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We calculate the fermionic spectral function Ak(ω) in the spiral spin-density-wave (SDW) state
of the Hubbard model on a quasi-2D triangular lattice at small but finite temperature T . The
spiral SDW order ∆(T ) develops below T = TN and has momentum K = (4π/3, 0). We pay special
attention to fermions with momenta k, for which k and k + K are close to Fermi surface in the
absence of SDW. At the mean field level, Ak(ω) for such fermions has peaks at ω = ±∆(T ) at T < TN
and displays a conventional Fermi liquid behavior at T > TN . We show that this behavior changes
qualitatively beyond mean-field due to singular self-energy contributions from thermal fluctuations
in a quasi-2D system. We use a non-perturbative eikonal approach and sum up infinite series of
thermal self-energy terms. We show that Ak(ω) shows peak/dip/hump features at T < TN , with
the peak position at ∆(T ) and hump position at ∆(T = 0). Above TN , the hump survives up to
T = Tp > TN , and in between TN and Tp the spectral function displays the pseudogap behavior. We
show that the difference between Tp and TN is controlled by the ratio of in-plane and out-of-plane
static spin susceptibilities, which determines the combinatoric factors in the diagrammatic series
for the self-energy. For certain values of this ratio, Tp = TN , i.e., the pseudogap region collapses.
In this last case, thermal fluctuations are logarithmically singular, yet they do not give rise to
pseudogap behavior. Our computational method can be used to study pseudogap physics due to
thermal fluctuations in other systems.

I. INTRODUCTION

The pseudogap behavior, observed in several classes of
materials, most notably high Tc cuprates, remains one of
the mostly debated phenomenon in correlated electron
systems. There are two key scenarios of the pseudogap,
each supported by a set of experiments. One is that
the pseudogap is a distinct state of matter with an or-
der parameter, which is either bilinear in fermions (e.g.,
loop current order1), or a four-fermion composite order
(e.g., a spin nematic2–4), or a topological order that can-
not be easily expressed via fermionic operators5. Within
this scenario, the experimentally detected onset temper-
ature of a pseudogap, Tp, is a phase transition temper-
ature. The other scenario is that the pseudogap is a
precursor to an ordered state – SDW magnetism6–9, su-
perconductivity10–13, or both, with the relative strength
of the two precursors set by doping (a precursor to SDW
is the dominant one at smaller dopings, and a precursor
to superconductivity is the dominant one at larger dop-
ings). Within this scenario, the system retains a dynami-
cal memory about the underlying order in some tempera-
ture range where the order is already destroyed, and this
memory gradually fades and disappears at around Tp.
At around this temperature the behavior of the spectral
function crosses-over to that in a (bad) metal. A similar
but not equivalent scenario, is for pseudogap as a pre-
cursor to Mott physics14. The precursor scenario is not
strictly orthogonal to the competing order scenario as,
e.g., the depletion of the spectral weight at low energies
in the antinodal region due to pseudogap formation does
enhance the system’s tendency to develop a CDW order
with axial momenta, consistent with the one observed in
the cuprates15–18. The same holds for pair density-wave

order19,20. Whether a pre-existing pseudogap helps the
system to develop a topological order is less clear.

In this paper we analyze several aspects of the pre-
cursor scenario. There is no clear path to get a precur-
sor behavior at T = 0, but earlier works6,7,9,12,21 have
found that thermal (static) SDW and/or superconduct-
ing fluctuations do give rise to precursors and associated
pseudogap behavior. In particular, previous studies of
quasi-2D systems on a square lattice have found that
the pseudogap does develop in some T range above the
critical TN towards a commensurate (π, π) SDW order
due to magnetic thermal fluctuations6,9. There have also
been extensive numerical efforts in understanding the un-
derlining mechanism of pseudogap in the 2D Hubbard
model on a square lattice (see e.g. 14,22,23). The fluctu-
ation diagnostics method have identified the static anti-
ferromangetic fluctuation as the dominant contribution
that gives rise to pseudogap behavior at T > 022. The
question we address is whether pseudogap is a generic
property of a system near a magnetic ordered state, or
there are situations (e.g. for different lattice geometries)
when magnetic thermal fluctuations are logarithmically
singular, but do not give rise to pseudogap behavior. To
analyze this, lowest-order perturbation theory is not suf-
ficient, and one has to sum up infinite series of singular
self-energy corrections due to thermal SDW fluctuations.
There is a well established computational procedure for
this, similar to eikonal approximation in the scattering
theory24. Here we consider, within the same computa-
tional scheme, the effects of thermal SDW fluctuations for
the Hubbard model on a triangular lattice. Importantly,
the SDW order on a triangular lattice is coplanar but
non-collinear in the large U limit near half-filling (with
ordering wave vector K = (4π/3, 0)), and the in-plane
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and out-of-plane magnetic susceptibilities are generally
different.

We argue that the prefactors in the diagrammatic se-
ries for the thermal self-energy depend on the ratio of the
two susceptibilities, and by changing this ratio one can
control the outcome of the summation of the series. This
introduces a control parameter, by which one can vary
the strength of the pseudogap behavior. We show that,
for a certain value of the control parameter, the system
does not develop the pseudogap, despite that self-energy
corrections are singular. We note in passing that there
is a similarity between this last case in our model and
the “supermetal” scenario for 2D fermions near a single
Van-Hove point25. In both cases, corrections to fermionic
propagator are logarithmically singular, yet the system
retains a conventional Fermi liquid behavior.

As we said, we consider the Hubbard model on a tri-
angular lattice, in the large U limit. At T = 0, this
model displays a co-planar, 1200 SDW order with order-
ing momentum K = (4π/3, 0). Within mean-field26, the

magnitude of the SDW order is ∆(0) = U |〈~S〉| = U/2 at

half-filling. Quantum fluctuations reduce |〈~S〉| by about
50%27,28, but do not destroy the order, nor change that
∆(0) ∼ U . The order gaps fermions at hot spots, and the
distance between the conduction and the valence band is
2U |〈~S〉| (which in the mean-field approximation is the
Hubbard U).

At a finite T , the order is strongly affected by thermal
fluctuations. In a 2D system, they destroy long-range
order at any finite T . In a quasi-2D system, which we

consider, the corrections to |〈~S〉| scale as (T/J)| log ε|,
where J = O(t2/U) is the exchange interaction (t is the
hopping), and ε measures the deviations from pure two
dimensionality. Long-range order get destroyed at TN ∼
J/| log ε|.

In our analysis we primarily focus on the “hot spots”
in momentum space, i.e., on the k points, for which k
and k + K are both on the Fermi surface without SDW.
An SDW order ∆(T ) opens up a spectral gap at these k.
In the mean-field approximation, the spectral function
Ak(ω) at hot spots then has two peaks at ω = ±∆(T ) (see
Fig. 1(a)). Within mean-field, the peak position scales
with the magnitude of a SDW order and vanishes right
at TN , where the order disappears. At higher T , the
spectral function of a hot fermion is peaked at ω = 0,
as is expected for a fermion on the Fermi surface in an
ordinary paramagnetic metal (see Fig. 1(b)). Thermal
fluctuations can change this behavior. In general case,
the spectral function at T � TN and at T � TN are
similar to that in the mean field approximation, and
Fig. 2(a) (Fig. 2 (e)) is equivalent to Fig. 1(a) (Fig. 1
(b)). However, in the mean field approximation, there
is no intermediate behavior, i.e., the spectral function
changes between Fig. 1(a) and Fig. 1(b) at T = TN . In
the presence of fluctuations, there is intermediate behav-
ior, as shown in Fig. 2 (b, c, d). For a generic value of
our control parameter, Ak(ω) in a SDW state displays a
peak, a dip, and a hump. A peak is at ∆(T ), a hump
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FIG. 1. The evolution of the spectral function in mean-field
approximation, at a hot spot on the Fermi surface. (a) In the
SDW state, the spectral function has two peaks at energies
±∆(T ), where ∆(T ) is proportional to the magnitude of SDW
order parameter. (b) At T = TN , the two peaks merge, and
at T > TN , the spectral function has a single maximum at
ω = 0, like in an ordinary metal. The peaks are δ−functional
in “pure” mean-field approximation, but get broadened by
regular (i.e., non-logarithmical) thermal and quantum fluctu-
ations. We added a finite broadening phenomenologically to
model these effects.

is near ∆(T = 0), and a dip is in between these two
scales (see the dashed line in Fig. 2(b)). The spectral
function almost vanishes below the peak, i.e., a true gap
is ∆(T ), like in a mean-field approximation. However,
the spectral weight in the peak is reduced compared to
a mean-field Ak(ω), and the difference is transferred into
a hump. At TN , the peak disappears, but the hump sur-
vives (see Fig. 2 (c)). In between TN and Tp, the spectral
function at a hot spot is non-zero at ω = 0, like at kF in
a ordinary metal, but the maximum in Ak(ω) remains at
a finite frequency, i.e., the system displays a pseudogap
behavior (see Fig. 2(d)). As T increases towards Tp, the
value of Ak(0) increases, and above Tp, the maximum of
Ak(ω) moves to ω = 0 (see Fig. 2(e)). Fig. 2 is the key
result of our analysis. We show later in the paper how it
was obtained.

We also note that at a special value of the control pa-
rameter, the spectral function below TN has only a peak
at ω = ±∆(T ), but no hump. Above TN , the peak disap-
pears, and the spectral function has a single maximum at
ω = 0, like in ordinary paramagnetic metal. In this situ-
ation, precursor behavior does not develop. Still, even in
this case, the spectral function dressed by thermal SDW
fluctuations is quite different from the mean-field Ak(ω)
(see Eq. (31)).

We will use three simplifications in our analysis. First,
we neglect thermal variation of the chemical potential
µ. In principle, µ(T ) has to be computed simultane-
ously with the fermionic self-energy, from the condition
on the total number of fermions. In the SDW state, and
in the pseudogap state above TN , µ(T ) by itself evolves
with temperature, and this evolution keeps the position
of the hump at distance O(J) from the Fermi energy. As
we said, our key goal is to analyze how the pseudogap
behavior varies as we change the control parameter. Be-
cause the distance between the two humps at positive
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FIG. 2. The sketch of the evolution of the spectral function at a hot spot, when series of logarithmical corrections from thermal
fluctuations are included. (a) Deep inside the SDW phase, the spectral function is the same as in mean-field approximation
- there are peaks at ω = ±∆(0) ∼ U . (b) At T ≤ TN , the spectral weight vanishes at |ω| < ∆(T ), like in mean-field, but
the spectral function also develops a hump at |ω| ∼ ∆(0). (c) At T = TN , the true gap vanishes, but the hump remains.
(d) At T ≥ TN , the spectral function is non-zero at all frequencies, but has a minimum at ω = 0 rather than a peak. This
has been termed as pseudogap behavior. (e) The conventional metallic behavior is restored only at T > Tp (T � TN ). The
temperature around which the hump vanishes is defined as Tp. The solid lines in panel (b) show the result for the spectral
function, when only singular thermal self-energy corrections are included. The dashed lines show the full result, including
non-singular self-energy corrections (see the discussion in Sec. IV C).

and negative ω in Fig. 2 does not depend on µ, we will
not include the thermal evolution of µ into our analysis
and just use the non-pseudogap normal state value for
µ. As the consequence of keeping µ fixed, the spectral
function Ak(ω) at a hot spot is a symmetric function of
frequency, and the positions of the peak and the hump in
the SDW state and the hump in the pseudogap state are
all set by U . Second, we compute the spectral function
only at T < TN . This is enough for our purpose. Indeed,
it is clear from Fig. 2 that when the spectral function
retains a hump at T = TN − 0, it necessary displays a
pseudogap behavior at T > TN . And, likewise, when the
spectral function does not have a hump at T = TN − 0,
it does not display a pseudogap behavior at T > TN .
Third, in this work we only consider the renormaliza-
tion of the fermionic propagator due to an exchange of
transverse spin fluctuations. The self-energy due to an
exchange of longitudinal spin fluctuations is non-singular
and we neglect it. We caution that this last approxima-
tion works well at T substantially smaller than TN , when
the transverse fluctuations are gapless, but the longitudi-
nal fluctuations are gapped. At T ≈ TN , the gap for lon-
gitudinal fluctuations gets smaller, and these fluctuations
may enhance the tendency towards pseudogap behavior

6.

Before we proceed, we briefly outline the computa-
tional procedure. As we said, it is similar to the eikonal
approximation in the scattering theory24. To our knowl-
edge, its was first applied in the solid state context in the
study of one-dimensional (1D) systems with charge den-
sity wave (CDW) fluctuations29 (see also Refs.30). The
eikonal approximation been applied to cuprates to ana-
lyze the precursors of a collinear (π, π) SDW state, in
the paramagnetic phase 6 and in the SDW state9. It has
also been used in the calculations of non-analytical cor-
rections to Fermi liquid behavior in a 2D metal31. In our
analysis, we follow Ref. 9, introduce valence and conduc-
tion bands in the SDW state, and derive the vertex for
the interaction between fermions and magnons (Gold-
stone modes of the transverse fluctuations of the order
parameter). The 120◦ SDW order is co-planar, but not
collinear, which implies that it fully breaks the SU(2)
spin rotation symmetry. As the consequence, there are
three Goldstone modes. The first two are associated with
transformations that rotate the plane, where the order
sets in. The third one rotates the SDW order parame-
ter within the plane. Accordingly, there are two different
spin susceptibilities, χ⊥ and χ‖32,33, for out-of-plane and
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in-plane rotations, respectively.

At a finite temperature, the leading contributions to
the renormalization of the Green’s function come from
scattering of thermal bosons (in Matsubara formalism,
this corresponds to scattering processes with zero trans-
ferred bosonic frequency). These thermal self-energy con-
tributions are logarithmically singular, and scale as pow-
ers of T/J | log ε|, where, we remind, ε measures the de-
viations from pure two dimensionality (see Eq. (19) be-
low). We use | log ε| � 1 as a parameter, which allows
us to separate singular contributions due to thermal fluc-
tuations from regular contributions of these fluctuations
(the terms of order T/J , without | log ε|), and perturba-
tive contributions of quantum fluctuations. The latter
are of order one, but are not relevant from physics per-
spective and can be safely neglected in our analysis of the
pseudogap due to precursors to SDW8 (non-perturbative
quantum corrections may be quite relevant5, but this
goes beyond the scope of our work). We assume that
TN/J is small and for n-loop self-energy keep only the
terms of order (T/J | log ε|)n. These terms contain both
self-energy and vertex corrections, which we put on equal
footings.

We show that the combinatoric factor at n-loop order,
(which we define as Cn in the text) scales factorially with
n, and its magnitude depends on the ratio χ‖/χ⊥. We
sum the contributions from all orders and obtain the full
self-energy. We then convert from Matsubara to real axis
and obtain the spectral function Ak(ω).

The rest of the paper is organized as follows. In
Sec. II we introduce the Hamiltonian, discuss mean-field
solution, and obtain the dynamical magnetic suscepti-
bility associated with the Goldstone modes, the effec-
tive 4-fermion interaction mediated by magnons, and the
magnon-fermion vertex function. In Sec. III, we obtain
and sum up the series of leading logarithmical diagrams
for the fermionic Green’s function. In Sec. IV we obtain
the spectral function for different ratios of χ‖/χ⊥. This
is the main result of the paper. In Sec. V we discuss the
results and summarize our findings.

II. THE MODEL

A. The Hamiltonian and the mean field solution

The point of departure for our analysis is the one band
Hubbard model for spin 1/2 fermions on a triangular lat-
tice

H =−
∑

〈i,j〉,σ
ti,j(c

†
i,σcj,σ + c†j,σci,σ)− µ

∑

i

c†i ci

+ U
∑

i

ni↑ni↓ (1)

Without loss of generality, we restrict the hopping to
nearest neighbors.

We take as an input the fact that the ground state of
the model for large U is the 120◦ co-planar SDW order.
Without loss the generality, we set the global coordinate
such that the coplanar order is in the x-z plane, and
〈Szi 〉+i〈Sxi 〉 = S̄ exp(±iK·Ri), where K = (4π/3, 0) and
S̄ is the magnitude of average magnetization (S̄ ≈ 1/2
at mean field level near half-filling and in the large U
limit). The ± sign in the exponent determines whether
the “direction” of the spiral, i.e., whether the order is
+120◦ or −120◦. Without loss of generality we con-
sider the + case in the rest of the paper. We intro-
duce the rotating reference frame26, in which all spins
are along the same direction z̃i. The transformation
of fermionic operators ci to the new basis is given by
ci = Tic̃i, where Ti = exp(−iK · Riσy/2). One can
straightforwardly verify that in the new coordinate frame

〈S̃i〉 = (1/2)〈c̃†i,ασαβ c̃i,β〉 = {0, 0, S̄}, i.e. the original
120◦ SDW order becomes ferromagnetic. The Hubbard
Hamiltonian in the rotating reference frame takes the
form

H =−
∑

〈i,j〉
ti,j(c̃

†
iTi,j c̃j + c̃†jTj,ic̃i)− µ

∑

i

c̃†i c̃i

+ U
∑

i

c̃†i,+c̃i,+c̃
†
i,−c̃i,−, (2)

where Ti,j = T †i Tj . In explicit form, we have

Ti,j =

(
cos(K ·Rij/2) sin(K ·Rij/2)
− sin(K ·Rij/2) cos(K ·Rij/2)

)
, (3)

where Rij = Ri −Rj .
The quadratic Hamiltonian Eq. (2) in momentum

space is:

Hquad =
∑

k

(
c̃†k,+ c̃†k,−

)(
(εk+ + εk−)/2− µ i(εk+ − εk−)/2
−i(εk+ − εk−)/2 (εk+ + εk−)/2− µ

)(
c̃k,+
c̃k,−

)
, (4)
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where εk+ = εk+K/2, εk− = εk−K/2 and
εk = −t∑〈i,j〉 exp(ik · rij) = −2t(cos kx +

4 cos kx/2 cos
√

3ky/2). To simplify notations, we
define ωk = 1

2 (εk+ + εk−), ηk = 1
2 (εk+ − εk−). In these

notations,

Hquad =
∑

k

(
c̃†k,+ c̃†k,−

)(
ωk − µ iηk
−iηk ωk − µ

)(
c̃k,+
c̃k,−

)
.

(5)

1. The mean-field approximation

In the SDW state, 〈c̃†i,+c̃i,+〉 = −〈c̃†i,−c̃i,−〉 = S̄. The
interaction term in mean field approximation reduces to

Hint = U
∑

i

c̃†i,+c̃i,+c̃
†
i,−c̃i,−

→ ∆c†i,−c̃i,− −∆c†i,+c̃i,+, (6)

where ∆ = US̄. The mean field Hamiltonian becomes

HMF =
(
c̃†k,+ c̃†k,−

)(
ωk − µ−∆ i ηk
−i ηk ωk − µ+ ∆

)(
c̃k,+
c̃k,−

)
.

(7)

This Hamiltonian can be diagonalized by introducing the
operators of canonical modes Γk = {γck, γvk}T via Γk =

V †k c̃k, where the unitary matrix Vk is

Vk =

(
cosφk i sinφk
i sinφk cosφk

)
, (8)

and cosφk =
√

1
2

(
1− ∆√

∆2+η2
k

)
, sinφk =

−
√

1
2

(
1 + ∆√

∆2+η2
k

)
. The mean-field Hamiltonian

in terms of canonical modes is HMF = Γ†kΛkΓk. where

Λk = V †kHMFVk is diagonal. In explicit form

HMF =
∑

k

(Eckγ
c†
k γ

c
k + Evkγ

v†
k γ

v
k), (9)

and Eck = ωk +
√

∆2 + η2
k, Evk = ωk −

√
∆2 + η2

k.
A comment is in order here. The expressions for Eck

and Evk are in the rotated coordinate frame. At ∆ = 0,
Ec,vk = ε± = εk±K/2. A hot spot location khs in the
rotated coordinate frame is defined as a point for which
εkhs+K/2 = εkhs−K/2 = 0, hence Eckhs = Evkhs = 0. How-

ever, once we shift khs by K, we find that Ec,vkhs+K is
either zero or εkhs+3K/2. The latter is numerically small
at half-filling but strictly vanishes only for a certain hole
doping. In the SDW state we then have |Ec,vkhs | = ∆,

but |Ec,vkhs+K| is not exactly ∆, with some small correc-
tion at order t. Below we neglect this complication and
approximate |Ec,vkhs+K| by ∆.

The chemical potential µ and the SDW order parame-
ter ∆ should be obtained self-consistently as a function of
the interaction strength U . At small U/t, self-consistent
analysis yields ∆ = 0, i.e., a paramagnetic Fermi liq-
uid state with large Fermi surface remains stable down
to T = 0. This is similar to the case of the Hubbard
model on a square lattice with both nearest and next
nearest neighbor hopping. Once the interaction exceeds
a threshold, U > Uc, the SDW order develops. This
changes the Fermi surface topology to a set of small elec-
tron and hole pockets. The sizes of electron and hole
pockets shrinks as U increases. At half-filling, both elec-
tron and hole pockets vanish the large U limit, i.e., all
excitations are gapped: there is a filled valence band
with energy Evk = ωk −

√
∆2 + η2

k and an empty con-

duction band with energy Eck = ωk +
√

∆2 + η2
k. Such a

state can be adiabatically connected to a Mott insulator,
which, strictly speaking, does not require magnetic or-
der. Away from the half-filling, the size of the remaining
electron and hole pockets is determined by the Luttinger
theorem for a SDW state34. We show the evolution of
Fermi surface geometry with increasing U in Fig. 3.

Across the transition at Uc, the spectral function at
the “hot spot” Ac,v(khs, ω) = − 1

π ImGc,v(khs, ω) changes
qualitatively (see Fig. 1). At ∆ = 0, Ac(khs, ω) =
Av(khs, ω) = 1/(ω + iδ), i.e., the spectral function is

strongly peaked at ω = 0. At a finite ∆, G
(0)
c,v(khs, ω) =

1
ω+iδ∓∆ , and the maximum shifts to ω = ±∆. In the

large U limit, ∆ = US̄, i.e., the distance between the
two peaks is Hubbard U , like in a Mott insulator.

B. Magnon-fermion interaction

To obtain the Green’s function renormalized by ther-
mal fluctuations in the SDW state, one should first find
the effective magnon-fermion interaction vertex.

The magnon propagator can be obtained by either the
linear spin wave analysis33 or by evaluating the spin sus-
ceptibility within the generalized RPA framework in the
large U limit26. We present the details of the spin wave
analysis in Appendix A and here list the results and use
physical arguments to rationalize them.

We set the 120◦ coplanar order to be in the x−z plane
and move to rotating coordinate frame, where the order
becomes ferromagnetic.

The local coordinates for the A, B, C sublattices are
shown in Fig. 4(a). A straightforward symmetry analy-
sis shows that in the SDW state there should be three
gapless Goldstone modes, one associated with in-plane
fluctuations, and two associated with out-of-plane fluc-
tuations32,33. From Fig. 4(b) we see that the in-plane
transverse spin wave is along x̃ for all sub-lattices, which
means that this Goldstone mode comes from fluctuations
of Sx̃ at the Γ point. The corresponding dynamical sus-
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FIG. 3. The evolution of Fermi surface at T + 0 as the SDW
order ∆ develops upon increasing of the Hubbard U . For def-
initeness, we consider the case of weak hole doping. (a): The
Fermi surface at U = Uc, ∆ = 0+ in the original (not rotated)
coordinate frame. The Fermi surface for one spin component
is shifted by K compared to the Fermi surface for the other
spin component. (b)-(d): The evolution of the Fermi surface
in the rotated (spin-dependent) coordinate frame. The Fermi
surfaces are shifted by K/2 compared to those in panel (a)
(see Eq. (3)). The blue and red dots mark the hot spots –
the points where the two Fermi surfaces cross at ∆ = 0+.
The three hot spots in blue (red) are connected by the wave
vector ±K. Panel (b) – Fermi surfaces at U = Uc, ∆ = 0+,
panels (c) and (d) – Fermi surfaces at U > Uc, ∆ > 0. Both
electron (orange line) and hole (green line) pockets shrink as
∆ increases.

ceptibility is

χx̃x̃(q,Ω) =
ρ‖

Ω2 − v2
‖q

2
. (10)

The other two Goldstone modes correspond to out-of-
plane spin wave fluctuations. Figs. 4(c,d) show two inde-
pendent modes. In one of them spins on the A sublattice
are fixed, and spins on the B and C sublattices rotate
along y(ỹ) in the opposite direction. In the other mode,
spins on the B sublattice are fixed, and spins on the A
and C sublattices rotate along y in the opposite direc-
tion. The linear combinations of the two fluctuations
yield two Goldstone modes with equal velocities around
±K = (±4π/3, 0) in momentum space. The correspond-
ing dynamical spin susceptibility is

χỹỹ(q ±K,Ω) =
ρ⊥

Ω2 − v2
⊥q

2
. (11)

In the rest of the paper, we drop the ∼ label for local

AB

C
⊙ x

z

y

⊙ x̃

z̃

ỹ

⊙

x̃
z̃

ỹ
⊙

x̃

z̃ ỹ

(a)

AB

C

x̃

x̃

x̃

in-plane

(b)

AB

C

⊙

⊗
ỹ

ỹ

out-of-plane

(c)

AB

C

⊙

⊗
ỹ

ỹ

out-of-plane

(d)

FIG. 4. (a) Magnetic order (black arrow) on three sublat-
tices A, B, C. Blue and orange arrows indicate, respectively,
global and local coordinates in spin space. (b-d) Momen-
tum and spin components for the three Goldstone modes [see
Eq. (13)]. The in-plane Goldstone mode in (b) is described
by the pole in χx̃x̃(Γ), and the linear combinations of the out-
of-plane modes in (c) and (d) are described by the poles in
χỹỹ(±K).

coordinates unless there is ambiguity.

In Hamiltonian approach, static χxx(q, 0) = χxx(q)
and χyy(q, 0) = χyy(q) determine the effective static in-
teraction between fermions, mediated by magnons. To
get this interaction, we take the Hubbard interaction

Hint = U
∑
i c
†
i,+ci,+c

†
i,−ci,− =

∑
i
U
2 (n̂i,+ + n̂i,−)− U

2 Ŝ
2
i ,

dress it by RPA renormalization, and keep the spin part
of the dressed interaction35 in the σxσx and σyσy chan-
nels. This yields

Hxx = −U
2

N

∑

k,k′,q

χxx(q)c†k+qσ
xck c

†
k′−qσ

xck′

Hyy = −U
2

N

∑

k,k′,q

χyy(q)c†k+q±Kσ
yck c

†
k′−q∓Kσ

yck′

(12)

We now introduce the magnon operators (exq , e
y
q±K) via

i

∫
dteiΩt〈Tex̃−q(t)ex̃q (0)〉 = χx̃x̃(q,Ω)

=
ρ‖

Ω2 − v2
‖q

2

i

∫
dteiΩt〈Teỹ−q∓K(t)eỹq±K(0)〉 = χỹỹ(q ±K,Ω)
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=
ρ⊥

Ω2 − v2
⊥q

2
(13)

A little experimentation shows that Eq. (12) are repro-
duced if we set magnon-fermion interaction to be

Hm−f = −U
√

2

N

∑

k,q

(
c†k+qσ

xck ê
x
q + c†k+q±Kσ

yck ê
y
q±K

)

(14)

In terms of the conduction and valence fermions, the in-
teraction near the hot spot can be approximated as

Hm−f = −U
√

2

N

∑

k,q

êxq (γc †k+qγ
v
k + γv †k+qγ

c
k)

− iU
√

2

N

∑

k,q

êyq±K(γc †k+q±Kγ
v
k − γv †k+q±Kγ

c
k). (15)

We present this interaction graphically in Fig. 5. We use
a double wavy line (e) for magnon propagator and use a
filled circle (•) for magnon-fermion vertex with outgoing
valence fermion (γv†) and incoming conduction fermion
(γc), and an empty circle (◦) for the vertex with outgoing
conduction fermion (γc†) and incoming valence fermion
(γv). From Eq. (15), the magnon-fermion vertex for êy

is purely imaginary, and is of opposite sign for • and ◦
vertices. This turns out important when we calculate the

full Green’s function at the two-loop and higher orders.
The interaction terms involving only conduction or only
valence fermions are small in q and will not be relevant
to our analysis. The presence of q in these terms is con-
sistent with the Adler principle, which states that the
interaction between Goldstone bosons and fermions from
the same branch should be of gradient type, to preserve
the Goldstone theorem (see Ref.36 for more discussions).
Note that the strength of magnon-fermion interaction is
of order Hubbard U .

III. THE FULL FERMIONIC GREEN’S
FUNCTION IN THE SDW STATE

We now use the expressions for the quadratic SDW
Hamiltonian, Eq. (7), and the magnon-fermion interac-
tion, Eq. (15), and obtain the expression for the full
fermionic propagator Gc,v(khs, ω) at a finite tempera-
ture T . We show explicitly that the leading corrections
come from the exchange of thermal transverse spin wave
fluctuations. These corrections are logarithmically sin-
gular in quasi-2D systems, and n-loop correction scales
as | log ε|n, where, we remind, ε measures the deviation
from pure two-dimensionality and serves as the infrared
cutoff to regularize the divergence.

The fully renormalized Green’s function at one of the
hot spots is expressed as

Gc,v(khs, iωn, z) = Gc,v (0)(khs, iωn)

∞∑

n=0

Cn(z)(βU2)n
[
Gv,c (0)(khs, iωn)Gc,v (0)(khs, iωn)

]n
, (16)

where the combinatoric factor Cn(z) increases factori-
ally with n and depends on the ratio of in-plane and
out-of-plane spin-wave susceptibilities. The factor β =
πT
ABZ |(χ‖− 2χ⊥)|| log ε| measures the strength of thermal

fluctuations (see below).

To simplify the presentation below, we express the fully
renormalized Green’s function as

Gc,v(khs, iωn, z) = Gc,v (0)(khs, iωn) + [Gc,v (0)(khs, iωn)]2Σ̃(khs, iωn), (17)

where Σ̃(khs, iωn) can be evaluated order by order in

terms of β. We will use Σ̃(m)(khs, iωn) to label the mth-

loop correction. Note that Σ̃(m)(khs, iωn) is not equiva-
lent to the mth-loop self-energy as it includes both irre-
ducible and reducible diagrams, which we will count on
equal footings. Below we will use the term “reducible
self-energy” in reference to Σ̃.

A. Perturbation theory at one-loop order

The fermion (reducible) self-energy in Matsubara fre-
quency at one-loop order is

Σ̃c,v (1)(k, iωn) =

− U2 T

N

∑

q,m,j

χjj(q, iΩm)Gv,c (0)(k + q, iΩm + iωn)

(18)
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c v

magnon =

c v

êxq or

c v

êyq±K

v c

magnon =

v c

êxq or

v c

êyq±K

FIG. 5. Magnon-fermion vertex. Double wavy line describes
a magnon propagator with a generic momentum and spin
component. Dashed and single wavy lines describe magnon
propagators êxq near the Γ point and for magnon propaga-
tor êyq±K near the ±K points, respectively. We use filled •
(hollow ◦) circles to label vertices with incoming (outgoing)
conduction fermion and outgoing (incoming) valence fermion.

k k + q

q

k k k + q ±K

q ±K

k

FIG. 6. One-loop self-energy diagrams from the exchange of
thermal transverse spin fluctuations.

The two singular contributions to Σc,v (1)(k, iωn) come
from xx and yy components of the susceptibility. The
contribution from χxx(q, iΩ) to the leading logarithmical
order is

Σ̃c,v (1a)(k, iωn)

= −U2 T

N

∑

q,m

ρ‖
(iΩm)2 − v2

‖q
2

1

iΩm + iωn − Ev,ck+q

≈ −U2 T

N

∑

q,m=0

ρ‖
−v2
‖q

2

1

iωn − Ev,ck+q

= U2 ρ‖T

v2
‖

∫
d2q

ABZ
1

q2

1

iωn − Ev,ck+q

≈ U2 πρ‖T

v2
‖ABZ

| log ε| 1

iωn − Ev,ck
=

β1U
2

iωn − Ev,ck
, (19)

where we define β1 =
πρ‖T

v2
‖ABZ

| log ε| =
πχ‖T

ABZ | log ε|. The

contributions from non-zero bosonic Matsubara frequen-
cies are finite, and we neglect them. The contribution
from χyy(q ±K, iΩ) is, similarly,

Σ̃c,v (1b)(k, iωn) ≈ U2 πρ⊥T
v2
⊥ABZ

| log ε| 1

iωn − Ev,ck±K

=
β2U

2

iωn − Ev,ck±K
, (20)

where β2 = πρ⊥T
v2
⊥ABZ

| log ε| = πχ⊥T
ABZ | log ε|. At a hot

spot, k = khs, E
v,c
khs

= Ev,ckhs+K = ∆. The sum of the

two singular contributions then gives Σ̃c,v (1)(k, iωn) =
(β1+2β2)U2

iωn−Ev,ckhs
. We will see later that it is convenient to

define β = |β1 − 2β2| and re-express Σ̃c,v (1)(k, iωn) as

Σ̃c,v (1)(k, iωn) =
(
β1+2β2

β

)
βU2Gv,c (0)(khs, iωn).

B. Perturbation theory at two-loop order

The reducible self-energy at the two-loop order is ob-
tained by summing over 27 = 32 3!! diagrams, where
(2n − 1)!! → 3!! counts the number of diagrams with
different topology [see Fig. 7(a)]. As there are three
Goldstone modes, there are 3n → 32 diagrams in each
topology. The overall factor for each diagram is β1 or
β2, like for one-loop diagrams, but the sign is either
plus or minus. To explain the origin of sign alterna-
tion, consider the crossing diagram in Fig. 7(b) as an
example. Because the magnon-fermion vertex for êy is

(a)

=

êx
� êx

�

+

êx
�

êy
±K

+

êy
±K êx

�

+

êy
±K êy

±K

(b)

FIG. 7. (a) The generic structure of two-loop diagrams. (b)
The two-loop crossing diagrams from three magnon Goldstone
modes. The overall factors in these diagrams are, from left to
right and top to bottom, β2

1 , −2β1β2, −2β1β2, (−2β2)2.

imaginary [see Eq. (15)], one can show that the two-loop
Green’s function from magnon propagator of êy (wavy
line) has prefactor 1 = (±i)(∓i) when ending with ver-
tices of the opposite type (◦e• or •e◦) as the magnon-
fermion vertices associated with êy contribute to a term
(iγc†γv)(−iγv†γc) in the expansion. Whereas it has pref-
actor −1 = (±i)(±i) when ending with vertices of the
same type (•e• or ◦e◦) as the term takes a form
(iγc†γv)(iγc†γv) or (−iγv†γc)(−iγv†γc). On the other
hand, magnon propagator of êx (dashed line) has the
same prefactor U2 for both the two ways that vertices
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are connected. Following these rules, we find that the
two-loop reducible self-energy from crossing diagrams is

Σ̃c,v (2,crossing)(k, iωn) = (β1 − 2β2)2×
(U2)2Gv,c (0)(khs, iωn)2Gc,v (0)(khs, iωn). (21)

Similarly, we find that the reducible self-energy from non-
crossing diagrams [the last two diagrams in Fig. 7(a)] is

Σ̃c,v (2,non−crossing)(k, iωn) = 2(β1 + 2β2)2×
(U2)2Gv,c (0)(khs, iωn)2Gc,v (0)(khs, iωn). (22)

The total reducible self-energy at the two-loop order is

Σ̃c,v (2)(k, iωn) =

C2(βU2)2Gv,c (0)(khs, iωn)2Gc,v (0)(khs, iωn), (23)

where β = |β1 − 2β2| and C2 = 1 + 2
(
β1+2β2

β

)2

.

C. perturbation theory at nth-loop

Following the same procedure of computing the prefac-
tors for the diagrams in which magnon propagators are
connected by vertices of the same type or of opposite

types, we find the reducible self-energy at order n to be

Σ̃c,v (n)(k, iωn) =

Cn(z)(βU2)nGv,c (0)(khs, iωn)nGc,v (0)(khs, iωn)n−1,
(24)

where

z =
β1 + 2β2

β
=

χ‖ + 2χ⊥
|χ‖ − 2χ⊥|

, (25)

and the coefficient Cn(z) for n = 2m even and n = 2m+1
odd is expressed as (see Appendix B for details):

C2m(z) =

m∑

l=0

[ (2m) !

(2m− 2l) !!

]2 z2l

(2l) !
,

C2m+1(z) =

m∑

l=0

[ (2m+ 1) !

(2m− 2l) !!

]2 z2l+1

(2l + 1) !
, (26)

where l counts the number of magnon propagators (2l
for n even, 2l + 1 for n odd) which connect vertices of
opposite type ◦e• or •e◦.

Summing up contributions from all loop orders, we find
that the full fermionic Green’s function can be expressed
as

Gc,v(khs, iωn, z) = Gc,v (0)(khs, iωn)

∞∑

n=0

Cn(z)(βU2)n
[
Gv,c (0)(khs, iωn)Gc,v (0)(khs, iωn)

]n
. (27)

where C0 = 1 (this also follows from Eq. (26), if we set
m = 0).

We see from Eq. (25) that the value of z depends on
microscopic details, which set the ratio of the susceptibil-
ities. In the large U limit, the Hubbard model is well ap-
proximated by the nearest-neighbor Heisenberg model37.
For the latter, spin-wave calculations done at large S (the
case reproduced by taking 2S flavors of fermions) yield
χ‖ = 2

9
√

3Ja2
(1− 0.449

2S ), χ⊥ = 2
9
√

3Ja2
(1− 0.285

2S )33. Using

these expressions we find z = 3 − 0.32
S + O(1/S2). At

smaller U , the value of z changes, because there appear
additional terms in the effective spin Hamiltonian, and,
in principle, can be any number. In particular, z = 1
when χ‖ = 0 or χ⊥ = 0; z =∞ when χ⊥ = χ‖/2.

For these two limiting cases, the combinatoric factor
Cn(z) can be obtained in a closed form, as a function of
n (as opposed to the sum for a generic z, as in Eq. (26)).
For z = 1, there is no distinction between magnon prop-
agators which connect vertices of opposite types, ◦e•,
•e◦ or of the same type, ◦e◦, •e•. For n-loop di-
agrams, there are 2n vertices, thus there are (2n − 1)!!
topologically distinct diagrams [see Fig. 8(a)]. In this

situation, Cn(z = 1) = (2n − 1)!!. In the opposite limit

z → ∞, we need to introduce β′ via β = β′

z → 0, and
keep β′ as a constant. The most relevant term in Eq. (26)
at z → ∞ is the one with l = m. The correspond-
ing diagrams contain only magnon propagators connect-
ing vertices of the opposite type ( ◦e• and •e◦). At
nth-loop order, there are n! topologically distinct dia-
grams [see Fig. 8(b)], so βnCn(z = ∞) = n!β′n, i.e.,
Cn(z =∞)→ n!.

We note in passing that the structure of multi-loop
corrections to a fermionic propagator for z = 1 and for
z = ∞ is the same as quasi-1D models with CDW or-
der/fluctuations. The case z = 1 is realized at half-
filling, when the ordering wave vector is Q = π). The
case z =∞ is realized in generic filling29. To our knowl-
edge, there have been no prior analysis of a generic z,
only specific cases have been considered. In our case, the
value of z is determined by ratio of χ‖/χ⊥ and can be
arbitrary in the interval [1,∞). In the next section we
analyze how the spectral function behaves for different z.
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G = + +

+ + +

n
+ + + ...

o
+ ...

(a)

G = + +

+ +

n
+ + + ...

o
+ ...

(b)

FIG. 8. The structure of the diagrammatic series for the
cases of (a) z = 1 and (b) z =∞.

IV. THE SPECTRAL FUNCTION

A. Evaluation

The spectral function is defined as Ac,v(khs, ω) =
− 1
π ImGc,v(khs, ω+ iδ), where ω is a real frequency. Our

goal is to evaluate Ac,v(khs, ω) analytically, starting from
Eqs. (26) and (27). The key technical challenge is to per-
form the summation over n in Eq. (27) in a situation
when Cn(z) is not expressed in a closed form. We note
that because Cn(z) ∼ O(n!), a numerical computation of
Ac,v(khs, ω) is quite challenging on its own.

Our strategy is to first sum over l in Eq. (26), and
express Cn(z) in an integral form as

Cn(z) =
n!

2n2πi

∮ (0+)

dv
(1

v

)n+1 (1 + 2zv)n√
1− 4v2

(28)

for n ∈ Z (
∮ (0+)

means the contour integral goes around
the pole at v = 0 counter-clockwisely, see Fig. 11(a)).
Eq. (28) makes the analytic summation over n in Eq. (27)
possible, as n only appears as an overall factor n! and
as an exponent in the integrand. Summing over n and
converting from Matsubara to real frequency (iωm →
ω + iδ), we find the spectral function in the form of a
single integral (see Appendix C for details).

Ac,v(khs, ω) =
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
∫ 1

(z−1)uω

1
(z+1)uω

dt e−t
1√

(uω t)2 − (1− uω t z)2
Θ(uω), (29)

where uω = βU2

ω2−∆2 and Θ(uω) is the Heaviside step func-

tion. Eq. (29) is the main result of this paper. In the
next section we analyze qualitative features of the spec-
tral function for different z.

B. Results

We can extract from Eq. (29) a few generic properties
of the spectral function.

• The presence of the Heaviside step function

Θ( βU2

ω2−∆2 ) on the r.h.s. of Eq. (29) means that

Ac,v(khs, ω) vanishes for ω ∈ (−∆,∆), i.e., the
SDW order parameter defines the real gap at a hot
spot.

• At the point where SDW order disappears, ∆ = 0

and uω = βU2

ω2 . One can understand whether at
this point the system displays a pseudogap behav-
ior or a conventional Fermi liquid behavior by ana-
lyzing how the spectral function behaves at ω ∼ 0.

When z > 1, the integral is bounded in the ultra-
violet, and a straightforward analysis shows that
Ac,v(khs, ω) ∼ ω, i.e., the maximum of Ac,v(khs, ω)
is at a finite frequency. This implies that the sys-
tem displays a pseudogap behavior. At z = 1,
the upper bound of the integral becomes infinite
( 1

(z−1)uω
→ ∞). Then Ac,v(khs, ω = 0) doesn’t

vanish. One can expand in ω and check that
Ac,v(khs, ω) has a maximum at ω = 0. This is
the expected behavior in an ordinary Fermi liquid.
We verified the dichotomy between the cases z > 1
and z = 1 by analytical calculations for z = 1 and
z =∞ and numerical calculations for an arbitrary
z ∈ (1,∞), as we show below.
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FIG. 9. The spectral function at a hot spot for different z =

|χ‖−2χ⊥
χ‖+2χ⊥

|. This spectral function includes the effects of series

of scattering by transverse thermal fluctuations. Green lines –
deep in the ordered state, T � TN ; orange lines – at T = TN ,
when ∆ = 0+. Panels (a)-(c) are for z = 1, z =∞, and z = 3.

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆ ◆

Fit: ωhump=1.08(z-1)
0.46

◆ Numerical

1.02 1.04 1.06 1.08 1.1
z

0.1

0.2

0.3

ωhump( β U)

FIG. 10. The position of the hump, ωhump, as a function of
z.

Analytical result at z = 1. At z = 1, the upper bound
of the integral goes to∞ and the integral in Eq. (29) can
be evaluated analytically. The result is

Ac,v(khs, ω)

=
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
∫ ∞

1
2uω

dt e−t
1√

2uωt− 1
Θ(uω)

=
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
∫ ∞

0

dη
1

2uω
e−

η+1
2uω

1√
η

Θ(uω)

=
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
√

π

2uω
e−

1
2uω Θ(uω)

= Θ(|ω| −∆)

√
1

2πβU2

√∣∣∣ω ±∆

ω ∓∆

∣∣∣e−
ω2−∆2

2βU2 , (30)

The same result was obtained in Ref.9. We plot
Ac,v(khs, ω) in Fig. 9(a). Taking the limit ∆ → 0, we
obtain

Ac,v(khs, ω) =

√
1

2πβU2
e
− ω2

2βU2 . (31)

We see that at ∆ → 0 (i.e., at T → TN ) the spectral
function is peaked at ω = 0. This implies, as we antic-
ipated, that for z = 1 thermal fluctuations do not give
rise to SDW precursors. We emphasize that this could
not be anticipated from the few first terms in loop expan-
sion of the reducible self-energy as these terms show little
difference between z = 1 and larger values of z. In the
SDW phase, the spectral weight is zero at ω ∈ (−∆,∆),
has a peak at ω = ±(∆ + 0), and gradually decays at
higher frequencies, i.e., it does not show peak/dip/hump
structure. This is indeed consistent with the absence of
a pseudogap at T = TN .

Analytical result at z = ∞. The integral in Eq. (29)
can be evaluated analytically also at z → ∞. As we
discussed before, in this limit one should introduce β′

via β = β′

z and keep β′ finite. Expanding the upper and

lower bounds of the integral in Eq. (29) as 1
(z∓1)uω

=
ω2−∆2

β′U2 (1∓ 1
z ), and substituting into Eq. (29), we obtain
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after some algebra

Ac,v(khs, ω) = Θ(|ω| −∆)
|ω ±∆|
β′U2

e
−ω2−∆2

β′U2 . (32)

This result is also obtained if we replace βnCn(z =∞) by
n!β′n and directly sum up over n. We show Ac,v(khs, ω)
in Fig. 9 (b).

At T = TN , we have

Ac,v(khs, ω) =
ω

β′U2
e
− ω2

β′U2 . (33)

We see that now the spectral function scales as ∼ ω at
small frequencies and has a maximum (a hump) at a fre-
quency ω ∼ √β′U . This implies that at T = TN the

system retains memory about an SDW state. As T in-
creases above TN , the maximum in the spectral function
remains at a finite frequency over some range of T . This
is a canonical pseudogap (precursor to magnetism) be-
havior.

Numerical results at z ∈ (1,∞). We found numeri-
cally that for any z > 1 the spectral function behaves
qualitatively the same as at z = ∞. Fig. 9 (c) shows
the spectral function for z = 3 (the value of z for our
system at large U and large spin S, i.e., large number of
fermionic flavors). As we said above, this “universality”
is expected because the upper bound of the integral in
Eq. (29) is finite, as long as z > 1. Then Eq. (29) can be
simplified as

Ac,v(khs, ω) =
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
∫ 1

(z−1)u

1
(z+1)u

dt e−t
1√(

1
(z−1)u − t

)(
t− 1

(z+1)u

)
(z − 1)u(1 + z)u

Θ(u)

= Θ(|ω| −∆)
|ω ±∆|

πβU2
√

(z − 1)(z + 1)

∫ 1
(z−1)u

1
(z+1)u

dt
e−t√(

1
(z−1)u − t

)(
t− 1

(z+1)u

) . (34)

At T = TN , Ac,v(khs, ω) scales linearly with ω at small
frequencies. This necessarily implies pseudogap behav-
ior in some range of temperatures above TN . We found
numerically that a maximum (a hump) is located at
ω ∼ √βU .

To understand the behavior near z = 1 we calculated
numerically the position of the hump (ωhump) at T = TN ,
as a function of z. We show the result in Fig. 10. Observe
that ωhump increases quite rapidly, as (z − 1)0.46. This
indicates that the pseudogap feature at T = TN is quite
robust, as long as z > 1, while z = 1 should be viewed as
a special case. However, we should note that varying the
value of z changes the temperature where the hump starts
to show up in the spectral function. In this paper, though
an accurate analysis that maps the temperature T ∼ β
with the order parameter ∆ was not done, we can see
the trend from a qualitative argument. On the one hand,
ωhump ∼ (z−1)0.46

√
βU increases with temperature. On

the other hand, ∆ decreases with temperature. As the
hump shows up when ωhump & ∆, a higher temperature
is needed to compensate for the smallness of (z − 1)0.46

as z → 1.

C. Additional considerations

First, we note that the spectral function, which we
obtained, doesn’t have the coherent peak at ω = ±∆.
This is an artifact of the approximation, in which we
only include logarithmically singular contributions to the

reducible self-energy from thermal spin fluctuations. A
coherent peak at ω = ±∆ is recovered once we add con-
tributions to the self-energy from quantum fluctuations
and non-singular self-energy piece from thermal fluctu-
ations. This issue has been addressed in Ref. 9. We
show the result of including these additional terms into
the self-energy (and the spectral function) by dashed line
in Fig. 2 (b).

Second, in this paper we considered the reducible self-
energy due to exchange of transverse spin-wave fluctua-
tions. As we said, such an exchange gives rise to series
of logarithmically singular reducible self-energy terms.
Deep inside the SDW phase, longitudinal spin fluctua-
tions are gapped and contribute only little to the re-
ducible self-energy. However, as the temperature in-
creases towards TN , the gap in the longitudinal fluctu-
ations gets reduced. A more careful study at T . TN
should take into account the contribution from longitu-
dinal channel. Such analysis has been performed for a
system on a square lattice6,9, and the conclusion was that
longitudinal fluctuations enhance the tendency towards
precursor behavior. In mathematical terms, this happens
because the combinatoric factor changes from n! (only
transverse fluctuations, z →∞), to (2n+1)!! (transverse
and longitudinal fluctuations). We note in this regard
that our Cn(z) does not become (2n+ 1)!! for any z. As
a result, the behavior of spectral function near ω = 0
changes from ∼ ω to ∼ ω2, and the energy of the hump
increases. In our case (fermions on a triangular lattice)
the analysis of the reducible self-energy from longitudinal
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fluctuations is more involved than in the case of square
lattice, and we refrain from making a definite prediction.
Still, it is possible that longitudinal fluctuations induce
some precursor behavior near TN even for z = 1.

Third, it is interesting to compare our non-
perturbative solution for the spectral function with a
conventional perturbative solution in which one restricts
with the one-loop self-energy. In our computational ap-
proach, this implies that one includes irreducible dia-
grams for the Green’s function at one-loop order and
only reducible diagrams at higher orders. The pertur-
bative result for the spectral function is then

Apertk (ω) = ReG(0) × Im

∞∑

n=0

unω

= ReG(0) Im
1

1− uω
= πδ(1− uω) ReG(0)

(35)

where, we remind, uω = βU2

ω2−∆2 . This result holds for any

value of z. We see that Apertk (ω) has two δ-functional

peaks at ω = ±
√

∆2 + βU2. The peak frequency re-
mains finite at ∆ = 0, which implies that some evidence
for a precursor to magnetism appears already within
the perturbation theory. However, the full expression
(Eqs. (C6) and (C9) in Appendix C), is more involved:

Ak(ω) = ReG(0) × Im

∞∑

n=0

Cn(z)unω

= ReG(0) Im

∫ 1
(z−1)uω

1
(z+1)uω

dt e−t
1√

1− 4v2
0

1

1− uω t z
.

(36)

The most essential difference is that the full Ak(ω) has
contributions not only from the pole but also from the
branch cut (the 1√

1−4v2
0

term). The branch cut contri-

bution gives rise to the incoherent part of the spectral
function. Combining the pole and the branch cut con-
tributions, we obtain both the gap below ∆(T ) and the
hump at an energy ∆(0) ≈ U/2 (and we recall that with
respect to the renormalized µ(T ), the hump is at energy
of order J).

Fourth, there are certain visible similarities between
the peak-dip-hump behavior in our theory (see dashed
line in Fig. 2(b)) and in Eliashberg theory of supercon-
ductivity, induced by soft bosonic fluctuations. How-
ever, the underlining physics is different. In our case, the
peak-dip-hump behavior emerges due to thermal (static)
bosonic fluctuations. While in Eliashberg theory, this
behavior is a feedback from the pairing by a dynamical
boson (see e.g. Refs.38–40).

V. SUMMARY

In this paper we studied the effects of thermal fluc-
tuations on the spectral function of hot fermions on a
triangular lattice, in the 120◦ SDW state (the ordering
momentum is K = (4π/3, 0)).

We argued that the exchange of static Goldstone
bosons between fermions in the valence and the conduc-
tion band gives rise to logarithmically singular self-energy
corrections. We obtained fully renormalized Green’s
function by summing up infinite series of thermal re-
ducible self-energy diagrams. In this sense, we went be-
yond a conventional perturbation theory, which in prac-
tice includes only a few leading terms in the series.

The key goal of our study was to understand whether
the exchange of static thermal bosonic fluctuations nec-
essarily gives rise to pseudogap behavior, or the sys-
tem may display a conventional Fermi liquid behavior
despite that self-energy corrections are logarithmically
singular. We argued that one can address this issue by
studying fermions on a triangular lattice. Specifically,
we showed that the contributions from in-plane and out-
of-plane spin-wave fluctuations are not equivalent, and
the strength of the self-energy renormalization depends
on the ratio of in-plane and out-of-plane spin-wave sus-
ceptibilities χ‖/χ⊥. This ratio is an input parameter for
low-energy theory, and by varying it one can study the
changes in the structure of diagrammatic series for the
reducible self-energy. When χ‖/χ⊥ ∼ 1, our calcula-
tions show that the behavior of the spectral function for
a fermion at a hot spot (khs and khs+K are both on the
Fermi surface) is similar to that for the case of a square
lattice and collinear (π, π) SDW order: there is a real
gap below ∆(T ) and a maximum (hump) at an energy
of order Hubbard U (see Fig. 2). The hump persists at
T = TN , where ∆ vanishes, and survives in some range
of T above TN . In this range the system displays a pseu-
dogap behavior. On the other hand, when χ‖/χ⊥ � 1
or χ‖/χ⊥ � 1, the pseudogap behavior exists only near
TN . In the limiting case when χ‖/χ⊥ = 0 or χ‖/χ⊥ =∞,
there is no pseudogap behavior at any T > TN , despite
that perturbative self-energy corrections are logarithmi-
cally singular.

The calculations we presented in this paper can be
readily extended to other microscopic models. The only
requirement is to obtain the value of the control param-
eter for a specific model. Our results show that by look-
ing at the structure of perturbation series one would
be able to immediately conclude whether singular self-
energy corrections lead to a pseudogap behavior, or to
an ordinary Fermi liquid behavior. We emphasize in this
regard that, unless special conditions (z = 1) are sat-
isfied, a magnetic pseudogap is present independent on
the lattice geometry. This is consistent with the fact that
pseudogap behavior near a magnetic transition has been
seen in many different systems.

As a final remark, the key assumption in our compu-
tation is that thermal (static) fluctuations are dominant
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near a magnetic transition at a finite temperature. This
assumption has been supported by 2D numerics for the
Hubbard model on a square lattice22. We call for numer-
ical studies of systems with different lattice geometries,
that in each case will identify the dominant fluctuation
contribution. We hope that, combined with our analyt-
ical results, this will push forward the understanding of
the underlining mechanism of pseudogap physics in cor-

related electron systems.
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Appendix A: Goldstone modes

In this appendix, we give more mathematical details of how the momentum and spin structure of the low energy
bosonic collective modes in the SDW state, i.e., the magnon Goldstone modes, can be obtained by studying the
eigenstates of its corresponding linear spin wave Hamiltonian. As we show in the main text, these universal properties
of the Goldstone modes are enough to obtain the effective magnon-fermion interaction.

To be precise, as our starting point is the SDW state out of itinerant fermions, the collective modes in the interacting
fermion system, magnons in this case, should be obtained in principle by calculating the spin correlation function.
On the other hand, as the low energy magnons are essentially the Goldstone modes which are uniquely determined
by the pattern of the spontaneous spin rotation symmetry breaking, the universal properties of the Goldstone modes
can be obtained from other models that are adiabatically connected to the Hubbard model in the large U limit,
e.g. the isotropic Heisenberg model. For the square lattice Hubbard model, it has been checked that the spectrum
calculated from the two methods match over the whole Brillouin41,42. For the triangular lattice Hubbard model,
though it turns more tricky at higher energy26, the matching should work in principle for the low energy Goldstone
modes for the reason we explained above. We also checked that it is indeed the case. In the following, we work with
the nearest neighbor isotropic Heisenberg antiferromagnetic model using linear spin wave analysis. The large S spin
wave expansion can be reproduced by taking 2S fermion flavors in the Hubbard model.

The global and local coordinates are set up as shown in Fig. 4(a). To obtain the linear spin wave Hamiltonian, we
express the spin operators in terms of Holstein-Primakoff bosons a, a†. In the local coordinate where the magnetic
order is along z̃, the spin operator is:

S+
r (z̃) =

√
2S

√

1− a†rar
2S

ar, S−r (z̃) =
√

2Sa†r

√

1− a†rar
2S

, Szr (z̃) = S − a†rar (A1)

The spin operators in the global coordinate can be expressed as:

Sxi = Sx(z̃) cos θi + Sz(z̃) sin θi, Syi = Syi (z̃) Szi = −Sx(z̃) sin θi + Sz(z̃) cos θi, (A2)

where i is the sublattice index i = a, b, c, and θi = 0, 2π/3, 4π/3. The linear spin wave Hamiltonian can be expressed
as

H(2) =
S

2

∑

k

Ψ†kHkΨk, (A3)

where Ψk = {ak, a†−k}T ,

Hk =

(
Ak Bk
Bk A−k

)
, (A4)

Ak = J(3 + 1
2γk), Bk = − 3

2Jγk, γk = cos kx + 2 cos kx/2 cos
√

3ky/2. The spin wave Hamiltonian can be diagonalized

by the transformation Ψk = TΨ′k, where Ψ′k = {ek, e†−k}T , such that T−1σzHkT = ωkσz. We found ωk =
√
A2
k −B2

k,
and

Tk =




√
Ak+ωk

2ωk
−sgnBk

√
Ak−ωk

2ωk

−sgnBk

√
Ak−ωk

2ωk

√
Ak+ωk

2ωk


 . (A5)

As the SU(2) spin rotation symmetry of the Hamiltonian is fully broken by the magnetic order, there are three
Goldstone modes, associated with the three broken symmetry generators. It is straight forward to show that there
are three zero modes at momentum Γ = (0, 0) and ±K = ±( 4π

3 , 0), respectively. To check if they are the Goldstone
modes and learn the spin structure, let us analyze the eigenmodes near Γ,±K.

Near Γ – The spin wave spectrum is ωq+Γ = 3
√

3JS
4 q. The transformation matrix Tk is

Tq+Γ =
4
√

3√
2q
×
(

1 1
1 1

)
+

√
q

2
√

2 4
√

3
×
(

1 −1
−1 1

)
+O(q) (A6)

The part singular in
√
q at order 1/

√
q corresponds to the Goldstone mode excitation, which contributes to the
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divergent static susceptibility as q → 0, while the subleading term at order
√
q corresponds to the soft modes, whose

static susceptibility is finite at q = 0. From the singular part, we obtain the leading order dynamical spin susceptibility
(labeled by superscript “(0)”) at S = 1/2

−i〈TSx̃−q(t)Sx̃q (0)〉(0)
ω = − i

4
〈T (a−q(t) + a†q(t))(aq(0) + a†−q(0))〉ω = −i〈T (e−q(t) + e†q(t))(eq(0) + e†−q(0))〉ω ×

( 4
√

3√
2q

)2

=
9JS

2

1

ω2 − ω2
q

=
9J

4

1

ω2 − ω2
q

−i〈TSỹ−q(t)Sỹq (0)〉(0)
ω = 0. (A7)

Similarly, we obtain from the
√
q order terms in Eq. (A6) the next order dynamical spin susceptibility (labeled by

superscript “(1)”) at S = 1/2

−i〈TSx̃−q(t)Sx̃q (0)〉(1)
ω = 0, −i〈TSỹ−q(t)Sỹq (0)〉(1)

ω =
3Jq2

16

1

ω2 − ω2
q

. (A8)

Note that by x̃, ỹ, we mean the spin component in the local coordinates. For our interest of obtaining the logarith-
mical divergent contribution to the thermal self-energy, only non-zero terms in Eq. (A7) is needed, which physically
means spin fluctuations along the local x̃ direction at the Γ point (see Fig. 4(b)).

Near ±K – By doing the same analysis near ±K, we found the spin wave spectrum is ωq±K = 3
√

3JS
2
√

2
q, and to the

leading order in q,

Tq±K =
4
√

3

23/4√q ×
(

1 −1
−1 1

)
+O(

√
q). (A9)

The leading order dynamical spin susceptibility at S = 1/2 is

−i〈TSỹ−q±K(t)Sỹq∓K(0)〉(0)
ω =

9J

8

1

ω2 − ω2
q±K

. (A10)

Eqs. (A7) and (A10) are essentially what we have in Eq. (13) in the main text. The two Goldstone modes are shown
graphically in Fig. 4(c),(d).

Appendix B: Calculation of Cn(z)

To obtain Cn(z) for a generic n, we review the rules found in Sec. III A. These are

• We use ◦ and • for magnon-fermion vertex ê γv†γc and ê γc†γv, respectively. As vertices like ê γv†γv are not
considered to the leading logarithmical order, the renormalized Green’s function at n-loop order should have n
pairs of alternating ◦ and • vertices;

• Adding contributions from χxx and χyy, each ◦e◦ or •e• magnon propagator contribute a factor (β1−2β2)U2;

• Similarly, each ◦e• or •e◦ magnon propagator contribute a factor (β1 + 2β2)U2.

All diagrammatic configurations at n-loop order can be grouped by the total number of •e•, ◦e◦, ◦e• and •e◦
propagators, and the contribution from each diagram is the same within a given group. In the following, we discuss
n = 2m even and n = 2m+ 1 odd seperately.

1. n=2m

Each diagram is in a group (labeled by l) that has m− l of •e•, m− l of ◦e◦ propagators, and a total 2l of •e◦
or ◦e• propagators, where l = 0, 1, ...,m. For a given group labeled as l, the combinatoric factor contributing to the
renormalized Green’s function is

{[C2
2mC

2
2m−2..C

2
2l+2

(m− l)!
]2

[(β1 − 2β2)U2]2(m−l)
}{

(2l)![(β1 + 2β2)U2]2l
}
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=(βU2)2m
{[ (2m)!

(2m− 2l)!!

]2 z2l

(2l)!

}
, (B1)

where the first {...} in the first line above comes from contributions of •e• and ◦e◦ propagators, and the sec-
ond {...} comes from contributions of •e◦ and ◦e• propagators. Summing up all factors, we find C2m(z) =∑m
l=0

[ (2m) !
(2m−2l) !!

]2 z2l

(2l) ! .

2. n=2m+1

For n odd, as the total number of ◦ or • vertices used up for ◦e◦ or •e• propagators must be even, there must
be a total odd number of •e◦ and ◦e• propagators. As a result, each group labeled by l has m− l of •e•, m− l of
◦e◦ propagators, and a total 2l + 1 of •e◦ and ◦e• propagators, where l = 0, 1, ...,m. The combinatoric factor is

{[C2
2m+1C

2
2m−1..C

2
2l+3

(m− l)!
]2

[(β1 − 2β2)U2]2(m−l)
}{

(2l + 1)![(β1 + 2β2)U2]2l+1
}

=(βU2)2m+1
{[ (2m+ 1)!

(2m− 2l)!!

]2 z2l+1

(2l + 1)!

}
. (B2)

Summing up all factors, we find C2m+1(z) =
∑m
l=0

[ (2m+1) !
(2m−2l) !!

]2 z2l+1

(2l+1) ! .

Appendix C: Evaluate the spectral function

We now evaluate the spectral function defined as Ac,v(khs, ω) = − 1
π ImGc,v(khs, ω + iδ) analytically starting from

Eqs. (26) and (27). The key challenge is to perform the summation over n in Eq. (27) where Cn(z) doesn’t have a
simple closed form. Moreover, as Cn(z) ∼ O(n!), a numerical calculation of Ac,v(khs, ω) is quite challenging on its

own. Our point of departure is to sum over l in Eq. (26) by noting that from (p+q) !
p !q ! = 1

2πi

∮ (0+)
dt t−p−1(1− t)−q−1

[p, q ∈ Integers (Z) and p+ q ≥ −2]43,

1

[(2m− 2l) !!]2
=

1

22m−2l

1

(2m− 2l) !

1

2πi

∮ (0+)

dt t−m+l−1(1− t)−m+l−1, (C1)

where
∮ (0+)

means the contour integral goes around the pole at t = 0 counter-clockwisely [see Fig. 11(a)]. For
concreteness, we take n = 2m as an example. Plug Eq. (C1) into Eq. (26), we have

C2m(z) =
(2m) !

22m

1

2πi

∮ (0+)

dt
[ 1

t(1− t)
]m+1

m∑

l=0

(2m) !

(2m− 2l) !(2l) !
(2z)2l[t(1− t)]l. (C2)

To sum over l in Eq. (C2), we note that from (1 + x)m =
∑m
p=0

m!
(m−p)! p!x

p,

m∑

l=0

(2m) !

(2m− 2l) !(2l) !
(2z)2l[t(1− t)]l =

m∑

l=0

(2m) !

(2m− 2l) !(2l) !
(2z)2lv2l

=
1

2
{

2m∑

p=0

(2m)!

(2m− p)! p! (2zv)p +

2m∑

p=0

(2m)!

(2m− p)! p! (−2zv)p}

=
1

2

[
(1 + 2zv)2m + (1− 2zv)2m

]
, (C3)

where we define v =
√
t(1− t). Note that by summing over l, non-analytic branch-cuts must be introduced, which

turns important to get the imaginary part of the spectral function later. Changing variable from t to v, the integration
contour changes from a circle around t = 0 to a semi-circle around v = 0 on the right-half-plane, and dt = 2v√

1−4v2
dv.

By adding the two terms in Eq. (C3) and changing variable v → −v for the second term, Eq. (C2) becomes [see
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Fig. 11(b)]

C2m(z) =
(2m) !

22m

1

2πi

∮ (0+)

dv
(1

v

)2m+2 v√
1− 4v2

(1 + 2zv)2m. (C4)

Similarly, we found that C2m+1(z) has the same form but changes 2m in the expression to 2m+ 1, thus

Cn(z) =
n!

2n
1

2πi

∮ (0+)

dv
(1

v

)n+2 v√
1− 4v2

(1 + 2zv)n for n ∈ Z. (C5)

From Eq. (C2) to Eq. (C5), we are essentially transforming the summation over l in Eq. (C2) into evaluating the
residue of the integrand at v = 0 in Eq. (C5). The gain we have is that the number n now only appears as a simple
coefficient n! and as exponents in the integrand, which simplifies the summation over n in Eq. (27).

To find Ac,v(khs, ω), we analytically continue Gc,v(khs, ω) from Eq. (27) to real frequencies by replacing iω → ω+iδ.
As long as the series over n converge, doing the analytical continuation before or after the summation over n should
give the same result. For convenience, we perform the analytical continuation before the summation, and have

Ac,v(khs, ω) = − 1

π
ImGc,v(khs, ω + iδ)

= − 1

π
Im{Gc,v (0)(khs, ω + iδ)

∞∑

n=0

Cn(z)[u(ω + iδ)]n}, (C6)

where u(ω+ iδ) = βU2Gv,c (0)(khs, ω+ iδ)Gc,v (0)(khs, ω+ iδ). The imaginary part inside {...} comes from two places –
from ImGc,v (0)(khs, ω+ iδ)×Re

∑∞
n=0 ... and from ReGc,v (0)(khs, ω+ iδ)× Im

∑∞
n=0 .... As ImGc,v (0)(khs, ω+ iδ) =

−iπδ(ω∓∆), the first contribution should be a delta-function peak at ω = ±∆ if
∫∆+0

∆−0
dωA(ω) is finite. We checked

that this integral actually vanishes. This implies that thermal fluctuations destroy the delta-function peak. To

evaluate the second contribution, we use Eq. (C5) and n! =
∫ +∞

0
dt e−ttn, express

∑∞
n=0 Cn(z)[u(ω+ iδ)]n in Eq. (C6)

as

∞∑

n=0

Cn(z)unω =
1

2πi

∞∑

n=0

n!

∮ (0+)

dv
1

v

1√
1− 4v2

[uω(1 + 2zv)

2v

]n

=
1

2πi

∫ +∞

0

dt e−t
∮ (0+)

dv
1

v

1√
1− 4v2

∞∑

n=0

[uω t (1 + 2zv)

2v

]n

=
1

2πi

∫ +∞

0

dt e−t
∮

dv
1

v

1√
1− 4v2

1

1− uω t (1+2zv)
2v

=
1

2πi

∫ +∞

0

dt e−t
∮ (0−v0,+)

dv
2√

1− 4v2

1

2v − uω t (1 + 2zv)

=
1

2πi

∫ +∞

0

dt e−t
∮ (0−v0,+)

dv
2√

1− 4v2

1

2(1− uω t z)(v − uω t
2(1−uω t z) )

, (C7)

where u(ω+ iδ) is replaced by uω for brevity. Importantly, by summing over n, the multi-pole at v = 0 vanishes, while

a single pole at v = v0 = uω t
2(1−uω t z) emerges due to the non-analyticity at v = 0. Then the contour

∮ (0+)
changes to

∮ (0−v0,+)
, where

∮ (0−v0,+)
indicates a counter-clockwise contour enclosing v = 0 and v = v0 [see Fig. 11(c)]. Enforcing

ω → ω + iδ, we find uω → uω − iδsgn(ω) and v0 → v0 − iδsgn(ω). As v0 remains on the lower or upper half-plane
[depending on sgn(ω)] as t varies, the integrals from 0 to v0 and from v0 to 0 cancel, and Eq. (C7) becomes

∞∑

n=0

Cn(z)unω =
1

2πi

∫ +∞

0

dt e−t
∮ (v0+)

dv
1√

1− 4v2

1

(1− uω t z)(v − v0)
. (C8)

To obtain the imaginary part of Eq. (C8), one can show that the only contribution comes from the residue of the

integrand of
∮ (v0+)

when v0 sits at the branch cut, i.e., |v0| ≥ 1/2. By examining v0 = uω t
2(1−uω t z) for t ∈ (0,∞), we

find |v0| ≥ 1/2 only when uω > 0 and t ∈ ( 1
(z+1)uω

, 1
(z−1)uω

) [see Fig. 11(d)]. In particular, if z = 1, the upper bound
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for t is +∞. Thus the imaginary part of Eq. (C8) when uω > 0 is

i Im

∞∑

n=0

Cn(z)unω =

∫ 1
(z−1)uω

1
(z+1)uω

dt e−t
1

2πi

∮ (v0+)

dv
1√

1− 4v2

1

(1− uω t z)(v − v0)

=

∫ 1
(z−1)uω

1
(z+1)uω

dt e−t
1√

1− 4v2
0

1

1− uω t z
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FIG. 11. (a)-(c): The integration contours for the computation of the combinatoric factors. (a) The integration contour for
Eqs. (C1) and (C2). There is only one multi-pole at t = 0 for each given n and l. (b) The contour for Eqs. (C4) and (C5). The
contour contains the multi-pole and the branch cuts (blue wavy lines). The parts of the contour on the right (darker green line)
and on the left (lighter green line) come from the first and second terms in Eq. (C3). (c) The integration contour for Eq. (C7).
The multi-pole at v = 0 moves and becomes a single pole at v0. (d) v0 as a function of t ∈ (0,∞) for uω > 0 and uω < 0.

In the following, let us consider ω > 0 for concreteness, so v0 → v0 − iδ. Note that 1√
1−4v2

0

is pure imaginary when

t ∈ ( 1
(z+1)uω

, 1
(z−1)uω

). As we explain below, it needs some care to determine the sign at different t. From Fig. 11(d),

we see that when t ∈ ( 1
(z+1)uω

, 1
zuω

), Re v0 > 1/2, so Im 1√
1−4v2

0

= 1√
1+2v0

√
1−2v0

= −i√
1+2v0

√
2v0−1

= −i√
4v2

0−1
,

1 − uω t z > 0; when t ∈ ( 1
z uω

, 1
(z−1)uω

), Re v0 < −1/2, so Im 1√
1−4v2

0

= 1√
1+2v0

√
1−2v0

= i√
4v2

0−1
, 1 − uω t z < 0. So

Eq. (C9) becomes

i Im

∞∑

n=0

Cn(z)unω =

∫ 1
z uω

1
(z+1)uω

dt e−t
−i√

4v2
0 − 1

1

1− uω t z
+

∫ 1
(z−1)uω

1
z uω

dt e−t
i√

4v2
0 − 1

1

1− uω t z

=

∫ 1
(z−1)uω

1
(z+1)uω

dt e−t
−i√

(4v2
0 − 1)(1− uω t z)2

= −i
∫ 1

(z−1)uω

1
(z+1)uω

dt e−t
1√

(uω t)2 − (1− uω t z)2
, (C10)

where the integral over t is convergent and positive definite. Similarly, we find when ω < 0, i Im
∑∞
n=0 Cn(z)unω =



20

i
∫ 1

(z−1)uω
1

(z+1)uω

dt e−t 1√
(uω t)2−(1−uω t z)2

. Plug them back to Eq. (C6), the spectral function is

Ac,v(khs, ω) =
1

π

∣∣∣ 1

ω ∓∆

∣∣∣
∫ 1

(z−1)uω

1
(z+1)uω

dt e−t
1√

(uω t)2 − (1− uω t z)2
Θ(uω), (C11)

where we remind uω = βU2

ω2−∆2 .
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7 É. Z. Kuchinskii and M. V. Sadovskii, “Models of the pseudogap state of two-dimensional systems,” Journal of Experimental
and Theoretical Physics 88, 968–979 (1999).

8 Ar. Abanov, Andrey V. Chubukov, and J. Schmalian, “Quantum-critical theory of the spin-fermion model and its application
to cuprates: Normal state analysis,” Advances in Physics 52, 119–218 (2003), https://doi.org/10.1080/0001873021000057123.

9 Tigran A. Sedrakyan and Andrey V. Chubukov, “Pseudogap in underdoped cuprates and spin-density-wave fluctuations,”
Phys. Rev. B 81, 174536 (2010).

10 M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, “Phenomenology of the low-energy spectral function in
high-Tc superconductors,” Phys. Rev. B 57, R11093–R11096 (1998).

11 M. Franz and A. J. Millis, “Phase fluctuations and spectral properties of underdoped cuprates,” Phys. Rev. B 58, 14572–
14580 (1998).

12 Erez Berg and Ehud Altman, “Evolution of the fermi surface of d-wave superconductors in the presence of thermal phase
fluctuations,” Phys. Rev. Lett. 99, 247001 (2007).

13 Yi-Ming Wu, Artem Abanov, Yuxuan Wang, and Andrey V. Chubukov, “Special role of the first matsubara frequency
for superconductivity near a quantum critical point: Nonlinear gap equation below Tc and spectral properties in real
frequencies,” Phys. Rev. B 99, 144512 (2019).

14 J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung, Youjin
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