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We study the application of a counter-diabatic driving (CD) technique to enhance the thermo-
dynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit
coupled to two resonant circuits. Although the CD technique is originally designed to counteract
non-adiabatic coherent excitations in isolated systems, we find that it also works effectively in the
open system dynamics, improving the coherence-induced losses of efficiency and power. We compare
the CD dynamics with its classical counterpart, and find a deviation that arises because the CD is
designed to follow the energy eigenbasis of the original Hamiltonian, but the heat baths thermalize
the system in a different basis. We also discuss possible experimental realizations of our model.

I. INTRODUCTION

Understanding the nonequilibrium dynamics of open
quantum systems is essential for controlling small quan-
tum devices and to improve existing quantum informa-
tion processing technologies. Quantum thermodynamics
offers a theoretical framework to achieve this aim, and
one can, for example, study thermodynamically efficient
protocols with low entropy production. Quite recently,
utilizing recent technical progress in the fields of trapped
ions, NMR systems, and superconducting qubits, several
experiments have been performed to test important ideas
in quantum thermodynamics such as the quantum fluc-
tuation theorem1,2 and Maxwell’s demon3–6. They are
also used as a working substance to build up quantum
heat engines and refrigerators7–9. We also note that a
direct measurement of the stationary heat currents has
become possible10.

The studies of quantum heat engines and refrigera-
tors11,12 have attracted particular interest since they re-
veal fundamental limits on the conversion between work
and heat in the quantum regime. For example, several
studies have found quantum supremacy in their perfor-
mance13–17. On the other hand, coherences built up dur-
ing a cycle of a quantum heat engine are found to induce
universal power losses in the linear response regime18.
Similar result has also been reported in some specific
models19,20, where coherent oscillations are found in the
output power and efficiency, leading to smaller values
compared to their classical counter parts.

One may regard this as a manifestation of the trade-off
between the protocol time and the efficiency of a given
task in finite-time control theory. However, a recent
quantum control technique, known as shortcuts to adi-
abaticity (STA), allows us to overcome this problem by
mimicking quantum adiabatic dynamics in a finite proto-
col time21,22. In particular, the counter-diabatic driving
(CD) technique21–26 realizes STA by introducing an addi-
tional control field which enforces the system to follow the

quantum adiabatic trajectory of the uncontrolled system.
By utilizing these techniques, the performance of supera-
diabatic quantum heat engines have been studied exten-
sively27–31, whereas other optimization techniques have
been utilized in the literature as well32–34. Note that the
CD has been implemented in several experiments35–38.

In this study, we take a model of a quantum Otto re-
frigerator based on a superconducting qubit coupled to
two heat baths made of resonant circuits19, and apply the
CD to enhance its efficiency and power. The model we
consider is illustrated in Fig. 1, where the energy level
of the qubit is varied in time and it is resonantly cou-
pled to the hot bath (H) and the cold bath (C) at dif-
ferent frequencies. Note that if we can switch on and off
the interactions between the system and the baths, we
can separate the adiabatic strokes and the thermaliza-
tion strokes of the Otto engine (see also Fig. 1). Then,
we can ideally apply the CD to speed up the adiabatic
strokes27,30. On the other hand, we are interested in a
situation where the coupling to the baths cannot be ex-
ternally controlled and the adiabatic and thermalization
strokes are not completely separated. From a practical
point of view, this setup is relevant for realistic experi-
ments where the system undergoes a continuous periodic
cycle with some external drives under the influence of
environments. From a fundamental point of view, this
setup allows one to better understand how CD could be
effective in open system dynamics, which has not been
explored intensively39–41.

This paper is organized as follows. In Sec. II, we
present the model studied in this paper describing a
quantum Otto refrigerator. We also introduce the CD
technique and the definition of the work flux and the
heat flux for our model. The main result of our paper
is presented in Sec. III. We first discuss some analytical
expression for the dynamics of the system and show that
the CD also works effectively for the open quantum sys-
tem of this example. We then discuss how CD improves
the heat transfer and the thermodynamic efficiency of the
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FIG. 1. (a) Scheme of the quantum refrigerator studied here.
(1) and (3): Adiabatic strokes by changing the energy level
of the qubit. During these processes, the qubit is off-resonant
with the baths and the work is supplied to or extracted from
the qubit. (2) Thermalization stroke with respect to the hot
bath (H). Energy is transfered from the qubit to the hot bath.
(4) Thermalization stroke with respect to the cold bath (C).
Energy is transfered from the cold bath to the qubit. (b) Pos-
sible experimental realizations of the quantum refrigerator us-
ing a superconducting qubit coupled to two RLC resonators
and a microwave drive line. The transmon qubit Hamiltonian
is given by Eq. (1), where the Josephson coupling energy (re-
lated to q(t)) is tuned by an externally applied magnetic flux
Φ. The input microwave drive realizes the counter-diabatic
driving Hamiltonian Eq. (12). The hot and cold heat baths
made of RLC resonators are capacitively coupled to the qubit,
and the dissipative dynamics of the system is described by
Eq. (15).

refrigerator in the fast driving regimes. In Sec. IV, we
discuss possible experimental realizations of the quantum
refrigerator studied in this paper. In Sec. V, we conclude
this paper.

II. THE MODEL

The Hamiltonian of the qubit is given by the Landau-
Zener-type model

H0(t) = −E0(∆σx + q(t)σz), (1)

where E0 is the overall energy of the qubit, ∆ character-
izes the minimum gap, q(t) describes the external driving,
and σx is the Pauli-X-matrix, etc. Here, we choose q(t)
as a periodic function varying from q = 0 to q = 1/2. We
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FIG. 2. Functional form of the drivings q(t) (2) [black curve]

and θ̇t (13) [orange curves] for one cycle. Here, θ̇t is plotted
for Ω = 0.1, Ω = 0.05, and Ω = 0.01 (from top to bottom).

Note that the amplitude of θ̇t is proportional to Ω. We choose
the parameters a = 2, E0 = 1 and ∆ = 0.12.

choose the truncated trapezoidal form

q(t) =
1

4

(
1 +

tanh(a cos Ωt)

tanh(a)

)
, (2)

which in earlier works was shown to give the best ther-
modynamic efficiency among several different functional
forms19. Here, Ω is the driving frequency and a is a pa-
rameter adjusting the waveform of the periodic drive (see
Fig. 2). The energy difference between the excited state
and the ground state is given by

∆ε(t) = 2E0

√
∆2 + q2(t). (3)

The instantaneous eigenenergies of H0 are given by
εe/g(t) = ±∆ε/2, and the corresponding energy eigen-
states are given by

|εe(t)〉 = cos θt |↑〉+ sin θt |↓〉 ,
|εg(t)〉 = sin θt |↑〉 − cos θt |↓〉 , (4)

where θt = (1/2) cot−1(q/∆).

Now we consider the dissipative dynamics of the sys-
tem coupled to the hot and cold baths. The coupling be-
tween the system and the bath i = {C,H} are assumed to
take the forms Hi

int = σy⊗Bi, where Bi is the operator of
the bath i (including the coupling constant). Note that
we discuss the case of a σy (transversal) coupling between
the system and the bath i (see also Fig. 1 (b)), although
a σz (longitudinal) coupling does not significantly change
the qualitative behavior of the results presented in this
paper. After taking the standard weak-coupling, Born-
Markov, and rotating-wave approximations, the reduced
dynamics of the system is given by the time-dependent
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Lindblad master equation42–44

∂tρ = −i[H0, ρ] +DC[ρ] +DH[ρ], (5)

where we set ~ = 1 for simplicity. Here, the dissipator
describing the effect of the bath i is given by

Di[ρ] = Si(∆ε)

[
LρL† − 1

2
{L†L, ρ}

]
+Si(−∆ε)

[
L†ρL− 1

2
{LL†, ρ}

]
, (6)

where {A,B} = AB+BA denotes the anti-commutation
relation and

L = |εg〉〈εg|σy|εe〉〈εe| = i|εg〉〈εe| (7)

is the time-dependent Lindblad operator describing a
jump from the excited state to the ground state. Here,
Si(ω) is the noise power spectrum of the environment
and it is related to the one-sided Fourier transform of
the bath correlation function gi(τ) = 〈Bi(τ)Bi(0)〉 as∫∞
0
dτeiωτgi(τ) = 1

2S
i(ω) + iλi(ω). Note that we ignore

the Lamb shift term λi(ω) in Eq. (5) for simplicity.

In this paper, we consider the following form of the
noise power spectrum:

Si(∆ε) =
gi
2

1

1 +Q2
i (∆ε/ωi − ωi/∆ε)2

∆ε

1− exp(−βi∆ε)
,

(8)
since it is relevant to the possible experimetnal realiza-
tions of the refrigerator19 (see also Fig. 1 (b)). Here,

ωi = 1/
√
LiCi, Qi = R−1i

√
Li/Ci, Li, Ci, Ri, βi and gi

are the bare resonance frequency, quality factor, induc-
tance, capacitance, resistance, inverse temperature, and
coupling strength of the circuit i = {C,H}, respectively.

We choose ωC = 2E0∆ and ωH = 2E0

√
∆2 + 1/4, such

that the circuit C (H) is resonantly coupled to the qubit
when q = 0 (q = 1/2), where Qi adjusts the width of the
resonance.

A. Counter-diabatic driving

In this subsection, we briefly introduce the idea of CD
and then apply it to our model.

By following Ref.26, we introduce the control field
H1(t) to escort the state along the same label n of the
energy eigenstate of H0(t) as

|εn(t)〉 → (1− iδtH1(t)) |εn(t)〉 = eiδtAn(t)|εn(t+ δt)〉,
(9)

and An(t) = i〈εn(t)|∂tεn(t)〉 is the Berry connection.
This means H1 transports the state along the quantum
adiabatic trajectory |εn(t)〉 for the original Hamiltonian
H0. Here, the control field can be obtained from Eq. (9)

and its explicit form is given by

H1(t) = i
∑
n

(1− |εn〉〈εn|)|∂tεn〉〈εn|, (10)

which is called the Counter-Diabatic (CD) field21,23–25.
As one can expect from Eq. (9), the unitary time-

evolution Ucd = Tr[exp(−i
∫ t
0
dsHcd(s))], via the Hamil-

tonian Hcd = H0 + H1, mimics the quantum adiabatic
time-evolution of H0 in a finite time t as

Ucd =
∑
n

ei
∫ t
0
ds(An(s)−εn(s))|εn(t)〉〈εn(0)|. (11)

Now we apply the CD technique to our model (1).

Since |∂tεg〉 = θ̇t|εe〉 and |∂tεe〉 = −θ̇t|εg〉, the CD field
takes a simple form

H1 = θ̇tσy, (12)

with

θ̇t = − q̇
2

∆

∆2 + q2
. (13)

Note that θ̇t is proportional to Ω (see also Fig. 2). The en-
ergy difference between the excited state and the ground
state of Hcd is given by

∆εcd = 2

√
E2

0(∆2 + q2) + θ̇2t . (14)

Next, we consider the time-dependent master equa-
tion42–44 including the CD field, given by

∂tρcd = −i[H0 +H1, ρcd] +DC[ρcd] +DH[ρcd], (15)

where the dissipator Di is given by Eq. (6) but replacing
∆ε and L by ∆εcd and

Lcd :=
∣∣εcdg 〉〈εcde ∣∣ 〈εcdg |σy|εcde 〉 (16)

where |εcdg 〉 and |εcde 〉 are the ground and excited state of
Hcd, respectively.

B. Heat fluxes to the cold and hot baths

In this section, we introduce the expression of the heat
fluxes from the cold and hot baths for the original (5)
and CD (15) dynamics.

For the original dynamics without CD, the time-
derivative of the internal energy of the system is given by
Ė = Tr[(∂tH0)ρ]+Tr[H0(∂tρ)]. From the first law of ther-

modynamics Ė = Ẇ−Q̇, we identify Ẇ = Tr[(∂tH0)ρ(t)]
as the work flux, since this term characterizes the en-
ergy difference of the system induced by the external
driving of the Hamiltonian. Similarly, we identify the
term Q̇ = −Tr[H0(∂tρ)] = Tr[H0(DC[ρ] + DH[ρ])] as
the heat flux and further decompose it into two parts
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Q̇ = Q̇C + Q̇H, where

Q̇i = ∆ε [Γ↓,i(t)Pe(t)− Γ↑,i(t)Pg(t)] (17)

is the heat flux coming from the bath i. Here, Pg(t) =
〈εg|ρ|εg〉 is the ground state occupation probability and
Pe(t) = 〈εe|ρ|εe〉 is that for the excited state, and the
transition rates are given by

Γ↓,i(t) = Si(∆ε), Γ↑,i(t) = Si(−∆ε). (18)

It is clear from the expression (17) that any change in the
energy of the system related to a jump between energy
eigenstates induced by the bath is interpreted as the heat.
We note that the Gibbs equilibrium state ρGβi

with inverse

temperature βi satisfies Di[ρGβi
] = 0 and −i[H0, ρ

G
βi

] = 0.
Therefore, the above definitions of the work and the heat
for the Lindblad master equation dynamics are consistent
with the second law of thermodynamics45.

For the CD dynamics, we can define the heat flux in
a manner similar to that for the original dynamics by
replacing H0 with Hcd. After some similar arguments,
the heat flux from the system to the bath i is found to
be

Q̇icd = ∆εcd
[
Γcd
↓,i(t)P

cd
e (t)− Γcd

↑,i(t)P
cd
g (t)

]
, (19)

where P cd
g (t) = 〈εcdg |ρcd|εcdg 〉 is the ground state occupa-

tion probability and a similar definition applies to P cd
e (t),

while the transition rates are given by

Γcd
↓,i(t) =

(
∆ε

∆εcd

)2

Si(∆εcd),

Γcd
↑,i(t) =

(
∆ε

∆εcd

)2

Si(−∆εcd), (20)

Note that when the driving Ω is slow, θ̇ becomes negligi-
ble and Eqs. (20) and (18) become identical.

III. MAIN RESULTS: HEAT FLUXES AND THE
THERMODYNAMIC EFFICIENCY OF THE

OTTO CYCLE

We now numerically solve the Lindblad master equa-
tion and calculate the heat flux as well as the efficiency of
the Otto refrigerator, which constitute our main results.

A. Dynamics of the Otto cycle

We first note that the design of the protocol lets the
CD field become small (θ̇ ' 0) when the qubit is inter-
acting with the hot or cold baths (q ' 0 or q ' 1/2).
This ensures that the CD is less affected by the baths
and is able to cancel nonadiabatic excitations during the
cycle. As a result, the coherence between different energy
eigenstates of the original Hamiltonian is supressed, and

0.0 0.2 0.4 0.6 0.8 1.0
t [2 / ]
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FIG. 3. Functional form of the relative energy scale of the CD
field with respect to the original Hamiltonian δ(t) = θ̇/∆ε (24)
for different driving frequency Ω [black curves]. The vertical
red (blue) dashed lines indicate the time region in which the
interaction between the hot (cold) bath and the qubit is dom-
inant. Note that the CD works well if δ(t) is sufficiently small
during the time region in which the system interacts with the
heat baths (see Eq. (23)). From this figure, we find that the
CD-assisted control is affected by the cold bath, and the per-
formance of the refrigerator is degraded. The parameters used
here are a = 2, E0 = 1, ∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3,

gC = gH = 1, and QC = QH = 30.

the coherence induced power and efficiency losses18 can
be avoided.

To support this idea, let us denote the matrix elements
of ρcd using the basis |εn〉 as

P cd
|εn〉 = 〈εn|ρcd|εn〉, (21)

δρcdge = 〈εg|ρcd|εe〉. (22)

The Lindblad master equation (15) can be rewritten as
a Pauli master equation-like form

∂tP
cd
|εg〉 =

∑
i

(
Γcd
↓,iP

cd
|εe〉 − Γcd

↑,iP
cd
|εg〉

)
+O(δ2) +O(δρcdge , δ),

∂tδρ
cd
ge = −1

2

∑
i

(
Γcd
↓,i + Γcd

↑,i
)
δρcdge +O(δ), (23)

where

δ(t) =
θ̇t

∆ε(t)
(24)

quantifies the relative energy scale of the CD field with re-
spect to the original Hamiltonian (see Fig. 3). We there-
fore find that if δρge(0) = 0 and the driving frequency Ω
is not too large such that δ is small, the CD dynamics
is essentially described by the classical master equation
(i.e., the first line of Eq. (23) by neglecting O(δ2) and
O(δρcdge , δ) terms). However, in general, we cannot com-
pletely cancel the coherent excitations because there is
a mismatch between the basis |εn〉 in which the CD is
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FIG. 4. Excited state probability using the basis |εe〉 for
the CD (P cd

|εe〉) [orange solid curve], original (Pe) [green solid
curve] and classical [black dashed curve] dynamics. Note that
the excited state probability for the CD dynamics is almost
identical to that of the classical dynamics, showing the effec-
tiveness of the CD technique even in open quantum systems.
The parameters used here are Ω = 0.1, a = 2, E0 = 1,
∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3, gC = gH = 1, and

QC = QH = 30.

0.0 0.2 0.4 0.6 0.8 1.0
t [2 / ]

10 6

10 5

10 4

10 3

10 2

10 1

re
la

tiv
e 

en
tro

py
 o

f c
oh

er
en

ce
 C

original
CD

FIG. 5. Relative entropy of coherence C for the CD dy-
namics C(ρcd) [orange curve] and the original dynamics C(ρ)
[green line]. Note that the coherence between different energy
eigenstates |εn〉 is suppressed by at least one order of magni-
tude via the CD. This suppression improves the coherence
induced losses of power and efficiency. The parameters are
Ω = 0.1, a = 2, E0 = 1, ∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3,

gC = gH = 1, and QC = QH = 30.

designed to follow and the basis |εcdn 〉 in which the dissi-
pation acts on. Note that this mismatch is quantified by
|〈εcdg |εg〉|2 = 1/2 + ∆ε/(2∆εcd) = 1− δ2 +O(δ4).

In Fig. 4, we plot P cd
|εe〉, which shows an excellent agree-

ment with that of the classical model. On the other hand,
we find coherent oscillations for the original dynamics Pe.
We further consider the effectiveness of CD by analyz-
ing the coherence of the system between different energy
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FIG. 6. Heat fluxes Q̇ as functions of time t for one cycle.
(a) Heat flux to the hot bath for the original dynamics Q̇H

[green solid curve], CD dynamics Q̇H
cd [orange solid curve],

and classical dynamics [black dashed curve]. (b) Heat flux

to the cold bath (Q̇C). Note that the negative value of Q̇C

means that the energy is transfered from the cold bath to the
system. We also note that the system exchanges heat with the
hot and cold baths around the resonance points q(t) = 1/2
and q(t) = 0, respectively. These plots show that the original
protocol is not working effectively, compared with the classical
model, to transport heat from the cold bath to the hot bath.
However, the CD technique largely improves the efficiency of
transporting heat since the heat fluxes between the CD and
classical dynamics are almost identical. The parameters are
Ω = 0.1, a = 2, E0 = 1, ∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3,

gC = gH = 1, and QC = QH = 30.

eigenstates |εn〉. We adopt the relative entropy of co-
herence C(σ) = S(σd) − S(σ) for a density matrix σ,
which is found to be a proper measure of coherence46.
Here, S(σ) = −Tr[σ lnσ] is the von Neumann entropy
and σd =

∑
n |εn〉〈εn|σ|εn〉〈εn| is the diagonal part of σ.

Note that when C(σ) = 0, σ has no coherence between
eigenstates |εn〉. In Fig. 5, we plot the relative entropy
of coherence for the CD [C(ρcd)] and original [C(ρ)] dy-
namics, and find that C(ρcd) is at least one order of mag-
nitude smaller than C(ρ).
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FIG. 7. Cooling power ΠC (descending curves) of the cold
bath and the heating power ΠH (acending curves) of the hot
bath as functions of the driving frequency Ω. These plots
show that for the original protocol, in the large Ω regime
the cooling of the cold bath is degraded while the hot bath is
more heated up. On the other hand, the CD technique largely
improves the cooling power as well as suppressing the heating
power. We note that the cooling and heating powers of the
CD dynamics are almost identical (but have tiny differences)
to those of the classical model. The parameters are a = 2,
E0 = 1, ∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3, gC = gH = 1, and

QC = QH = 30.

B. Heat flux between the system and the two heat
baths

Next, we study the heat flux. Here, the sign conven-
tion of the heat is chosen such that when it is positive,
heat flows from the system to the bath. In Fig. 6 (a),
we plot the heat flux to the hot bath, where the inter-
action is dominant around q = 1/2. Here, the heat flux

Q̇H
cd via CD has an excellent agreement with its classi-

cal counterpart Q̇H
cl, calculated from the classical master

equation. This agreement can be understood from Fig. 3
that δ ' 0 when the system is interacting with the hot
bath (q ' 1/2). In Fig. 6 (b), we plot the heat flux to
the cold bath, where the interaction is dominant around
q = 0. Here, the heat flux Q̇C

cd agrees well with its classi-

cal counterpart Q̇C
cl, although we find a slight deviation

because δ is finite when the system is interacting with
the cold bath (q ' 0). See also Fig. 3.

The heat fluxes for the original dynamics Q̇H and Q̇C

[green solid curve] take different values compared with
the classical model because of the coherent oscillations
shown in Fig. 4 and Fig. 5. When Ω is too large, the
heat from the cold bath may change sign, i.e. the cold
bath is heated up.
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FIG. 8. Thermodynamic efficiency of the refrigerator as a
function of the driving frequency Ω. Note that in the large Ω
regime, the efficiency of the original dynamics is significantly
decreased because of the coherent induced losses. On the
other hand, the CD technique largely improves the efficiency.
Here, the Carnot efficiency is η = (βC/βH− 1)−1 = 1 and the
conventional Otto efficiency is η = (ωH/ωC − 1)−1 = 0.304.
Note again that in our model, the quantum adiabatic strokes
and the thermalization strokes are not completely seprarated
because of the finite width of the noise power spectrum (8).
As a result, in the quasistatic limit (Ω → 0), our model
does not recover the conventional Otto cycle and the effi-
ciency drops down since the “quantum adiabatic stroke” is
strongly affected by the bath. The parameters are a = 2,
E0 = 1, ∆ = 0.12, β−1

C = 0.15, β−1
H = 0.3, gC = gH = 1, and

QC = QH = 30.

C. Thermodynamic efficiency of the refrigerator

Finally, we compare the power and the thermodynamic
efficiency (coefficient of performance) of the refrigera-
tor. The efficiency of the original dynamics is given by
η = −QC/W = −QC/(QH +QC), where we use the first
law of thermodynamics W = QH + QC for a stationary
cycle and obtain the second equality, and Qi =

∫
dtQ̇i(t)

and W =
∫
dtẆ (t) are the heat and work for one sta-

tionary cycle, respectively. The efficiencies for the CD
dynamics and the classical dynamics are defined in a sim-
ilar manner. Note that we include the effect of the CD
in a standard manner by defining the efficiency based on
the total Hamiltonian including the CD field. We also
note that there are several proposals for the energy costs
of STA47–49, including a modified definition of the effi-
ciency29. The cooling power of the cold bath is defined
as ΠC = QC/(2π/Ω), and a similar definition applies to
the heating power ΠH as well.

We plot the power in Fig. 7 and the efficiency in Fig. 8
as a function of the driving frequency Ω for the original
dynamics, CD dynamics, and classical dynamics. Be-
cause of the coherent oscillations seen in Fig. 4 and Fig. 5
for the original dynamics, the population of the ground
and excited states may be reversed and QC varies from
negative to positive values depending on Ω. This af-
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fects the cooling power and the efficiency as it falls down
rapidly in the large Ω regime. For the CD dynamics, we
can largely improve them in the large Ω regime. For the
cooling and heating powers, we find that the differences
between the CD dynamics and the classical dynamics are
tiny. However, these differences become apparent in the
efficiency, as we find a slight decrease of the efficiency for
the CD dynamics compared with that for the classical
dynamics. Since δ scales linearly in Ω, the discrepancy
of the efficiency between the CD and classical dynamics
becomes larger as we speed up the thermodynamic cycle.

IV. EXPERIMENTAL FEASIBILITY

Finally, we discuss possible experimental realizations
of the refrigerator cycles proposed in this paper. The
qubit Hamiltonian H0 (1) can be realized by a transmon
qubit, where the external magnetic flux Φ(t) is applied
to the SQUID-loop and the Josephson coupling energy
EJ [Φ] is tunable (See Fig. 1). In this case, q(t) is given
by q = (Φ − Φ0/2)/Φ0, where Φ0 = h/2e is the super-
conducting flux quantum. The energy gap at q = 0 is
characterized by ∆ ∼ EC/EJ [Φ0/2] and the overall en-
ergy is E0 ∼ EJ [Φ0/2], where EC refers to the Cooper
pair charging energy.

The CD field H1 (12) can be realized by the stan-
dard x, y-axis single-qubit rotation, where a microwave
drive line is capacitively coupled to the qubit (see Fig. 1).
The interaction Hamiltonian reads ΩdVd(t)σy, where Ωd

is the qubit-microwave coupling frequency and Vd(t) is
the time-dependent voltage which is applied to the qubit
through the microwave drive line50. By choosing θ̇t =
ΩdVd(t), the CD field H1 (12) can be implemented.

The σy coupling of the qubit to the hot and cold baths
can be realized by capacitively coupling the qubit to two
resonators (See Fig. 1). We note that a transmon qubit
has been capacitively coupled to two RLC resonators
(without modulating the qubit frequency) and the sta-
tionary heat currents have been measured experimen-
tally10.

We also note that H0 + H1 can be realized in various
information processing systems by driving the qubit with
classical fields in the σx, σy and σz directions in order to

realize the E0∆σx, θ̇tσy and E0q(t)σz terms. Note that
this technique is standard in many quantum information
experiments such as superconducting qubits50,51, NMR
systems52, and NV-center spins53, where one can rotate
the qubit in any direction of the Bloch sphere. It has

also been utilized to generate a time-dependent Hamilto-
nian and its control CD field for a superconducting Xmon
qubit54.

V. CONCLUDING REMARKS

In conclusion, we have studied the performance of a
quantum Otto-type refrigerator assisted by the counter-
diabatic driving (CD) technique. We find that the CD
can effectively counteract non-adiabatic coherent excita-
tions even in open quantum systems, allowing a large
improvement of the thermodynamic efficiency of the re-
frigerator. A comparison with a classical model is also
studied, and we show the deviation of the CD dynamics
from the classical master equation in terms of a param-
eter δ(t) (24) which quantifies the relative energy scale
between the CD field and the original Hamiltonian. This
deviation arises from the mismatch between the basis in
which the dissipation acts on and that in which the CD
is designed to follow, and decreases the performance of
the CD. We have also discussed experimental feasibil-
ity of the proposed quantum refrigerator. We hope that
this investigation of efficient cooling and heat transfer-
ring techniques will contribute to further developments
of quantum information technologies.
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