conductivity σ(n) itself34. Furthermore, τ−1
φ

scales well with nF and is well described by an empirical
power law of n−1. Following our earlier studies on fluori-
nated SLG, we tentatively attribute the enhanced τ−1

φ to
spin-flip scatterings caused by fluorine-induced magnetic
moments.

Figure 2 plots the ratio of the dephasing rate over
the momentum scattering rate τ−1

φ /τ−1
m as a function

of carrier density n, combining current and prior data
from fluorinated SLG and BLG samples32,34. Here,
τ−1
m = ne2/σm? where m? is the effective mass of bi-

layer graphene (see Fig. 9 in Appendix A). The collapse
of all BLG data onto a single line, independent of nF,
strongly indicates that both τ−1

φ and τ−1
m originate from

the fluorine adatoms. From the SLG trend line to the
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FIG. 1. Density-dependent dephasing rates vs. carrier den-
sity τ−1

φ (n) on a double-log plot in fluorinated BLG de-

vices W03 (red, nF = 4.4 × 1012 cm−2), W02 (blue, nF =
3.8 × 1012 cm−2), and W38 (green, nF = 2.2 × 1012 cm−2) at
T = 1.7 K. Square symbols are for electrons and triangles are
for holes. The gray dashed line corresponds to a power law
dependence of n−1.

BLG trend line, the ratio τ−1
φ /τ−1

m increases by only a
factor of 2, in spite of a nF change of close to a factor of
10. These observations have inspired us to seek a unified
theoretical framework that can capture the effects of flu-
orine adatoms in both charge and spin scattering sectors,
and on both SLG and BLG in a self-consistent manner.

III. THEORY

We model a single fluorine adatom in the TB approx-
imation as an Anderson-like impurity—with an energy
offset ε of the adatom level compared to the carbon pz or-
bitals, and a hybridization ω. Moreover, we assume that
the adatom carries an effective local magnetic moment
that couples with itinerant spins via an on-site exchange
interaction parameterized by coupling J . The spin and
momentum relaxation rates τ−1

s and τ−1
m , respectively,

are obtained through the fully analytical T-matrix ap-
proach24,25. We use the generalized Fermi-golden rule
based on the T-matrix, and broaden the final rates with
a Gaussian with zero mean and width Σeh. This last step
accounts for electron-hole puddles and other unknown
sample imperfections.

Two different adsorption positions, dimer (d) and
nondimer (nd), are taken into account for BLG (see Ap-
pendices B and C for more details). We assume that
those positions on the top layer of BLG are equally pop-
ulated during the process of fluorination. The model TB
parameters are obtained from fitting the spin unpolarized
electronic band structure computed within DFT, see Ap-
pendix B. The fits displayed in Figs. 10 and 11 in the ap-
pendix C, show good qualitative and quantitative agree-

FIG. 2. Experimental scattering rate ratio τ−1
φ /τ−1

m versus
carrier density n in fluorinated SLG and BLG. Solid orange
triangles correspond to a SLG device (sample A) reported in
Ref. 32 with nF = 5 × 1011 cm−2. This data was taken on
the hole side. The BLG data, on the electron side, are shown
in blue (W02), green (W38), and red (W03) squares. Open
symbols indicate T = 1.7 K, while solid symbols show the
T = 0 extrapolation τ−1

sat . The gray dashed and dotted lines
correspond to a power law dependence of n−1, differing by a
factor of two.

ments between the first-principle supercell calculations
and the effective TB model. The extracted TB parame-
ters for fluorine are summarized in Table I of Appendix C.
For the sake of compactness and later discussions we also
provided there the corresponding hydrogen adatom data.

Based on the fitted orbital parameters describing the
adatom impurities, we compute the perturbed density
of states (DOS) for SLG and BLG graphene with flu-
orine and hydrogen adatoms according to Eq. (C9) in
Appendix C. Those perturbed DOS data are displayed
in a comparative way in Fig. 3. We see that fluorine
generally induces spectrally broad resonances when com-
pared to the hydrogen atom: Fluorine resonances lie at
about Eres ≈ −250 meV, significantly away from the
charge neutrality point. Contrary, the resonance levels
of strong resonant impurity like hydrogen lie very close
to the charge neutrality point at about Eres ≈ 20 meV.
The exact values for all considered cases are specified
in the Fig. 3. As a consequence of the relatively large
negative resonance offsets for fluorine, the correspond-
ing calculated (spin and momentum) relaxation rates are
expected to dominate on the hole side22. However, the
measured σ and τ−1

φ are roughly electron-hole symmet-
ric, what would favor hydrogen-like impurities. Explicit
data on the relaxation rates are given in the following
Sec. IV.

Since DFT results are not conclusive37,38 on whether
fluorine carries a magnetic moment or not the exchange
coupling J on fluorine is set to a value that gives the
best agreement between the TB model and experiment.
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FIG. 3. Perturbed DOS of fluorinated (blue solid) and hy-
drogenated (red dashed) graphene structures: panel (a) cor-
responds to SLG with impurity concentration (per carbon
atom) η = 400 ppm, and panels (b) and (c) to BLG with
the d and nd adatom absorption positions, respectively, both
with concentration η = 200 ppm. The high concentration val-
ues are chosen for better visibility. The black dashed lines
on the background show the unperturbed DOS. Inspecting
Figs. (a)-(c) one observes broad (200-300 meV) resonance lev-
els in fluorinated SLG and BLG with ESLG

res = −262 meV,
EBLG

res,d = −253 meV and EBLG
res,d = −247 meV, respectively.

Contrary, hydrogen acts in all three cases as a very narrow
(width below 10 meV) resonant scatterer with the correspond-
ing resonant energies ESLG

res = 16 meV, EBLG
res,d = 23 meV and

EBLG
res,nd = 19 meV. The blue (fluorine) and red (hydrogen) ver-

tical arrows indicate the energy positions of the resonances.

Those values are specified in the next section when we
analyze the experimental data in terms of the effective
TB model. A reasonable value of J and good agreement
between model and experiment would strongly indicate
that fluorine adatoms indeed induce magnetic moments
that dominate the spin relaxation.

The spin relaxation mechanism under consideration
is based on resonant scattering off magnetic impurities
where local magnetic moments interact via the exchange
interaction with itinerant spins: An electron scatter-
ing resonantly off the impurity experiences a local spin-
flip exchange field. The narrower the resonance level,
the longer is the lifetime the electron experiences this
exchange-field, and the higher is the probability that
the impurity randomizes the electron’s spin. Details of
the resonant-scattering spin-relaxation mechanism can
be found in Refs. 24 and 25. For the sake of compactness,
the analytical formulas are also provided in Appendix C.
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FIG. 4. Spin relaxation rate in fluorinated SLG. The exper-
imental data (black symbols) are from sample A of Ref. 32.
The blue solid line shows the spin relaxation rate based on
the fluorine TB model with J = 0.56 eV, Σeh = 64 meV, and
fluorine concentration η = 131 ppm which is based on experi-
mental estimates. The red dashed line corresponds to the spin
relaxation rate in the alternative scenario of a strong resonant
impurity represented by hydrogen, which for the same value
of η, J = 9 meV, and Σeh = 77 meV, restores the electron-
hole-symmetry. Corresponding TB parameters are provided
in Appendix C.

IV. THEORY VS. EXPERIMENT, AND
DISCUSSION ABOUT ALTERNATIVES

Figure 4 plots the measured τ−1
sat (black symbols) and

computed spin relaxation rate (blue solid) in fluorinated
SLG for both electron and hole carriers. Fixing the fluo-
rine concentration to the experimentally estimated value
of η = 131 ppm (nF = 5×1011 cm−2) and taking into ac-
count a broadening Σeh due to electron-hole puddles, the
only free parameter in our model is the exchange coupling
J . On the hole side, no value of J can be found to match
the calculated τ−1

s to the experimental data. For illustra-
tion we show the calculated τ−1

s using J = 0.56 eV and
Σeh = 64 meV consistent with experimental estimates43.
This model calculation produces τ−1

s of the experimen-
tal magnitude on the electron side but overshoots the
measurement on the hole side by more than an order
of magnitude. This comparison shows the discrepancy
between the single impurity TB model (fitted to DFT),
and measurements from the point of view of electron-hole
symmetry.

Similar behavior is found when we compare theoreti-
cal and experimental values of τ−1

s in fluorinated BLG.
Figure 5 shows experimental data (black symbols) from
sample W03 with η = 572 ppm (nF = 4.4 × 1012 cm−2)
and calculated spin-relaxation rate (blue solid) with J =
0.47 eV, Σeh = 20 meV and the experimentally estimated
concentration. Measured data are reproduced satisfac-
torily on the electron side, however, they significantly
deviate on the hole side (not shown). This is again in a
contrast with the measured τ−1

φ as displayed in Fig. 1,
which is manifestly electron-hole symmetric.

The ratio of spin to momentum relaxation rates,
τ−1
s /τ−1

m , exposes further difficulty of reconciling the
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FIG. 5. Spin relaxation rate in fluorinated BLG. The exper-
imental data (black symbols) are from sample W03 (extra-
polated to T = 0). The blue solid line shows the spin relax-
ation rate based on the fluorine TB model with J = 0.47 eV,
Σeh = 20 meV, and fluorine concentration η = 572 ppm which
is based on experimental estimates. The red dashed line cor-
responds to the spin relaxation rate in the alternative scenario
of a strong resonant impurity represented by hydrogen, with
the same values of η and Σeh, and J = −40 meV. Correspond-
ing TB parameters are provided in Appendix C.

BLG measurements and calculations that are motivated
by first-principles data for fluorine. Though Fig. 5 shows
a good agreement between the calculated and measured
τ−1
s in fluorinated BLG on the electron side, the compari-

son of τ−1
s /τ−1

m for the same range of energies shows that
the model underestimates the experimentally obtained
momentum relaxation rate (sample W03) by about a fac-
tor of 40, see Fig. 6(a). The similar comparison was omit-
ted in SLG because there the simple TB model was not
able to capture the experimental spin relaxation rate in
the hole doping region.

Discussion about alternative scenarios: The above
comparisons point to a key difference between experiment
and DFT calculations, i.e., fluorine appears to behave
like a strong resonant impurity in experiment, while its
TB description based on DFT is certainly not. In other
words, because the electron side is so far away from the
resonance, the momentum scattering caused by fluorine
adatoms is too weak to capture the measured conductiv-
ity. Below we offer a few thoughts on what can cause the
disagreement, with the hope to stimulate further studies.

1. Charging effects: Based on the observation of charg-
ing effects in the DFT data (see Appendix C), we have
also treated each fluorine adatom in BLG as a scatter-
ing center carrying an effective charge −e and consid-
ered thus an upper bound for additional charged impu-
rity scattering in this scenario. The details are given in
Appendix C. The additional charge impurity contribu-
tion enlarges τ−1

m,eff , and reduces the model calculation

discrepancy in τ−1
s /τ−1

m to a factor of about 15, as shown
in Fig. 13 in Appendix C. This is an improvement com-
pared to Fig. 6(a) but the deviation remains significant.

2. Clusters: We considered the possibility of small
fluorine clusters (< 2 nm) as clusters may give rise to
symmetric conductivity44,45. Clustering simultaneously
quenches the Raman signal46 of an isolated adatom, re-
duces its resonant impurity scattering strength44,45, and

most likely quenches potential magnetic moments31,47

which would affect both the spin relaxation rate and the
scattering rate ratio. We can not rule out their presence
in our samples, but clustering can not solve the τ−1

s /τ−1
m

puzzle in our opinion. A quantitative evaluation could
shed further light on the role of clustering.

3. Lattice deformation: Another important factor is
lattice deformation. Experimentally we have noticed that
the presence of local curvatures, e.g. created by exfoliat-
ing to a rough substrate such as SiO2, is essential to the
fluorination process. This suggests that the local bond-
ing and ionic environment of a fluorine adatom in real
devices is likely quite different from that of a DFT sim-
ulation. A realistic description of the adatoms may be
crucial to capture their electronic properties accurately.
This can potentially reconcile the difference between the
DFT electronic structure of fluorine adatoms appearing
as weak resonances off the charge neutrality point and
the experimental indication of fluorine being a mid-gap
scatterer. More elaborate DFT studies would be needed
to confirm this hypothesis.

4. Strong resonant impurity: Though not supported
by our DFT calculations, the quantitative similarities
between the conductivity measurements of fluorinated32

and hydrogenated48 graphene motivated us to model flu-
orine as a hypothetical strong resonant impurity, which
induces resonance levels very close to the charge neutral-
ity point and thus producing the experimentally observed
electron-hole symmetry22. To analyze that possibility
quantitatively we used the known orbital TB parameters
for the hydrogen adatom for SLG11 and BLG25, see also
Appendix C. To match the experimental τ−1

s with the
known impurity concentrations nF, we need the small
exchange strength of J = 9 meV and Σeh = 77 meV for
SLG (see Fig. 4), and J = −40 meV and Σeh = 20 meV
for BLG (see Fig. 5), which in both cases gives significant
improvements compared to the original models. The rel-
atively small values of the exchange coupling J suggest
that spin-flip scatterings caused by fluorine adatoms are
potentially weak. As mentioned in the introduction, the
induction of a magnetic moment in fluorinated graphene
is quite subtle and depends on a set of other param-
eters such as doping and fluorine concentration. Fur-
thermore, a recent study49 showed that vacancy-induced
magnetic moments in graphene can be screened by itin-
erant electrons, where the Kondo temperature depends
on gating and the local curvature of the graphene sheet.
Should similar physics occur for fluorine, a fraction of the
fluorine-induced moments may be screened and manifests
as a reduced exchange coupling J in our fittings.

Examining the rates’ ratio between the spin and mo-
mentum relaxation, we still observe an underestimation
of the momentum relaxation in both BLG and SLG sam-
ples by about a factor of 6 and 7, respectively, see Fig. 6.
The underestimation is consistent with a previous study,
where we showed that even strong resonant adatoms such
as H do not produce momentum relaxation rates as high
as a vacancy or strong midgap scatterer does22. Exper-
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FIG. 6. Spin to momentum relaxation rate ratio of fluori-
nated (a) BLG (sample W03, black symbols) and (b) SLG
(sample A, black symbols). (a) The fluorine TB model (blue
solid) underestimates τ−1

m by a factor of 40, while the alter-
native scenario of a strong resonant impurity, here hydrogen,
(red dashed) underestimates the rate by a factor of 6. (b)
The alternative scenario of a strong resonant impurity, here
hydrogen, (red dashed) underestimates τ−1

m by a factor of 7.

imental data of charge scattering in fluorinated and hy-
drogenated graphene32,48, on the other hand, seem to fit
the scattering model of a strong midgap scatterer rather
well15–18. This is another puzzling aspect of the fluoro-
functionalized graphene that needs to be understood be-
fore quantitative assessments of scattering processes can
be accurately made.

5. Correlation effects and spin relaxation of non-
magnetic origin: Other possibilities include correlated-
impurity effects currently not evaluated in our spin re-
laxation model and possibly new phase breaking mech-
anisms that are nonmagnetic in origin, that could com-
plicate the WL data analysis. In this regard, it is worth
mentioning that calculations have shown that SOC terms
which preserve the mirror symmetry of the graphene
plane, i.e. Sz, can lead to spin-dependent scatter-
ing that mimics the effect of spin-flip scattering in the
WL measurements50. Fluorine induces a local SOC of
about 10 meV12. However, according to earlier studies in
Ref. 26 on fluorinated SLG, an approximately one thou-
sand times higher concentration would be necessary to
reach the measured dephasing rate. This suggests that
the local SOC induced by fluorine is not the dominant
source of spin relaxation observed in experiment.

V. CONCLUDING REMARKS

In conclusion, we performed a comprehensive
experiment-theory study to investigate the spin and
charge relaxation in dilute fluorinated single-layer and bi-
layer graphene. Experimental evidence points to fluorine
being the dominant source of both spin and momentum
scattering. In the charge channel, fluorine behaves as a
strong midgap scatterer that is situated at the charge
neutrality point whereas in the spin channel, the experi-
ment suggests it is a weak spin-flip scatterer.

Theoretically, we performed first-principle calculations
in supercell geometry and obtained tight-binding model

of fluorine adatom on single and bilayer graphene. Em-
ploying the T-matrix formalism we further investigate
spin and momentum relaxation in the limit of inde-
pendent dilute magnetic scatterers. The modeling pre-
dicts fluorine-induced resonances off the charge neutrality
points, leading to a marked difference between electron
and hole transport channels. This is at odds with the ex-
periment. Also, the model predicts a rather strong spin
flip scattering and weaker momentum relaxation rates
than the experimentally measured data. The agreement
with the experiment cannot be reconciled by considering
charged adatoms (due to charge transfer between fluo-
rine and graphene), nor by reducing the exchange cou-
pling. However, the agreement improves significantly if
we use a strong resonance model represented by hydro-
gen adatoms, which is very close to the midgap scatterer
model, yielding only weakly electron-hole asymmetric re-
sults. This model still underestimates the momentum
relaxation rate by a few fold.

The comparison between experiment and theory high-
lights practical complications and challenges that need to
be overcome before the electronic properties of the fluo-
rine adatom, a widely used functionalization element on
two-dimensional materials, can be accurately captured
in DFT calculations. There is still a profound lack of
understanding (and agreement) on the presence or ab-
sence of a magnetic moment on dilute fluorine adatoms
on graphene. From our study we also see that the basic
electronic structure obtained from DFT can miss signifi-
cant practical sample features, such as the structural de-
formations discussed above. The original data and rather
deep theoretical analysis into the current state of knowl-
edge about the system should provide further impetus to
investigate the fascinating physics of resonant scattering
and spin relaxation in graphene functionalized not only
with fluorine, but also other types of adatoms.

Appendix A: Experimental dephasing and
saturation rate

In Fig. 7, we plot conductivity data obtained in previ-
ous studies on fluorinated SLG32 and BLG34. Both show
electron-hole symmetry. The momentum relaxation rate
τ−1
m extracted from these data are proportional to the

fluorine concentration nF. Figure 8(a) plots the mag-
netoconductance σs(B) of W03 at ne = 6 × 1012/cm2

and selected temperatures. Fits to Eq. (1) of Ref. 42 are
shown as dashed lines and provide an excellent descrip-
tion of data. The phase decoherence length lφ obtained
from the fits ranges from 30 to 114 nm, from which we ob-
tain the dephasing rate τ−1

φ through τ−1
φ = Dil

−2
φ where

Di is the diffusion constant given by

Di =
σdh

2

8πm?e2
. (A1)

Here, σd is the Drude sheet conductance measured
around T = 200 K andm? the n-dependent effective mass
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FIG. 7. (a) Measured σ (Vg) of SLG sample A (black) and
B (red) from Ref. 32. nF = 5 × 1011 cm−2 in sample A and
2.2 × 1012 cm−2 in sample B. (b) σ(n) of BLG sample W38
(olive), W02 (cyan) and W03 (magenta) from Ref. 34. nF =
2.2, 3.8, and 4.4 × 1012 cm−2, respectively. The same three
samples are used in the current study.

of BLG calculated for the current density range using ex-
perimentally determined TB parameters51,52. The values
of m? are given in Fig. 9. The fits also use li = l? = 10 nm
although varying li and l? by a factor of two up or down
has negligible effect on lφ which is given by the low mag-
netic field regime (B . 0.5 T). The values of li and l?

are roughly the inter-fluorine spacing, similar to what we
found on fluorinated SLG32. Similar measurements and
analyses are performed up to T = 35 K and at electron
densities n ranging from 5×1012 cm−2 to 1.3×1013 cm−2.
Figure 8(b) plots the resulting τ−1

φ (T ) at different carrier

densities. It is clear from the plot that τ−1
φ (T ) follows a

linear trend given by τ−1
φ = aT + τ−1

sat , with the slope

a ranging from 0.05-0.08 ps−1/K. We attribute the aT
term to electron-electron collision induced dephasing. It
can be further written as

a = αkB
ln g

~g
, (A2)

where g = σdh/e
2 is the dimensionless Drude sheet con-

ductance. The resulting α ranges between 1.5 and 1.8
(see the table in Fig. 8), in excellent agreement with pre-
vious WL studies in pristine SLG53, BLG42 and our flu-
orinated SLG samples32. The T = 0 dephasing rate τ−1

sat

of sample W03 is used to compare to calculations.

Appendix B: DFT calculation

The electronic structure of fluorinated BLG has been
calculated within the DFT54 using the plane wave pseu-
dopotential code Quantum ESPRESSO55. A 10× 10 su-
percell for fluorinated SLG and 7× 7 supercell of Bernal
stacked BLG in a slab geometry with a vacuum spac-
ing of 15 Å were considered. The reduced Brillouin zone
was sampled with 10 × 10 k-points. The atomic posi-
tions in the supercell calculations have been relaxed us-

n [1012 cm−2] 5 6 7.5 9.5 13

α 1.81 1.63 1.51 1.63 1.56

FIG. 8. (a) Sheet conductance σs vs B for BLG sample W03
measured at electron density n = 6 × 1012 cm−2. From bot-
tom to top: T = 1.6, 2.5, 3.5, 5.0, 7.5, 10 K. Dashed lines are
fits to the WL expression in BLG of Ref. 42. (b) Dephasing
rate τ−1

φ in sample W03 as a function of temperature at vary-
ing electron densities n. From bottom to top: n = 13, 9.5,
7.5, 6.0, 5.0 × 1012 cm−2. The table presents the extracted
coefficient α in Eq. (A2).

FIG. 9. Experimental effective mass of electrons and holes
in BLG using tight-binding parameters γ0 = 3.43 eV, γ1 =
0.40 eV, γ4 = 0.216 eV, γ3 = 0, ∆ = 0.018 eV as obtained in
Refs. 51 and 52.

ing the quasi-newton algorithm based on the trust ra-
dius procedure. For the atomic species we have used
projector augmented-wave pseudopotentials56 with the
PBE exchange-correlation functional57 with kinetic en-
ergy cut-offs of 50 Ry for the wave function and 350 Ry
for the density. The supercell sizes were chosen such that
interference effects between the periodic images of fluo-
rine in the supercell approach can be neglected. There-
fore, we take these calculations as a reliable basis for
our TB model which we will employ for the experimental
measurements of dilute fluorinated graphene.
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Appendix C: Model

a. Tight-binding model: We describe fluorine in
SLG and BLG24,25 as an Anderson-like impurity that
possesses a non-itinerant magnetic moment. In the BLG
case, we distinguish whether fluorine adsorbs on the
dimer or nondimer carbon site, Cd and Cnd, respectively.
Within the TB approximation the full model Hamilto-
nian reads

H = H0(γ0, γ1) +H ′(ε, ω) +Hex(J) . (C1)

The Hamiltonian H0 describes unperturbed SLG or BLG
with the nearest-neighbor intralayer hopping γ0 and the
interlayer hopping γ1 (γ1 = 0 in the SLG case), H ′ de-
scribes the fluorine chemisorption with the onsite energy
ε and hybridization strength ω, and Hex represents the
exchange interaction term with coupling J . In more de-
tail, for SLG we have

HSL
0 = −γ0

∑
〈m,n〉σ

|amσ〉 〈bnσ|+ h.c. , (C2)

and for AB-stacked BLG

HBL
0 = −γ0

∑
〈m,n〉σ
λ∈{t,b}

|aλmσ〉 〈bλnσ|+ γ1

∑
mσ

|at
mσ〉 〈bbmσ|+ h.c. ,

(C3)

where γ0 = 2.6 eV and γ1 = 0.34 eV. Our AB-stacking
assumes that γ1 connects the sublattice A of the top (λ =
t) and the sublattice B of the bottom layer (λ = b),
respectively. A carbon 2pz orbital with spin σ, which
resides on the lattice site m, is represented by the one-
particle state |cmσ〉, where c = {a, b} depends on the
sublattice degree of freedom of the site m. Similarly,
|fσ〉 stands for the fluorine 2pz orbital with spin σ. The
fluorine adsorption is characterized by the two orbital TB
parameters—the onsite energy ε and the hybridization
strength ω:

H ′ = ε
∑
σ

|fσ〉 〈fσ|+ ω
∑
σ

(|fσ〉 〈c∗σ|+ h.c.) , (C4)

where |c∗σ〉 denotes a carbon orbital that bonds with flu-
orine. To distinguish SLG and BLG cases, we use ε and
ω without any subscripts for the former case, and we add
the subscripts d and nd for the dimer and nondimer BLG
positions, respectively. We extract the orbital parame-
ters ε and ω by fitting the TB model Hamiltonian H0+H ′

to DFT data for spin unpolarized electronic band struc-
tures of fluorinated SLG and BLG, respectively. The
resulting parameters are given in Table I together with
the values for hydrogen as extracted in Refs. 11 and 25.

Figures 10 and 11 show the comparison between DFT
(symbols) and TB model (solid) electronic band struc-
tures for fluorinated SLG and BLG.

Fluorine’s local magnetic moment is captured by the
exchange term in Eq. (C1),

Hex = −J ŝ · Ŝ . (C5)

Adatom ω ε ωd εd ωnd εnd

Fluorine 5.5 -2.2 7.0 -2.5 8.0 -3.0

Hydrogen 7.5 0.16 6.5 0.25 5.5 0.35

TABLE I. TB parameters in eV for fluorine (upper row) and
hydrogen (lower row) adatoms in SLG (left double column),
and BLG (right four column). The subscripts d and nd stand
for dimer and non-dimer BLG absorption positions, TB pa-
rameters carrying no-subscripts refer to SLG.

K ΓMΓ

-0.5

0

0.5

1

E
-E

F
 [

e
V

]

FIG. 10. DFT (black dotted) and TB (blue solid) calculated
electronic band structure of a 10× 10 supercell of fluorinated
SLG graphene. The TB parameters are ω = 5.5 eV and ε =
−2.2 eV.

The energy-independent exchange strength J couples the
itinerant electron spin with the localized impurity spin
(spin 1/2) being represented by the array of Pauli matrices

ŝ and Ŝ, respectively.
b. Charging effect: The simple TB model above

does not reproduce the gap opening between the two
bands just above the Fermi level at the K point in the
dimer configuration, see Fig. 11. Though, by adding
a potential offset to H0 which raises the onsite ener-
gies of all 2pz orbitals on the upper layer, i.e. H0 +
U
∑
m,σ |ctmσ〉 〈ctmσ|, we can qualitatively improve the

matching of the two considered electronic band struc-
tures. Fitting U we found U = 0.16 eV; see Fig. 12. We
attribute this potential offset to charging effects: The
high electronegativity of the fluorine leads to charge re-
distribution among the BLG sheets. This potential offset
is ignored in the calculation of the spin relaxation rates.
The DFT calculations predict also for fluorinated SLG
a charge transfer from graphene to fluorine12, though no
modification of the TB model is needed to reproduce the
band structure.

c. Relaxation rates for resonant impurity scatter-
ing: The relaxation rates are computed from the un-
derlying TB model, Eq. (C1), employing the fully non-
perturbative T-matrix approach24,25. The impurity’s
spin degrees of freedom double the one-particle state ba-
sis |cmσ〉, |fσ〉 → |cmσ〉⊗|Σ〉, |fσ〉⊗|Σ〉, where Σ = {↑, ↓}
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FIG. 11. DFT (black dotted) and TB (blue solid) calculated
electronic band structure of a 7 × 7 supercell of BLG with
one fluorine adatom in the dimer (left) and nondimer (right)
adsorption position on the top layer. The TB parameters are
ωd = 7.0 eV and εd = −2.5 eV for the dimer configuration,
and ωnd = 8.0 eV, εnd = −3.0 eV for the nondimer configura-
tion.
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FIG. 12. DFT (black dotted) and TB (blue solid) calculated
electronic band structure of a 7 × 7 supercell of BLG with
one fluorine adatom in the dimer (left) and nondimer (right)
adsorption position on the top layer. Additionally to the TB
parameters ωd = 7.0 eV and εd = −2.5 eV for the dimer con-
figuration, and ωnd = 8.0 eV, εnd = −3.0 eV for the nondimer
configuration, a finite potential offset of U = 0.16 eV is as-
signed to the top layer of BLG in the TB calculation to ac-
count for charging effects.

stands for the component of the impurity spin along
the quantization axis. Introducing singlet (` = 0) and
triplet (` = 1) spin states and downfolding the Hamilto-
nian by decimating the |f〉 degrees of freedom, one ob-
tains an analytic expression for the T-matrix24,25 T(E) =∑
`,m`

T`(E) |c`,m`〉 〈c`,m` |, where

T`(E) = V`(E)
1−V`(E)GC(E) , V`(E) = ω2

E−ε+(4`−3)J . (C6)

The T-matrix contains the Green’s function, GC(E) =
〈c∗↑|(E + iδ − H0)−1|c∗↑〉 = 〈c∗↓|(E + iδ − H0)−1|c∗↓〉, of
the unperturbed SLG or BLG which is projected to the
carbon atomic site C hosting the fluorine adatom. In
detail, GC(E) ≡ ΛC(E)− iπνC(E), where

ΛC(E) = E
2D2 ln

∣∣∣E2(E2−γ2
1)

(D2−E2)2

∣∣∣+ γ1∆C

2D2 ln
∣∣∣E+γ1
E−γ1

∣∣∣ , (C7)

νC(E) =
∑
µ=±

|E|−µ∆Cγ1
2D2 Θ

(
D − |E|

)
Θ
(
|E| − µγ1

)
.

(C8)

The symbol D =
√√

3πγ0 ' 6 eV denotes the effective
bandwidth, and ∆C = 0 for Cd-site and ∆C = 1 for Cnd-
site in the BLG case, respectively. By setting γ1 = 0 the
above formulas apply to the SLG case24.

The adsorption of fluorine on graphene induces res-
onance levels in the graphene spectrum which directly
affect the relaxation rates. We determine the resonance
energy, i.e. the energy at which an incoming electron
resonantly scatters off the impurity, from the perturbed
DOS per atom and spin which is given by

%C(E) =
∑
µ=±

%µ0 (E)− (η/π)
1

4
Im
∑
`

{[
− d
dEGC(E)

]
×

× (2`+ 1) T`(E)
}
,

(C9)

where, %µ0 (E) = (2|E| − µγ1)/(4D2) Θ
(
D − |E|

)
Θ
(
|E| −

µγ1

)
is the unperturbed BLG DOS per atom and spin

for the high (µ = +) and low (µ = −) energy band,
respectively.

Using the T-matrix and the generalized Fermi golden
rule, the spin-dependent relaxation rate at a given energy
for given adatom concentration η is obtained from24,25

1

τC
σσ′

=
η

2

2π

~

{
δσσ′ |T1(E)|2 +

1

4
|T1(E) + (σ · σ′)T0(E)|2

}
×
[
P+

C(E)%+
0 (E) + P−C(E)%−0 (E)

]2
%+

0 (E) + %−0 (E)
. (C10)

Here, we introduced the projection factor PµC(E) =
2(|E| − µ∆Cγ1)/(2|E| − µγ1) Θ

(
D − |E|

)
Θ(|E| − µγ1)

which specifies the contribution of the site C to the
low and high energy bands µ at a given energy E. In
the SLG case with γ1 = 0, one has correspondingly
%+

0 (E) = %−0 (E) and P+
C(E) = P−C(E). The adatom con-

centration η is defined as the number of adatoms divided
by the number of carbon atoms in the structure. The
quantity η is related to the areal impurity concentration,
nF, via ηSL = nFAuc/2 for SLG and ηBL = nFAuc/4

for BLG, where Auc = 3(
√

3/2)a2
cc is the area of one

graphene unit cell with the carbon-carbon distance acc.
From Eq. (C10) we obtain both the spin relaxation

rate, 1/τC
s = 1/τC

↑↓ + 1/τC
↓↑, and the momentum relax-

ation rate, 1/τC
m = 1/τC

↑↑ + 1/τC
↑↓. In the case of fluori-

nated BLG we assume that both dimer and nondimer
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FIG. 13. Spin to momentum relaxation rate ratio of fluori-
nated BLG. Here we consider fluorine as a charged impurity,
this reduces the discrepancy between the fluorine TB model
and the experimental data (black symbols, sample W03) to a
factor of 15.

sites contribute statistically equally to the relaxation
and, therefore, the final spin relaxation rate is given by
their unbiased average:

1/τs(m) ≡ 1/
(
2τCd

s(m)

)
+ 1/

(
2τCnd

s(m)

)
. (C11)

We checked that the results presented in the main text
of the paper do not change qualitatively under variation
of the ratio of dimer and nondimer adsorption positions.

Finally, the effect of charge puddles present in the ex-
perimental samples are taken into account by a Gaussian
broadening of the relaxation rates by Σeh.

d. Charged impurity scattering: For calculating the
momentum relaxation rate for charged fluorine scatter-
ing, we employ the model of Refs. 58–61 in the approx-
imation of zero temperature. For simplicity, we further
assume that each fluorine adatom carries a charge of −e,
neglect the finite distance of fluorine to graphene12, and
set the relative permittivity of the fluorine environment
to graphene on SiO2

62. Both the short (resonant scat-
tering) and long range (charged impurity) contributions
to the momentum relaxation rate are then combined by
the Matthiesen’s rule to obtain τ−1

m,eff in Fig. 13.
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naceur, M. Ferrier, S. Guéron, C. Glattli, H. Bouchiat,
J. N. Fuchs, and D. L. Maslov, Phys. Rev. Lett. 104,
126801 (2010).

18 J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I.
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