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Twisted bilayer graphene has been argued theoretically to host exceptionally flat bands when the
angle between the two layers falls within a magic range near 1.1◦. This is now strongly supported
by experiment, which furthermore reveals dramatic correlation effects in the magic range due to
the relative dominance of interactions when the bandwidth is suppressed. Experimentally, quantum
oscillations exhibit different Landau level degeneracies when the angles fall in or outside the magic
range; these observations can contain crucial information about the low energy physics. In this
paper, we report a thorough theoretical study of the Landau level structure of the non-interacting
continuum model for twisted bilayer graphene as the magnetic field and the twist angle are tuned.
We first show that a discernible difference exists in the butterfly spectra when twist angle falls in and
outside the magic range. Next, we carry out semiclassical analysis in detail, which quantitatively
determines the origin of the low energy Landau levels from the zero field band structure. We find
that the Landau level degeneracy predicted in the above analyses is capable of partially explaining
features of the quantum oscillation experiments in a natural way. Finally, topological aspects,
validity, and other subtle points of the model are discussed.

I. INTRODUCTION

In the past year, twisted bilayer graphene (TBG) has
attracted immense attention from physicists, following
the observation of superconductivity and correlation-
induced insulators when the layers are twisted relative
to one another close to the “magic” angle (∼ 1.1◦)1,2.
These results have since been confirmed and extended
by many independent groups3–9. While there are now
many experiments and some results are limited to spe-
cific samples at specific angles and densities, so far all
indications of correlated behavior have been limited to
the density range corresponding to partial fillings of the
two low energy bands closest to charge neutrality point
(CNP); these two active bands are theoretically predicted
to show exceptional flatness when the twist angle is tuned
to lie within the magic range10.

At the present stage, there is no consensus on the ex-
planation of these effects, despite the many theoretical
efforts11–21. A key issue is that the same physics which
leads to anomalous narrowing of the low energy bands
near the magic angle also makes those bands very sensi-
tive to small details of the model in this regime. It would
be desirable to put direct constraints on the theoretical
model from experiment.

An effective way to obtain an understanding of the
low energy degrees of freedom in a two-dimensional sys-
tem is to probe it with perpendicular magnetic field and
study the quantum oscillations; local minima of longitu-
dinal resistivity form straight lines in the plane of carrier
density and magnetic field, a fact that can be seen in
Landau fan diagrams. Previous experimental results22 at
the angle 1.8◦ exhibited Landau level (LL) filling factors
ν = ±4,±12,±20, . . . at the CNP (we define ν = nΦ0/Φ,
where n is the 2d density measured from charge neutral-
ity, Φ0 = h/e is the flux quantum, and Φ = BA is the
flux per unit cell of the moiré pattern, with unit cell area
A); note that these numbers double those of monolayer

graphene. This can be understood by noting that there
are two renormalized Dirac points in the moiré Brillouin
Zone (BZ) where the two active bands touch as predicted
by the continuum model10,23 (CM) of TBG, and that fur-
thermore one needs to consider 4 = 2 × 2 copies of the
model due to spin and valley degrees of freedom of the
electrons. However, study of quantum oscillations in the
magic range2,3 revealed a different sequence near CNP,
namely ν = ±4,±8,±12, . . .. Some authors have argued
that this happens due to interactions or some kind of
symmetry breaking14.

While certainly the interaction effects are of primary
interest, without a firm foundation for the free electron
moiré physics it is impossible to disambiguate subtle
band effects from correlation ones. Here, inspired by the
above observation, we study the effect of perpendicular
magnetic field without interactions. We start with the
CM, and incorporate the magnetic field into it; to this
end, we use the method introduced in Ref. 24 with some
modifications. In particular, we have considered the ef-
fects of lattice corrugation phenomenologically by differ-
entiating between the tunneling amplitude at AA and
AB/BA regions of the moiré superlattice13.

We start by first studying angles larger than the magic
value, and then restrict our attention to the magic range.
We indeed observe that at larger angles, the same se-
quence mentioned above, 4 × (±1,±3,±5, . . .), can be
seen; however, as the twist angle is reduced into the magic
range, we first observe a sequence of 4×(±1,±2,±3, . . .),
and then a sequence of 4× (±1,±4, . . .) upon further de-
crease of the angle. The former happens close to the twist
angle where the Γ point (the highest symmetry point)
of the BZ becomes gapless in a quadratic band touch-
ing and the nonmagnetic active bands become most flat,
while the latter happens upon the formation of three-
fold local minima (maxima) in the upper (lower) active
band. Finally we present a semiclassical study at small
enough magnetic fields that associates the above results
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to certain regions in the BZ.
The rest of the paper is organized as follows. In Sec. II,

we introduce the magnetic model used here; the details
of the model are presented in App. A. Then in Sec. III
the numerical solution of the magnetic model is presented
and discussed outside and within the magic range; in par-
ticular, relatively small field regime and LL filling factors
therein are studied. Furthermore, comparison with re-
sults derived from a semiclassical analysis is presented.
Finally, in Sec. IV these discussions are summarized and
also some further results regarding the intermediate and
large field regimes, inclusion of particle-hole symmetry
breaking terms, etc. are discussed. Further details of
these discussions are presented in the Appendix.

II. THE MODEL

We start with the following model Hamiltonian for zero
magnetic field25:

H(x) = −i
(
∇− iτz q0

2
+ iqh

)
· (Sθ σ)

+ α τ+
[
η β0(x) + β1(x)σ+ + β2(x)σ−

]
+ h.c.,

(1)
where x and the Hamiltonian are made dimensionless
by dividing by the moiré length scale 1

kθ
= 3

√
3a

4π θ and
the energy scale ~vFkθ. The Pauli matrices τz, σz are
used to address the layer and sublattice degrees of free-
dom, and their ±1 eigenvalues denote top/bottom layer
and A/B sublattice respectively. The constant vectors

qh =
(√

3
2 , 0

)
, and q0 = (0,−1) define the center of

BZ and the tunneling term is defined using the func-
tions βn(x) =

∑2
j=0 e

−iQj ·xζnj , with ζ = e2πi/3. Also,

Q0 = 0 and Q1 =
√

3
(
− 1

2 ,
√

3
2

)
and Q2 =

√
3
(

1
2 ,
√

3
2

)
are the reciprocal moiré lattice vectors. The model has
two parameters, one is α = w

vFkθ
∼ w

θ , which shows the
combined effect of interlayer hopping and the twist angle
and the other is η which is responsible for incorporating
the effect of corrugation13. This model concentrates on
a single valley of graphene and a single spin, and so in
order to take the complete physical system into account,
four copies of H should be introduced. The sublattice
matrices of the two layers are rotated in opposite direc-
tions, this is reflected in the use of the rotation matrix
Sθ = P̂+R+θ/2+P̂−R−θ/2 above, where P̂± is the projec-
tor onto top/bottom layer. Upon neglecting the rotation
of σ matrices above, the effects of which are small for
small θ, one recovers a particle-hole symmetry as defined
in Ref. 25. We will use this approximation unless other-
wise stated.

Interestingly, there are two Dirac points (DPs) for all
values of α at the K and K′ points of the BZ. At the
Γ point, on the other hand, the top and bottom ac-
tive bands reach their maximum and minimum respec-
tively, except for a range of α around α1 = 0.57544 (for
η ≈ 0.82); at α1, the Γ point becomes gapless with a

quadratic band touching, and the bands show exceptional
flatness. This transition happenning at α1 is one of the
series of topological transitions happening in the magic
range (θ ≈ 1.1◦). A thorough study of the active bands’
structure close to this transition and of the series of topo-
logical transitions happenning across the BZ is presented
in Ref. 25 and App. G.

We then incorporate the magnetic field in the same
way as is done in Ref. 24 (see App. A for a self-contained
derivation), i.e. we start by working in a basis of bare
LLs of the two graphene sheets and take the effect of
the tunneling term into account by finding its matrix
elements in this basis. To solve the model, one is required
to impose a commensurability condition for the magnetic
flux and the moiré lattice, which validates the notion of
a magnetic Brillouin zone (MBZ):

Φ

Φ0
=
BA
Φ0

=
1

2

q

p
, (2)

where A = 8π2

3
√

3k2
θ

is the moiré pattern unit cell area, and

p and q are co-prime integers.26 This results in the rela-

tion B(T) ≈ 12(θ◦)2

p/q ≈ 1
α2

4.7
p/q between the magnetic field

and the integers p and q. Also, the Zeeman energy is
neglected here (we will comment on the possible effect
of Zeeman energy in Sec. IV). We only consider one of
the valleys, and therefore considering the spin degener-
acy also, the physical filling factor is 4 times that of the
magnetic model introduced above. We will report the
model filling factor unless otherwise stated.

III. NUMERICAL SOLUTION AND
SEMICLASSICAL ANALYSIS

In order to carry out numerical calculations, we need a
cutoff for the number of LLs of the monolayer graphene
sheets; we choose this cutoff by the criterion that the
energies and the gaps found in the energy range of inter-
est (|E| / 100meV) remain approximately constant with
further increase of the cutoff. To achieve this condition,
we find that the cutoff needs to be taken about ten times
larger than the one introduced in Ref. 24. Generically,
larger cutoffs are needed for smaller magnetic fields.

We work with η ≈ 0.82 after Ref. 13, and carry out
the analysis for different values of α. As α increases (i.e.
θ decreases) we find three regimes, the energy spectrum
of each one differs from the other two in a sense that will
be discussed below; the comparative study of the three
regimes is the main goal of this section. Below we start at
larger angles than those in the magic range and discuss
the results in depth, then using the same methods we
specialize to the two regimes in the magic range.
The large angle regime. The first α value we consider

is α = 0.35, which corresponds to θ = 1.8◦. The energy
spectrum as a function of the magnetic flux per unit cell
(we will refer to such plots as butterfly plots) is shown in



3

(a) (b) (c)

FIG. 1. Magnetic energy levels as a function of flux per moiré cell (the butterfly plot) for (a) α = 0.35 (θ ≈ 1.82◦), (b) α = 0.5754
(θ ≈ 1.11◦), and (c) α = 0.595 (θ ≈ 1.07◦). The first α lies outside of and the other two lie within the magic range. The nonmagnetic
bands in each case are also plotted on the far left with solid grey lines. The insets in (b) and (c) show magnified versions of the magnetic
energy levels for the two active bands.

Fig. 1(a). Note that the magnetic energies change contin-
uously and form magnetic bands as the magnetic Bloch
momentum is varied within MBZ. Each magnetic band
when full corresponds to a density of electrons equal to
1
A

1
2p , we call this quantity the weight27 of that magnetic

band (see App. A).

One first observation from the above plot is as follows:
for small enough magnetic fields, there are magnetic en-
ergy levels within the range of nonmagnetic active bands
and nonmagnetic remote bands, but there is no mag-
netic energy level in the gap between them. This can be
seen in Fig. 1(a), by noting that the nonmagnetic energy
bands are shown on the far left of the plot. The obser-
vation holds true for all α values where there is a gap in
the nonmagnetic band structure, a range starting around
α = 0.25 and continuing up to around α = 0.65. When
this observation holds, by inspection in several cases, the
total number of magnetic bands in this active range of
energy turns out to be 4p; thus the corresponding total
weight is equal to exactly two states per moiré super-
cell, which coincides with the density given by the active
bands when full. In other words, for small enough mag-
netic field the energy levels shown in blue in Fig. 1 are
confined within the range of energy given by the two ac-
tive bands; their total weight is equal to the total weight
of two nonmagnetic active bands. We will be mostly
studying the magnetic bands within this active energy
range.

There are in principle gaps between each two adjacent
magnetic bands, however, there are wider gaps between
certain groups of multiple bands. Such groups of bands
can clearly be seen in the middle and at the edges of the
active range of energy for small enough magnetic fields.
The energy levels in the middle of the active range cor-
respond to being close to CNP, and the ones at its edge
are located close to the superlattice induced gaps. By
inspection of the data shown in Fig. 1(a) (see Figs. 4
and 5 in App. B for a better illustration), the groups of
bands at the edges comprise q bands each for a given
p/q, while the groups of bands in the middle comprise 2q
bands. Using the prescription above, it can be inferred
that each of the former groups of bands carries a density
of 1
A

q
2p = B

Φ0
which is exactly the density of a full LL;

likewise, the latter groups carry the total density of two
LLs. Note that the wide gaps addressed here should cor-
respond to experimentally seen gaps; they persist over a
finite range of p/q and the weights above and below are
continuous functions of the magnetic field.

Another way to visualize the weights discussed above
is using a Wannier plot27; a Wannier plot records the
density of states ρ as a function of carrier density n and
magnetic field B. In order to calculate density of states
we consider widening of each energy level found numeri-
cally by associating a Lorentzian density of states with it;
its width parameter γ is chosen to ensure maximal reso-
lution (see App. C). Such a plot for α = 0.35 is presented
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(a) (b) (c)

FIG. 2. Wannier plots for (a) α = 0.35, (b) α = 0.5754, and (c) α = 0.595 (see App. C for more information regarding these
plots). The vertical axes show the carrier density in the unit of one per moiré cell. The colors correspond to rescaled density
of states ρ/ρmax. The dark straight lines correspond to gaps and thus full LLs; the LL filling factors can be deduced using the
slopes of these lines. A filling factor of 2 for the zero energy LLs can be inferred by noting that at CNP there are dark lines
with slopes ±1 in all of the plots, but no lines with slope 0. Furthermore, the filling factors of 2, 1 and 3 can be seen at CNP
above the zero energy LL in the three plots respectively.

in Fig. 2(a). The energy gaps, corresponding to the min-
ima in ρ, form straight lines; the LL filling factor can be
inferred from the slopes of these lines. Consistent with
the above, filling factors of 2 in the middle and 1 at the
edges can be deduced from this plot. Following all the
above observations, the filling factor seen in Landau fan
diagrams at larger angles22, can be understood by tak-
ing the above weights at CNP, resulting in the sequence
4× (±1,±3,±5, . . .) at the CNP (spin/valley degeneracy
considered). Note that this coincides with the sequence
found in Ref. 22.

The formation of groups of bands and their weights for
sufficiently small B can be understood with a semiclassi-
cal analysis as well. In this method, in order to find the
magnetic energy levels, one finds orbits of constant en-
ergy in k-space for a given band structure. Then one im-
poses the Bohr-Sommerfeld quantization condition28,29,
which ultimately results in a quantization condition for
the area in k-space enclosed by the orbits, denoted by
Ak; the energy of such an orbit is obtained from the dis-
persion landscape. Concretely, quantized orbits formed
around quadratic band edges satisfy the condition Ak =
2π 1

`2B

(
N + 1

2

)
= ΩBZ

Φ
Φ0

(
N + 1

2

)
, and orbits enclosing a

DP satisfy Ak = 2π 1
`2B

(N + 1) = ΩBZ
Φ
Φ0

(N + 1), where

`B is the magnetic length, and ΩBZ = 3
√

3
2 k2

θ is the to-
tal BZ area. The difference between the above two cases
is due to the π Berry phase accumulated when an orbit
encloses a DP.

A plot of the nonmagnetic dispersion at α = 0.35 in the

top active band is presented in Fig. 3(a); the two classes
of groups of magnetic bands that are formed in the active
range i.e. q-band groups at the edge and 2q-band groups
in the middle can be associated with the semiclassical
orbits formed in this dispersion surface; each group in
the former class can be identified as an orbit around the
Γ point and each group in the latter class as the collec-
tion of two orbits each around one of the moiré Dirac
cones (points K and K′). There is very good quantita-
tive agreement between the energies found this way and
the energies found in the butterfly plots for small enough
fields (see App. D).

The magic regime I. We then specialize to the discus-
sion of the magnetic bands in the magic range, i.e. where
the active energy range becomes very narrow. The above
scenario for the weights of groups of bands in the middle
and the edges of the active range remains valid upon in-
creasing α until α gets close to α1 where the nonmagnetic
active bands touch at the Γ point and show exceptional
flatness. Noting that α1 = 0.57544, we present results at
the close value of α = 0.5754, but as discussed later there
is in fact a range of α where this applies. A butterfly plot
for α = 0.5754 (θ ≈ 1.1◦) is presented in Fig. 1(b). Still
there are 2p bands in total in the active range that are
shown in blue, corresponding to two electrons per moiré
cell.

As before, groups of bands with wide gaps between
them can be seen at the edges and in the middle of the
active range. This time however, their group weights are
different; each of the groups formed in the middle consists



5

of q bands and each of the ones at the edges contains 3q
bands. Since a q-band group corresponds to the weight
of a LL, each of the middle groups carry the density of
one LL and each of the edge groups carry the density
of three LLs. The two zero energy LLs still have the
same behavior. These weights are also exhibited in the
Wannier plot shown in Fig. 2(b); as a result, one expects
a sequence 4× (±1,±2,±3, . . .) at CNP taking spin and
valley degeneracy into account.

A dispersion plot of the top active band is shown in
Fig. 3(b) for α = 0.5754; note that there is a quadratic
low energy dispersion at the Γ point. Remarkably, a semi-
classical analysis shows that each of the middle groups of
bands corresponds to a semiclassical orbit around the Γ
point. Also, semiclassical analysis relates the groups with
weights of three LLs at the edges to the orbits around the
three inequivalent points M1,M2,M3 (which are C3 re-
lated), where the highest (lowest) energy of the top (bot-
tom) nonmagnetic band is reached with a quadratic dis-
persion (see App. D for details). This set of LL filling fac-
tors can be seen in the α range 0.575–0.585, where there
can be several DPs in the nonmagnetic active bands; we
also observe several level crossings as the magnetic field
is varied for small fields, but the sequence is unchanged
away from the band crossing points.

The magic regime II. Finally, for slightly larger values
of α, yet another different pattern for LL degeneracies
emerges, as can be seen in Fig. 1(c) which shows results
for α = 0.595 (θ ≈ 1.1◦): a group of bands with a weight
equal to three LLs appears in the middle of the active
range, and groups of weight equal to a single LL appear
at the edge. A semiclassical study (Fig. 3(c)) shows that
the group of three LLs in the middle can be identified as
the collection of the orbits that take place in the three
low energy quadratic dispersions centered on high sym-
metry lines. On the other hand, the edge groups can
be identified as the orbits enclosing the Γ point. The
former results in the sequence 4 × (±1,±4, . . .) at CNP
(Fig. 2(c)). This set of LL filling factors can be observed
starting around α = 0.59 up to α ≈ 0.64, where the
nonmagnetic gap is closed and even beyond that.

It appears from the above results, and in particular the
semiclassical analysis, that in the magic range, the low
energy magnetic levels around CNP are not related to the
dispersion around the two moiré DPs; in fact, one can get
further insight using semiclassical analysis: one can iden-
tify the only contour in BZ that intersects itself as the
saddle contour, which can play the role of separating dif-
ferent classes of orbits based on the orbit centers (shown
as solid black contours in Fig. 3). In all the above cases,
the saddle contours enclose the DPs and therefore limit
the total area available to the orbits forming around K
and K′; it is indeed the case at α = 0.5754 and α = 0.595
that the total area available around each DP is sufficient
for an orbit to form only for very small magnetic fields,
while orbits within other quadratic dispersion areas of
the BZ begin to form at much larger fields. Concretely,
the first orbits around the DPs only form at Φ

Φ0
≈ 1

25

(B ≈ 1T) in the first case and at Φ
Φ0
≈ 1

30 in the second
case.

IV. DISCUSSION AND CONCLUSION

We have considered the non-interacting continuum
model of twisted bilayer graphene at twist angles above
and within the magic range (≈ 1◦) when subject to a
perpendicular magnetic field. The magnetic energy lev-
els are found by imposing magnetic commensurabilty
with the moiré superlattice, resulting in butterfly plots.
By careful inspection we have derived three different se-
quences for the LL filling fractions at CNP as the twist
angle is changed, i.e. ν = ±4,±12,±20, . . ., for angles
larger than the magic angle, and ν = ±4,±8,±12, . . .
and ν = ±4,±16, . . . within the magic range with spin
and valley degeneracies considered; we have presented
these results concretely at the three α values of 0.35,
0.5754, and 0.595 respectively. We note that the second
of these sequences seems to correspond to that which is
observed experimentally by several groups. However, in
the present model this sequence occurs only for a nar-
row range of α parameter. It is possible that the range
in which this behavior occurs is enhanced by interaction
effects, not included here, for example self-energy correc-
tions. It is also possible that the observed sequence has
an entirely different origin. We do not resolve this here
but believe our results provide useful input to the issue.

We explained the above results by a semiclassical anal-
ysis of the energies at small magnetic fields. We found
that in the magic angle range there is not enough area for
even the first semiclassical orbit to form around the moiré
DPs (the K and K′ points at the BZ corners), unless the
magnetic field is very small (/ 1T). This shows that in
the magic range other areas of the BZ are responsible for
the low energy LLs around CNP; as discussed above, the
Γ point for α = 0.5754 and three local minima appearing
on high symmetry lines for α = 0.595 play this role.

We have neglected the effect of Zeeman energy in this
work; this approximation is indeed justified by an exper-
imental result in Ref. 3 where it is argued, by a compar-
ison between observed landau fan diagrams with a per-
pendicular field and a titled field, that the main sequence
seen in Landau fan diagrams is not caused by spin split-
ting. However, taking the Zeeman effect into account will
be also interesting.

Although we have been mostly concerned with rela-
tively small magnetic fields in this work, the formalism
also works for large fields. In particular, we have studied
how the transition from the previously discussed small
B regime to large B regime happens when there is a
gap between active and remote nonmagnetic bands (see
App. B). Deep in the small field limit, as discussed above
we see a total density equal to two electrons per moiré
cell confined within the active range of energy; the two
gaps above and below this range evolve continuously as
the magnetic flux is increased. In the large field limit on
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(a) (b) (c)

FIG. 3. The nonmagnetic band structure in the BZ for three values of α. The BZ is shown as a white hexagon; there are two
DPs located at its vertices K and K′ points and the Γ point is located at its center. It can be seen that in the magic range there
are low energy regions in the BZ other than the vicinities of DPs (the two cases on the right). Some semiclassical orbits closest
to CNP are shown in the three cases with dotted grey lines; the orbits are found at Φ/Φ0 = 1

10
for α = 0.35, and α = 0.5754,

at Φ/Φ0 = 1
25

for α = 0.595.

the other hand, one expects to recover the bare LLs of
the monolayer graphene sheets, each widened due to the
effect of the moiré lattice. The interpolation between the
above two limits happens at intermediate field range; at
a generic η (we have been using η = 0.82 as an example)
one can see two different behaviors as α is varied: either
i) the zeroth LLs of the two moiré DPs (small B) are
adiabatically connected to the bare zeroth LLs of mono-
layer sheets (large B), which happens for smaller gaps,
or ii) the total weight of two nonmagnetic bands (active
range) at small B is adiabatically continued into the large
B limit also, which occurs when the gap becomes larger
(see Figs. 4 and 5 in App. B for these cases). This obser-
vation is consistent with the results presented in Ref. 30,
especially those where there is a gap31.

As stated above, one expects to recover bare LLs of
monolayer graphene sheets in the infinite magnetic field
limit; the two bare zeroth LLs are infinitely far apart in
energy from other LLs, and so in this limit a low energy
description of the model can be obtained through projec-
tion onto these two LLs. Remarkably, by looking at the
detailed structure of the projected Hamiltonian, we find
a duality between the description of these zeroth LLs at
infinite magnetic flux limit, and a tight binding honey-
comb model (i.e. the honeycomb Hofstadter butterfly32)
at small magnetic flux limit (see App. F for detail), with
the layer index for the two zeroth LLs s = 1, 2 in the
former theory playing the rule of honeycomb sublattice
index in the latter. Sharing the same band structure
and density of states, the latter theory which has been
studied extensively can shed some light on the expected
properties of former (see Appendices F and H for details).

It is worthwhile to discuss also the particle-hole sym-
metry we have considered here; restoring the sublattice
pseudospin rotation in both the magnetic and nonmag-

netic Hamiltonians will result in breaking of the particle-
hole symmetry of both spectra. For the nonmagnetic
model, it is worth mentioning that restoring the sublat-
tice pseudospin rotation precludes a Lifshitz transition
from happening at or in the vicinity of K and K′ and
thus the Dirac velocity at these points does not vanish
at any α value for nonzero η (see App. G and Fig. 10
therein for detailed analysis). While this observation in-
validates a conventional definition of the magic angle as
a single angle where the Dirac velocity at K and K′ van-
ishes, it is still legitimate to talk about a magic range of
angles in which the two active bands show considerable
flatness. Additionally, in the magnetic model, we have
checked that (see App. E for details) the relatively small
field results and in particular the filling factors do not
change except when one is close to α1, where some level
crossings can occur at small magnetic fields in the mid-
dle of the active range (see Fig. 8 in App. E). These level
crossings can be understood by noting that there are α
values at which both of the non-magnetic active bands
have a minimum (or a maximum) at the Γ point; as a
result, an orbit forming around the Γ point in the top
layer can have an energy smaller than that of the zeroth
LLs of the DPs for small magnetic fields (see Fig. 7 in
App. E).

It is natural to expect that the LL degeneracy of 3
(not taking spin/valley degeneracy into account) that is
seen at the edge of the active range at α = 0.5754 and
in particular at CNP at α = 0.595 can be lifted when
other effects are taken into account to make the study
more realistic. The following three are the most obvious
effects to consider: i) the effect of symmetry breaking
terms at the level of noninteracting physics which can be
induced by the effects of the environment, such as the
hBN substrate; ii) the effect of disorder, which is not
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taken into account here and can have very nontrivial im-
pact on Dirac dispersions33,34; iii) and finally the effect of
electron-phonon and electron-electron interactions which
are neglected here. It would be an interesting further
step to explore how taking these effects into account can
affect the results presented here.
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27 G. Wannier, physica status solidi (b) 88, 757 (1978).
28 A. Alexandradinata and L. Glazman, Physical Review B

97, 144422 (2018).
29 M.-C. Chang and Q. Niu, Physical Review B 53, 7010

(1996).
30 B. Lian, F. Xie, and B. A. Bernevig, arXiv preprint

arXiv:1811.11786 (2018).
31 The result was reported differently in an earlier version

of Ref. 30: it was stated that the small field gap be-
tween the magnetic bands confined within the active range
and higher bands is always closed with a sharp transition
around Φ/Φ0 = 1, for all α values. This was attributed to
the “fragile topology” of the active bands in TBG.

32 R. Rammal, Journal de Physique 46, 1345 (1985).
33 K. Nomura, M. Koshino, and S. Ryu, Physical review

letters 99, 146806 (2007).
34 J. H. Bardarson, J. Tworzyd lo, P. Brouwer, and

C. Beenakker, Physical review letters 99, 106801 (2007).
35 P. Moon and M. Koshino, Physical Review B 85, 195458

(2012).
36 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and

M. den Nijs, Physical Review Letters 49, 405 (1982).
37 Y. Hatsugai, T. Fukui, and H. Aoki, Physical review B

74, 205414 (2006).
38 A. Agazzi, J.-P. Eckmann, and G. M. Graf, Journal of

Statistical Physics 156, 417 (2014).
39 T. Fukui, Y. Hatsugai, and H. Suzuki, Journal of the

Physical Society of Japan 74, 1674 (2005).
40 M. Aidelsburger, “Square lattice with magnetic field,” in

Artificial Gauge Fields with Ultracold Atoms in Optical
Lattices (Springer International Publishing, Cham, 2016)
pp. 9–26.



8

Appendix A: The model

The Hamiltonian consists of two terms:

H = HLL +Htunneling. (A1)

We have made everything dimensionful here to keep track of the new parameters in terms of the magnetic field,
however we will ultimately work with the dimensionless Hamiltonian H/(~vFkθ), as in the zero-field Hamiltonian (1).

• HLL is the Hamiltonian corresponding to the bare LLs of each of the graphene sheets and can be written in the
following form:

HLL = P̂+ h(−θ/2) + P̂− h(θ/2). (A2)

where P̂± = 1±τz
2 . The single layer Hamiltonian h(θ/2) is also defined as:

h(θ/2) = ~vF

[
−i∇ +

eA

~
+ sgn(θ)

q0

2
+ qh

]
·
(
Rθ/2 σ

)
. (A3)

R is a rotation matrix:

Rθ/2 =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
.

The single layer Hamiltonian can finally be written as:

h(θ/2) = ~vF

[
σ+eiθ/2

(√
2eB

~
O + i sgn(θ)

|q0|
2

)
+ h.c.

]
, (A4)

the operators O and O† are defined as follows using the Landau gauge A = B (−y, 0) :√
2eB

~
O = −∂y + kx + |qh| −

eBy

~
,

√
2eB

~
O† = ∂y + kx + |qh| −

eBy

~
. (A5)

They are raising and lowering operators of LL index:[
O,O†

]
= 1. (A6)

The wave functions are extended in the x direction and harmonic-oscillator-like (localized) in the y direction.

• Htunneling can be found by computing the matrix elements of the tunneling terms in the LLs found above.

– The commensurability condition is taken as follows (`B =
√

~
eB ):

3

2
kθ∆ =

3
√

3

4
k2
θ`

2
B = 2πp/q, (A7)

where ∆, the change in the guiding center induced by the tunneling term is given by:

∆ =
√

3 kθ`
2
B/2.

Note furthermore that since we are working with a different but equivalent form of the tunneling, our
commensurability condition is different. In terms of the moiré pattern unit cell area, the above condition
can be written as:

BA
Φ0

=
1

2

q

p
. (A8)

– We will work with a basis of LL’s as follows: |τ, n, σ, yc〉, where τ shows the layer, n shows LL index, σ
shows sublattice and yc is the guiding center coordinate. The guiding centers in a tunneling process can
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only change with the values ±∆. Thus one can write yc as yc = y0 + (mq + j) ∆, with

0 < y0 = k1`
2
B < ∆, 0 < j < q − 1,

and j = j + q. The parameter k1 defines the x component of the magnetic Bloch momentum. Then we
can do a Fourier transform on the parameter m and work with the new basis:

|τ, n, σ, y0, j, k2〉 =
1√
N

∑
m

eik2(mq+j)∆|τ, n, σ, y0 + (mq + j)∆〉. (A9)

The parameter k2 defines the y component of the magnetic Bloch momentum.

– The tunneling term can be decomposed into three terms according to the different spatial dependences:

Htunneling = (T0 + T1 + T2) + h.c.. (A10)

Each term in the above form Tn is given by

1

~vkθ
Tn = τ+α e−iQn·x Tn, (A11)

where Q0 = 0, Q1 =
√

3 kθ

(
− 1

2 ,
√

3
2

)
and Q2 =

√
3 kθ

(
1
2 ,
√

3
2

)
and the 2× 2 matrices Tn are given by:

T0 = η σ0 + σx, T1 = η σ0 + ζ σ+ + ζ∗ σ−, T2 = η σ0 + ζ∗ σ+ + ζ σ−, (A12)(
ζ = e2πi/3

)
,

– Now, each of the tunneling terms in the dimensionless form can be written as follows:

1

~vFkθ
〈1, n′, σ′, y′0, j′, k′2| T0 |2, n, σ, y0, j, k2〉 = (α) δy0,y′0

δjj′ δk2,k′2
δn′,n 〈1, σ′|T0 |2, σ〉,

1

~vFkθ
〈1, n′, σ′, y′0, j′, k′2| T1 |2, n, σ, y0, j, k2〉 = (α) δy0,y′0

δ(j+1)j′ δk2,k′2

× 〈1, σ′|T1 |2, σ〉 Fn′n(Q̃1 `B/
√

2) e−
3
2 ikθy0 e−i k2∆ e−i

2πp
q (j+ 1

2 ) ,

1

~vFkθ
〈1, n′, σ′, y′0, j′, k′2| T2 |2, n, σ, y0, j, k2〉 = (α) δy0,y′0

δ(j−1)j′ δk2,k′2

× 〈1, σ′|T2 |2, σ〉 Fn′n(Q̃2 `B/
√

2) e−
3
2 ikθy0 ei k2∆ e−i

2πp
q (j− 1

2 ) .

(A13)

Where in the above equations Q̃j = Qj,x + iQj,y.

– The function F reads:

Fn′n(z) =

(−z∗)n′−n
√

n!
n′! L

n′−n
n (zz∗) e−zz

∗/2 n′ ≥ n

(z)n−n
′
√

n′!
n! L

n−n′
n′ (zz∗) e−zz

∗/2 n′ < n
. (A14)

Lba is the generalized Laguerre function.

– The magnetic BZ for the magnetic momentum k = (k1, k2) is a region given by:

0 < k1kθ`
2
B = kθy0 <

4π

3

p

q
, 0 < k2∆ <

2π

q
. (A15)

– Using the commensurability condition the dimensionless single layer term can also be written as:

1

~vFkθ
h(θ/2) = σ+eiθ/2

√3
√

3

4π

q

p
O +

i sgn(θ)

2

+ h.c. (A16)
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Appendix B: Small and large magnetic field correspondence in the butterfly plots

(a) (b)

FIG. 4. Butterfly plots in the wide range of 1
25
≤ Φ/Φ0 ≤ 25 for (a) α = 0.25 (θ = 2.5◦) and (b) α = 0.35 (θ = 1.8◦). The

horizontal axis uses log scale to reflect the duality between Φ/Φ0 and Φ0/Φ. The bands for the nonmagentic case and the
infinite magnetic field case (see App. F) are also plotted with solid grey lines, on the far left and far right, respectively.

(a) (b)

FIG. 5. (a) Magnetic bands and their Chern numbers of the butterfly plot at α = 0.25. The integer Hall conductivity σxy in
unit of e2/h for the major gaps is given; the σxy = 1 gap persists adiabatically from small to large fields. Although not shown,
the band Chern numbers of the butterfly plot at α = 0.35 has the same pattern as labeled here, except for the persisting gap
through Φ/Φ0 = 1 (the gap inside the red box): for α = 0.35 the σxy = 1 gap is closed while the σxy = 0 gap is adiabatically
continued (as shown in Fig. 4(b)). (b) Butterfly plot in a wide range of 1/25 ≤ Φ/Φ0 ≤ 25 for α = 0.30. Notice that both the
major σxy = 0 and σxy = 1 gaps are closed at Φ/Φ0 = 1, one can declare that a transition from the former behavior (α = 0.25)
to the latter (α = 0.35) happens at this value of α.

The butterfly plots in a large range of magnetic flux ( 1
25 ≤ Φ/Φ0 ≤ 25) for α = 0.25 and α = 0.35 are shown
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in Fig. 4. The plots in the small magnetic regime qualitatively agree with the result of Moon et al.35 which was
obtained at nearby commensurate angles using a tight binding model. By comparing the low energy levels at a flux
Φ/Φ0 = q/2p < 1 and its reciprocal Φ/Φ0 = 2p/q > 1 in Fig. 4, one notices a resemblance: the butterfly structure
at flux q/2p and its reciprocal flux value 2p/q look similar. One can establish the details of this correspondence by
taking a close look at the low energy magnetic bands, shown in Fig. 5: the low energy butterfly exhibits a left wing
(Φ/Φ0 < 1) and a right wing (Φ/Φ0 > 1). Near the left (right) edge of the left (right) wing, the magnetic bands
collapse to well-defined levels. Analyzing the weight of these levels was our major task, discussed in the main text.
At the upper edge, the levels of the left (right) wing each contain q (2p) bands, while the levels at the lower edge
(note that in the main text these levels are referred to as the LLs in the middle of the active range) of the left (right)
wing each contain 2q (4p) bands.

In the main text we have commented on the two different behaviors for the adiabaticity of the band weights:
either the weight of the zeroth LLs of the two moiré DPs (consisting of 2q magnetic bands) or the weight of the two
nonmagnetic bands (consisting of 4p magnetic bands) is adiabataically continued as flux is varied through Φ/Φ0 = 1.
The former behavior is found at α = 0.25 (see Fig. 5): the gap between the active 2q magnetic bands (zeroth LLs of
the two moiré DPs) and higher bands persists at all flux values, while the gap between 4p magnetic bands in the active
range and the the remote bands closes at Φ/Φ0 = 1; the latter behavior is found at α = 0.35, where the persisting gap
and the closing gap are switched. Note that there is a gap at CNP (although the two bands above and below it can
also touch at this point), which corresponds to having a vanishing Hall conductivity, σxy = 0; the Hall conductivity
(in the units of e2/h) for other gaps can then be obtained by suming over all the Chern numbers for the bands below
this gap but above CNP.

In this way, we find that the gap above CNP persisting from small to large fields has a unit Hall conductivity,
σxy = 1 for α = 0.25, and σxy = 0 for α = 0.35 (see Fig. 5(a)). Furthermore, we found that a transition between
these two behaviors happens at α ≈ 0.30, where both gaps are closed at Φ/Φ0 = 1, see Fig. 5(b). The difference in
the adiabaticity behavior found above may have observable effects in quantum Hall experiments.

Fig. 5(a) shows the Chern numbers of the LLs lying between the two major gaps (the gap with σxy = 0 and the
gap with σxy = 1). Notice that at small magnetic field limit, the total Chern number of magnetic bands within the
active range vanishes, while for large magnetic field limit the total Chern number for the 2q bands is 2. The results
are in accordance with a computation based on Streda’s formula.

Appendix C: Wannier plot

In this section we give a prescription for extracting the weight information in the butterfly plot. The final result is
the wannier plots shown in Fig. 2 in the main text.

The wannier plot is a density plot, which shows the density of states ρ(n,B) as a function of carrier density n and
magnetic field B. In principle it can be obtained by transcribing the energy spectrum (butterfly) plot according to
the following method:

• The density of states are obtained by broadening the δ functions using a Lorentz distribution:

ρ(E) =
∑
i

δ(E − Ei)→
∑
i

1

π

γ

(E − Ei)2 + γ2
, (C1)

where the parameter γ is an empirical parameter. This parameter is adjusted for each value of α to achieve
optimal resolution for the Landau levels.

• The carrier density at energy E is obtained by integrating density of states from above:

n(E) =
∑
i

θ(E − Ei)→
∑
i

1

π
arctan

(
E − Ei
γ

)
, (C2)

Due to the fact that the number of magnetic bands scales with p, where p and q are coprime numbers satisfying
Φ/Φ0 = q/2p (and also noting the prescription for finding densities given in the main text), a normalization factor
1
2p has to be given to the expressions Eq. (C1) and (C2) when the density of a numerically found magnetic band is

calculated. This guarantees that the active range corresponds to n ∈ [−1, 1] in a Wannier plot.
As mentioned in Fig. 2, the colors therein in fact correspond to a rescaled density of states ρ/ρmax, where ρmax is

a large value of density of states which sets the rightmost scale of the colorbar. The value of ρmax is different for the
three subplots; furthermore it may not be the actual largest density of states computed from the butterfly plot. ρmax

is chosen simply to obtain the best resolution of the LLs for the figures.
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Appendix D: Semiclassical energies

In this section of the supplemental information, we compare the energies found using the semiclassical analysis
and the energy levels in the butterfly plots at small (relevant to experiments) fields. The semiclassical energies are
shown as red dashed lines on top of butterfly plots in Fig. 6. Each semiclassical line is found by imposing the relevant
quantization condition on the enclosed area in different areas of the BZ; the lines are continued until the energy
reaches the saddle contour energy (see main text).

The agreement between the two sets of energies is best at α = 0.35, however, within the magic range the agreement
is less pronounced; at α = 0.5754, the agreement of the edge levels is better while in the middle of the active range the
LLs in the butterfly plot have a smaller energy than those found by semiclassical analysis. This discrepancy can be
understood by noting that at this value of α the two active bands approach each other at the Γ point which can lead
to interband mixing, and that we are neglecting this here. Still good qualitative agreement can be seen. At α = 0.595
finally, the edge LLs found by the two methods show better agreement as one gets further from the edge; and in the
middle of the active range, the only 3-fold degenerate LL found in the butterfly plot is acceptably close to the 3-fold
LL found by semiclassical analysis.

(a) (b) (c)

FIG. 6. A comparison between LLs found using semiclassical analysis and those in butterfly plots. The semiclassical energies
are shown by red dashed lines on top of the butterfly plots.

Appendix E: Broken particle-hole symmetry

As is discussed in the main text, with the inclusion of sublattice rotation matrices Sθ the particle-hole symmetry
in the magnetic spectrum is broken. This does not have a major effect on the filling factor sequences discussed in the
main text when the twist angle is outside the magic range. However, close to α = α1 (where the two active bands
have a quadratic band touching), the situation can be different; at α1 the nonmagnetic active bands touch each other
below the energy of DPs as shown in Fig. 7. As a result of this, the orbits formed in the top band around the Γ
point can have lower energy than the zero energy LLs of moiré DPs, when α is close to α1. As can be seen in Fig. 8,
for small magnetic field level crossings in the middle of the active range can occur which can potentially result in an
abrupt change of the filling factor sequence.

Appendix F: Mapping the model in the infinite magnetic field limit to a zero field model

Although the magnetic model introduced in App. A looks rather complicated, it can be simplified in the inifinte
magnetic field limit B → ∞. This is due to the decoupling of the bare LLs, which can be observed in the butterfly
diagram: at infinite magnetic field limit Φ/Φ0 = q/2p → ∞, the low energy part of the butterfly spectrum consists
of 2q magnetic bands, which are precisely the two zeroth LLs of the Dirac points of the two graphene sheets, i.e. the
zero energy solution of the part HLL which are widened due to moiré lattice. They are infinitely apart in energy from
the other LLs. Furthermore, as magnetic field approaches infinity, the band width of each of the 2q magnetic bands
tends to vanish, and eventually these 2q bands merge into one continuous band.

As discussed in App. B, the butterfly plot (see Fig. 4) shows a kind of duality between small and large fluxes: 2q
magnetic bands appear at charge neutrality point for small fields and eventually evolve (with the possibility for a gap
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(a) (b)

FIG. 7. Nonmagnetic bands close to CNP, for η = 0.82 and α = α1. The ten closest bands and the two active bands are
shown in (a) and (b) respectively. At this value of α the active bands show a considerable asymmetry.

FIG. 8. Butterfly plot for the (η,R) = (0.82,Sθ) model (i.e. both lattice corrugation and sublattice pseudospin considered) at
α = 0.5754. The inset shows magnified version of the magnetic energy levels at small fields.

closing) into the zeroth LLs at large fields; on the other hand, the 4p bands corresponding to the total weight of the
two active bands at small fields also evolve (again with the possibility for a gap closing) and gradually converge to
charge neutrality point at large fields. This spectral duality is reminiscent of the duality of the Harper’s equation
in the weak potential limit and the strong potential limit36, where the flux quantization condition of one case is the
inverse of the other.

These facts motivate us to look for a simple description of the 2q bands at large magnetic fields. Such a 2q by
2q Hamiltonian H2q×2q can be easily obtained by projecting the Hamiltonian introduced in App. A onto the 2q-
fold basis of the zeroth LLs. Crucially, H2q×2q can be interpreted differently as a fictitious Hofstadter Hamiltonian

obtained from a tight binding model on a honeycomb lattice subject to a commensurate dual magnetic field B̃. Here

the tight binding model and the dual magnetic field B̃ are fictitious; the sublattice index s = 1̃, 2̃ of the fictitious

honeycomb lattice in fact is dual to the zeroth LLs of layers 1 and 2, and the fictitious magnetic field B̃ requires that

the dual flux per honeycomb unit cell Φ̃ in this dual magnetic problem is the inverse of the physical flux per unit cell

Φ̃/Φ0 = Φ0/Φ = 2p/q. From now on we will refer to this fictitious theory as the dual theory for simplicity.
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To be more precise, we introduce the fictitious honeycomb lattice in the dual theory by specifying the vectors a0,1,2

from a 1̃ sublattice site to its three nearest neighbor (NN) 2̃ sites:

a0 = (ã, 0), a1 = (−ã/2, b̃), and a2 = (−ã/2,−b̃), (F1)

where we defined

ã = kθ`
2
B and b̃ = ∆. (F2)

Depending on the ratio between ã and b̃ the honeycomb may appear elongated or compressed but this will not affect
the physics we study. The tight binding Hamiltonian we propose in the dual theory is the NN hopping Hamiltonian
on the honeycomb lattice:

H = −t
∑
i

∑
j=0,1,2

c†
ri,1̃

cri+aj ,2̃
+ H.c., (F3)

where i runs over all 1̃ sublattice sites, and the hopping amplitude t = αη~vFkθ. Let us define lattice translation

vectors t1 = (3ã/2,−b̃) and t2 = (3ã/2, b̃) for the 1̃ sublattice.

Then, we apply the fictitious magnetic field B̃ by using the Landau gauge Ã = (−yB̃, 0) (y is continuous here).

The magnetic Hamiltonian H̃ ′ can be obtained via a Peierl’s substitution:

H̃ ′ = −t
∑
i

e
2πi
Φ0

B̃ãb̃yic†
ri,1̃

cri+a0,2̃
+ e−

2πi
Φ0

B̃ãb̃
2 (yi+1/2)c†

ri,1̃
cri+a1,2̃

+ e−
2πi
Φ0

B̃ãb̃
2 (yi−1/2)c†

ri,1̃
cri+a2,2̃

+ H.c., (F4)

note that yi is an integer. Next, we perform a gauge transformation

cri,1̃ → e
πi
Φ0
B̃ãb̃yicri,1̃, cri+a0,2̃

→ e−
πi
Φ0
B̃ãb̃yicri+a0,2̃

, (F5)

under which the Hamiltonian transforms as H̃ ′ → H̃, where

H̃ = −t
∑
i

c†
ri,1̃

cri+a0,2̃
+ e−

2πi
Φ0

Φ̃
2 (yi+1/2)c†

ri,1̃
cri+a1,2̃

+ e−
2πi
Φ0

Φ̃
2 (yi−1/2)c†

ri,1̃
cri+a2,2̃

+ H.c.. (F6)

Note that we have defined flux per unit cell Φ̃ = B̃Ã, where Ã = 3ãb̃ is the hexagonal unit cell area of the dual
honeycomb lattice. Having the purpose of getting a dual theory to the initial model, we impose the following
commensurate flux condition

Φ̃

Φ0
=

2p

q
, (F7)

under this condition the Hamiltonian H̃ has new translation symmetry along vectors t̃1 = (3ã/2,−qb̃), t̃2 = (3ã/2, qb̃)

for odd q, or t̃1 = (3ã, 0), t̃2 = (0, qb̃) for even q. Next we turn to using the Fourier transformed operators ck̃,li,s
instead of cri,s, where li ≡ yi mod q. k̃ belongs to the dual magnetic BZ (which is valid for q being both odd and
even)

k̃ = (k̃1, k̃2) ∈
[
0,

2π

3ã

]
×
[
0,

2π

qb̃

]
=

[
0,

2π

3kθ`2B

]
×
[
0,

2π

q∆

]
, (F8)

And the Hamiltonian becomes

H̃(k̃) = −t
q−1∑
l=0

c†
l,1̃
cl,2̃ + e−ik̃·t1e−2πi Φ̃

Φ0
(l+ 1

2 )c†
l,1̃
cl+1,2̃ + e−ik̃·t2e−2πi Φ̃

Φ0
(l− 1

2 )c†
l,1̃
cl−1,2̃ + H.c., (F9)

this Hamiltonian, written in basis of cl,1̃/2̃, will give a 2q by 2q hermitian matrix H̃2q×2q. Comparing this with the

matrix elements given in Eq. (A13), we establish the following relations between the corresponding quantities in the
original theory and the dual theory:
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• H̃2q×2q is equal to H2q×2q, if one relates k̃ to the magnetic momentum of the original magnetic theory by

k̃x = kx and k̃y = −ky; (F10)

• The dual magnetic flux is related to the original magnetic flux by

Φ̃

Φ0
=

Φ0

Φ
=

2p

q
; (F11)

• From Eq. (F11), the magnetic fields of the original theory and the dual theory are actually equal:

B = B̃. (F12)

This implies that in the large magnetic field limit B ∝ q/p → ∞, the dual magnetic field B̃ is also large.

However the dual magnetic flux per unit cell, Φ̃, approaches zero in this limit, despite B̃ being large. This is

due to the fact that, by definition, the dual unit cell area Ã ∝ (p/q)2, while B̃ ∝ q/p.

Therefore, we have established a duality map between the model of App. A in the large magnetic flux limit and
a dual model describing “monolayer graphene” in small (fictitious) magnetic flux limit. A couple of observations
immediately follow from this duality:

• The bandwidth of the two zeroth LLs at infinite magnetic field is equal to that of the tight binding model:
−3 ≤ 1

tE ≤ 3, in agreement with numerical results (see Fig. 5).

• At large flux Φ/Φ0 � 1, the butterfly plot of the 2q magnetic bands of the two zeroth LLs as a function of the
inversed flux Φ0/Φ should be similar to the Hofstadter butterfly plot of the honeycomb lattice32, see Fig. 9.

• Since the butterfly at extreme fields admits two physical pictures (in the original theory and dual theory),
it is interesting to compute the band Chern numbers in both theories, and try to understand their relations.
Regarding this the first claim is that the for the same band in the spectrum, band Chern number may not be
equal in the two theories. As shown above, the Chern numbers of the group of bands near the lower or upper
edges of the original model in the large magnetic field always vanish, while the fictitious Chern numbers of the
bands calculated in the fictitious tight binding model near the upper and lower edges have the values 1 and
2 respectively37,38. The correspondence between the Chern numbers in the two theories will be established in
App. H.

Appendix G: Topological transitions of the non-magnetic continuum model

In this section we give a complete description of the topological transitions happening in the model Hamiltonian for
zero magnetic field (1), as the twisting angle θ (or the parameter α) is varied in the magic angle range. Recall that
in this model there are the lattice corrugation parameter η and rotation matrix R for sublattice pseudospin σ, and
in the main text we have taken a physical value η = 0.8213 and neglected the effect of sublattice pseudospin rotation
R. Here we will use the symbol R = 12×2 for the case of neglecting this rotation, and R = Sθ for the case otherwise.
Note the latter case introduces a small particle-hole asymmetry into the model.

In Ref. 25, the series of topological transitions near the magic angle for the case (η,R) = (1, 12×2) have been
studied in detail. Here we will consider three other cases: 1). (η,R) = (1,Sθ), 2). (η,R) = (0.82, 12×2), and 3).
(θ,R) = (0.82,Sθ). Note that the magnetic model considered in this work is based on the parameters of case 2). The
DP evolution diagrams for these three cases as α is varied near the magic angle range are shown in Fig. 10.

Let us recall what happens in the case of (η,R) = (η, 12×2), considered in Ref. 25. When the twist angle is varied
near the first magic angle, the topological transitions can be divided into two disconnected processes: first 6 pairs
of DPs (each pair contains opposite chirality) emerge in the vicinity of Γ, and then pair-wise annihilate each other,
again in the vicinity of Γ. The second part starts by the emergence of another six pairs of DPs at Γ, which later form
six outer ones with the same chirality and six inner ones with the opposite chirality. The six inner ones participate
in a further transition at the Γ point, while the six outer ones pair-wise meet at M points, deflected towards K and
K′ points at which they participate in the Lifshitz transition. Finally, the six outer ones coming out from K and K′

annihilate with the six inner ones coming out of the Γ point.
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FIG. 9. Comparison of the butterfly plots obtained from the original theory and the dual theory. Red: the butterfly spectrum
of the model in App. A for α = 0.3 in the flux range 1

2
≤ 1− Φ0/Φ ≤ 1; Green: the butterfly spectrum of the dual model (see

Eq. (F9)) – honeycomb Hofstadter butterfly. Note that the green butterfly does not change if one uses Φ̃/Φ0 as the horizontal

axis due to its mirror symmetry about Φ̃/Φ0 = 1/2. In the limit Φ̃/Φ0 = Φ0/Φ → 0 (i.e. the rightmost part of the plot), the
spectra of the two models become identical.

First, it is interesting to compare the topological transitions happening in the (η,R) = (1,Sθ) case with the case of
(η,R) = (1, 12×2) considered in Ref. 25. It turns out the topological transitions of the two cases resemble each other,
in the sense that in both cases, DPs emerge near the Γ point, and later on half of the DPs move towards M, K and
K′, which finally annihilate with the other half. However, several important changes are observed immediately:

• There are substantially larger number of topological transitions as the twist angle is varied near the magnetic
angle. The two disconnected processes of topological transitions mentioned earlier for the (η, 12×2) model are
now connected.

• There are band touching points between active bands and their immediate higher neighbor band near α = 0.5724,
at which three pairs of DPs – all six have the same chirality – are annihilated in the vicinity of Γ point, where
their charges are transferred into higher bands.

• Due to breaking of particle-hole symmetry, the topological transition originally present at M for the (η = 1, 12×2)
model no longer takes place at M, but in the vicinity of it.

• Importantly, there is no Lifshitz transitions at or near K or K′ points: as three pairs of DPs are deflected from
the vicinity of M, they induce a trigonal warping near K and K′, but they no more pass through K or K′; nor
do they meet or get deflected near K or K′. Instead, they come close to K or K′, rotate π/3 around those two
points, and leave towards Γ. They eventually annihilate with the other six DPs coming from the Γ point. The
Dirac velocity at K and K′ does not vanish for any value of α.

The last point mentioned above is particularly worth further discussion: the absence of topological transitions at (or
near) K or K′ means that no magic angles can be defined in the conventional sense; instead there is a “magic range”
of twist angles where the active two bands become considerably flat. The absence of topological transitions at K or
K′ is a direct consequence of introducing the sublattice pseudospin rotation Sθ. This term breaks the particle-hole
symmetry, and allows a new term υk × σ into the low energy effective k · p Hamiltonian near K or K′. Such an
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(a) (b)

(c) (d)

FIG. 10. The topological transitions in the magnetic range for (a) the (η,R) = (1.0,Sθ) model, (c) the (η,R) = (0.82, 12×2)
model, and (d) the (η,R) = (0.82,Sθ) model. (b) shows the magnified version of the DP movements in (a) in the vicinity of
K or K′ (left) and also the Γ point (right).

effective model is then written as

HK/K′,eff = vk+σ− + v∗k−σ+ + ak+2σ+ + a∗k−2σ−, (G1)

where v = vF + iυ is a complex paramter; note that in the particle-hole symmetric case, v is real and equal to
vF = s(α−α0) +O(α−α0)2, i.e. the Dirac velocity is first order in α−α0 near the first magic angle. The imaginary
part, υ, on the other hand is expected to be a constant at the leading order of α−α0; however, since it vanishes when
the particle hole symmetry is retained, it has to be linear in the twist angle θ which is a small parameter itself, i.e. it
should have a form c0θ, with c0 a constant. Defining ϕ = arg(v), the Dirac points surrounding K or K′ are located at
(in polar coordinates, with the pole set at K or K′)

(k, θ) =

(
1

a

√
s2(α− α0)2 + υ2,−1

3
(arg(a) + ϕ) +

2π

3
n

)
, n = 0, 1, 2. (G2)

We see that υ prevents the three nearby Dirac points from visiting K/K′ and thus the Dirac velocity does not vanish.

Next we consider the topological transitions in the case of (η,R) = (0.82, 12×2). The number of topological
transitions is reduced down to three: first, 12 DPs (with alternating chiralities) emerge at the Γ point, then, the six
with the same chirality move towards M point and the other six with opposite chirality move towards K and K′.
The latter six then participate in the Lifshitz transition at K and K′ in the same manner that one encounters in the
(η,R) = (1.0, 12×2) model. Finally, these six DPs leave K and K′ points and meet with the other six DPs exactly
at M (where at each M point there are in total four DPs with total zero chirality), at which four DPs annihilate
each other, leaving no further topological transitions behind. Note that the topological transitions are “inverted” in
this case compared with the η = 1 cases, in the sense that now the transition at K and K′ precedes the ones at M.
This “inversion” signifies a transition behavior in the topological transitions themselves as η is reduced from η = 1 to
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η = 0.82. This transition behavior is interesting in its own right, but we will not elaborate on it.
Finally we study the topological transitions in the case of (η,R) = (0.82,Sθ). This is the most realistic of the

three versions we considered. The topological transitions in the magic range is nevertheless quite simple. First, at
α = 0.574827, three pairs of DPs emerge near Γ; the three DPs with negative chirality move towards Γ, at which point
three new pairs of DPs are also created in quadratic band touching transition; the positively charged DPs annihilate
the previous negative DPs and the new negative DPs continue moving out in the same direction as the initial DPs;
the three initial DPs with positive chirality move in the opposite way, travel across the BZ border, and finally pairwise
annihilate with the ones with negative chirality. No topological transitions appear near K and K′ points.

Appendix H: Chern number

Quite often the quantized Hall conductivity (in units of e2/h) in an energy gap can be determined algebraically by
writing down the Diophantine’s equation describing the gap and then applying Streda’s formula. The Chern number
for a group of bands can then be obtained by computing the quantized Hall conductivity at the energy gap above and
below this group of bands, and then take the difference. An equally good method to determine Chern number for
a group of bands is to make direct use of the band topology by computing the berry curvature numerically. In this
method, care must be taken to make sure the numerically computed berry curvature is gauge invariant as required
by definition. Such a method has been developed in Ref. 39, which applies to any Bloch Hamiltonian H(k) which
is periodic along the two directions of the (2D) Brillouin zone. The two methods have been shown to give identical
results in several cases37,40.

The situation, however, is subtle for the magnetic model (see App. A) we are using here: the hermitian matrix
corresponding to the Hamiltonian in the Landau level basis, H(k), does not have the “expected” periodicity, that is
being periodic with respect to the reciprocal vectors of the magnetic translation lattice (see Eq. A15). The issue has
to do with the fact that the Landau level basis we are using satisfies a generalized Bloch theorem36 rather than the
original Bloch theorem. Consequently, the numerical method for computing the Chern numbers mentioned above has
to be modified.

To give the modified numerical method, let us first establish the correspondence between the magnetic model in
App. A and the standard problem of Bloch electrons moving in perpendicular magnetic field36. We first establish the
correspondence between the Landau basis. Define k1 = y0/`

2
B, the Landau level basis used in App. A can be written

in real space

〈x|τ, n, σ, y0, j, k2〉 = Γτ,n,σ,j,k(x)

=

∞∑
m=−∞

e−ik2(x−(m+ j
q )pa)ei

2π
a (mq+j)yφn

(
y −

([
m+

j

q

]
pb− p

q

ab

2π
k1

))
,

(H1)

where we defined lengths along x̂ and ŷ direction, respectively,

a =
4π√
3kθ

, b =
4π

3kθ
.

This is essentially the same basis used in Ref. 36, with a change of definition (p, q)→ (q, p) and axis (x̂, ŷ)→ (ŷ, x̂).
The translation vector along x̂ and ŷ is then ax̂ and pbŷ; this essentially defines a rectangular magnetic BZ of size 2A:

(kx, ky) ∈
[
0,

2π

a

]
×
[
0,

2π

pb

]
.

The Bloch function |u(k)〉 is then written as

|uτ,σ(k)〉 =

q−1∑
j=0

∞∑
n=0

dτ,σ,n,j |τ, n, σ, y0, j, k2〉.

The Bloch Hamiltonian H(k) constructed in App. A gives a Hermitian matrix in the basis |τ, n, σ, y0, j, k2〉. One
then diagonalizes this Hermitian matrix numerically to obtain the eigenvectors d(k), with entries dτ,σ,n,j(k).

We now derive the modified numerical method to computing the correct band Chern number. Remember that in
the original method of Ref. 39, the band Chern number is obtained by summing over berry curvature of this band
(or multiple bands) in the BZ; the berry curvature B(k) is computed numerically from the eigenvectors d(k) using a
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discretized and gauge invariant version of the definition:

Bnumerical(k) = iεij (∂kid(k))
†
∂kjd(k), (H2)

where εij is the 2D antisymmetric tensor and i and j are implicitly summed.
To remedy this, one must remember that here we are using Landau levels as the basis; thus the basis states are

also functions of momentum, and may as well contribute to berry curvature. The complete Berry curvature is then
computed as follows:

B(k) = iεij (∂ki〈u(k)|) ∂kj |uk〉

= iεij (∂kid(k))
†
∂kjd(k) + iεij

∑
τ,τ ′,σ,σ′,j,j′,n,n′

d∗τ,σ,n,j(k)dτ ′,σ′,n′,j′(k) (∂ki〈τ, n, σ, y0, j, k2|) ∂kj |τ ′, n′, σ′, y′0, j′, k′2〉,

(H3)
note that the Berry curvature receives contribution from two parts, the first from the eigenvector d and the second
from the LL basis Γ.

Now we integrate both sides over the BZ to obtain the Chern number C. Note that the integral of the second term
can be calculated analytically, which gives a −1/q contribution. Therefore we have

C = Cnumerical − 1/q, (H4)

i.e. each LL contributes a fraction 1/q to the total Chern number. Note the second term in Eq. (H3) does not
contribute to Chern number if the Bloch Hamiltonian matrix is written under a plane wave or Wannier basis.

As an application of the formula, let us study the correspondence between the Chern numbers obtained in the
original magnetic theory (App. A) at large flux and that obtained in the dual theory at small flux (see App. F). The
Chern number of the dual theory (the honeycomb Hofstadter butterfly problem, i.e. Eq. (F3)) has been obtained
previously37,38: each band at the edge contributes Chern number C = 1 and each band at the charge neutrality
contributes C = 2. In fact the relation between the Chern number sequence 2, 2, ..., 1, 1 of the honeycomb Hofstadter
butterfly model and the vanishing of Chern number of our model in App. A at large field can be understood using
Eq. (H3). Take the group of 4p bands at charge neutrality of our model at large field as an example: since C = 0,
Cnumerical = 4p/q. The dual theory has a dual magnetic BZ with an area that is equal to q/2p times the MBZ area of
the model in App. A. Since the Chern number for the dual magnetic model, Cdual, is evaluated on the dual magnetic
BZ, and noting that the MBZ of the model in App. A is p-fold degenerate (consisting of p identical segments along
kx direction when computing Berry curvature), we have

Cdual =
q

2p
· Cnumerical = 2, (H5)

this is exactly the Chern number for the zeorth Landau level of the magnetic honeycomb37,38. Note the second term
in Eq. (H3) does not contribute to the Chern number of the dual theory, since the Hamiltonian is written in plane
wave basis.

Using this line of argument, all Chern numbers in the original and the dual theory can be understood.


	Landau levels in twisted bilayer graphene and semiclassical orbits
	Abstract
	Introduction
	The model 
	Numerical solution and semiclassical analysis
	Discussion and Conclusion
	Acknowledgments
	References
	The model
	Small and large magnetic field correspondence in the butterfly plots
	Wannier plot
	Semiclassical energies
	Broken particle-hole symmetry
	Mapping the model in the infinite magnetic field limit to a zero field model
	Topological transitions of the non-magnetic continuum model
	Chern number


