
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Universal level statistics of the out-of-time-ordered
operator

Efim B. Rozenbaum, Sriram Ganeshan, and Victor Galitski
Phys. Rev. B 100, 035112 — Published 15 July 2019

DOI: 10.1103/PhysRevB.100.035112

http://dx.doi.org/10.1103/PhysRevB.100.035112


Universal Level Statistics of the Out-of-Time-Ordered Operator

Efim B. Rozenbaum,1, 2, ∗ Sriram Ganeshan,3, 4 and Victor Galitski1, 2

1Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA.
2Condensed Matter Theory Center, Department of Physics,

University of Maryland, College Park, MD 20742, USA
3Simons Center of Geometry and Physics, Stony Brook, NY 11794

4Department of Physics, City College, City University of New York, New York, NY 10031, USA

The out-of-time-ordered correlator (OTOC) has been proposed as an indicator of chaos in quan-
tum systems due to its simple interpretation in the semiclassical limit. In particular, its rate of
possible exponential growth at ~→ 0 is closely related to the classical Lyapunov exponent. Here we
explore how this approach to quantum chaos relates to the random-matrix theoretical description.
To do so, we introduce and study the level statistics of the logarithm of the out-of-time-ordered
operator, Λ̂(t) = ln

(
− [x̂(t), p̂x(0)]2

)
/(2t), that we dub the “Lyapunovian” or “Lyapunov opera-

tor” for brevity. The Lyapunovian’s level statistics is calculated explicitly for the quantum stadium
billiard. It is shown that in the bulk of the filtered spectrum, this statistics perfectly aligns with
the Wigner-Dyson distribution. One of the advantages of looking at the spectral statistics of this
operator is that it has a well-defined semiclassical limit where it reduces to the matrix of uncorre-
lated classical finite-time Lyapunov exponents in a partitioned phase space. We provide a heuristic
picture interpolating these two limits using Moyal quantum mechanics. Our results show that the
Lyapunov operator may serve as a useful tool to characterize quantum chaos and in particular
quantum-to-classical correspondence in chaotic systems, by connecting the semiclassical Lyapunov
growth at early times, when the quantum effects are weak, to universal level repulsion that hinges
on strong quantum interference effects.

I. INTRODUCTION

There exist a number of approaches to define the con-
cept of “quantum chaos.” The basic approach is to quan-
tize a classically chaotic model and declare the corre-
sponding quantum model as “quantum chaotic.” An-
other prevailing method identifies quantum chaos with
level repulsion between energy levels, described by the
universal Wigner-Dyson statistics. The connection be-
tween the two is established via the so-called Bohigas-
Giannoni-Schmit (BGS) conjecture [1] (first formulated
in Ref. [2]), which postulates that the spectra of time-
reversal-invariant classically chaotic systems show the
same fluctuation properties as predicted for Gaussian Or-
thogonal Ensemble (GOE) of random matrices. Semi-
classical approaches in the form of periodic orbit the-
ory [3] by Berry [4] and non-linear sigma models by An-
dreev et al. [5–7] have been employed to prove BGS
conjecture with partial success. There are alterna-
tive approaches to quantum chaos: those based on
wave-function behavior, such as quantum ergodicity [8],
Berry’s random-wave conjecture [9], and nodal statis-
tics [10]; criteria based on transport or scattering proper-
ties [11]; and definitions connecting to exponential behav-
ior reminiscent of the classical instability, that is observed
in quantum fidelity [12], Loschmidt echo [13], and out-of-
time-ordered correlator (OTOC) [14]. More recently, the
“definition” of quantum chaos based on OTOC became
the focus of much research owing to its applicability to
many-body quantum systems (see e.g. Refs. [15, 16]).
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The quasiclassical limit of OTOC reproduces the sensi-
tivity of quasiclassical trajectories to initial conditions.
Exponential growth of OTOC at early times is identi-
fied as a fingerprint of quantum chaos, connecting the
quantum dynamics to the hallmark of classical chaos –
the Lyapunov divergence of classical trajectories, collo-
quially known as the “butterfly effect.”

In many cases (e.g., disordered metals [17] and cer-
tain chaotic billiards) these approaches do appear equiv-
alent, but there is no universal equivalence. For example,
not all quantum models with Wigner-Dyson level statis-
tics are required to have an “obvious” classical counter-
part (e.g., Sachdev-Ye-Kitaev model [15, 18]) and not
all classically chaotic dynamical systems acquire Wigner-
Dyson level statistics upon quantization, such as systems
that show localization. Moreover, quantum systems with
merely mixing (non-chaotic) classical counterparts can
obey Wigner-Dyson distribution even without classical
exponential instabilities (see, e.g., Ref. [19]). Such cases
are considered outside of the BGS characterization. This
ambiguity makes the notion of quantum chaos somewhat
poorly defined. It is highly desirable therefore to obtain
a more straightforward way of connecting the different
intuitive ideas and approaches to “quantum chaos,” and
we attempt to do so in this work by introducing an oper-
ator, we dub the Lyapunovian [see Eq. (1) below], which,
as we show, contains information about both the develop-
ment of the universal level statistics resulting from quan-
tum interference and classical Lyapunov exponents in a
(semi)classical phase space. Our study is motivated by
recent work on OTOCs [15, 16], the concept originally in-
troduced by Larkin and Ovchinnikov [20] in the context
of disordered metals. It involves a quantum expectation
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value of the following positive-definite operator:

Ĉ(t) ≡ exp [2 t Λ̂(t)] = − [x̂(t), p̂x(0)]
2
, (1)

where we chose a pair of operators x̂(t) and p̂x(t) –
the Heisenberg operators of a particle’s x−coordinate
and the corresponding component of its momentum.
Both in the case of a dirty metal and a billiard, one
can argue in the semiclassical limit that since p̂x(0) =
−i~ ∂

∂x(0) , the OTOC – the quantum expectation value

of the operator Ĉ(t) in Eq. (1) – probes the sensi-
tivity of quasiclassical trajectories to initial conditions:

C(t) = 〈Ĉ(t)〉 = ~2

〈(
∂x(t)
∂x(0)

)2
〉

. Thus the classi-

cal Lyapunov-like growth is anticipated at early times,
C(t) ∝ exp(2λ̃t), where λ̃ is related to the classical Lya-
punov exponent (see Sec. VI for details).

However, whether the OTOC actually exponentially
grows or not depends on the choice of a quantum state
over which the expectation value is calculated. It also
depends on the existence of a long enough time window
within the Ehrenfest time scale t < tE (see Sec. VI),
before the quantum interference washes out the classical
growth, if any. In some sense, the search for exponential
growth of OTOC becomes the search for a quasiclassical
description. In some cases, such as billiards or diffu-
sive metals, the quasiclassical limit is obvious. In some
others, such as the Sachdev-Ye-Kitaev model, the classi-
cal variables are “hidden” in the large-N limit [21, 22].
The dependence of the OTOC on the choice of a quan-
tum state is a non-universal feature, and instead, moti-
vated by Ref. [23], we focus on the random-matrix struc-

ture of the Lyapunovian – the Hermitian operator Λ̂(t)
in Eq. (1). The Lyapunovian possesses a semiclassical
interpretation which enables us to connect the spectral
statistics with that of the matrix of classical finite-time
Lyapunov exponents in different cells of the partitioned
phase space [24].

The rest of the paper is organized as follows. In Sec. II,
we introduce the specific model we used in the calcu-
lations. In Sec. III, we demonstrate the main results
on the universal level statistics of the Lyapunov opera-
tors. Next, Sec. IV elaborates on the dynamics of the
time-dependent level statistics and the ways it can be
observed. Sec. V gives a heuristic picture that helps in
developing the intuition behind our findings. Finally, in
Sec. VI, we show the early-time exponential growth of
OTOC in our model and explain why it is not always
readily visible.

II. MODEL

For explicit calculations, we choose the quantum sta-
dium billiard – a canonical model to explore quantum
signatures of chaos, – but the main construction natu-
rally transplants to a wide class of models. The classical
Bunimovich stadium billiard [29–31] is a seminal model

FIG. 1. Energy-level statistics for quantum stadium billiard
(separate for each eigenstate parity, combined [25]). Con-
tribution from the bouncing-ball modes [26–28] is removed
within the spectrum unfolding. Solid line shows GOE Wigner-
Dyson distribution.

of classical chaos, and its quantum counterpart has been
known to obey the Wigner-Dyson energy-level statistics
of GOE [1, 2, 28, 32–34] reproduced in Fig. 1. The oscil-
latory contribution of the bouncing-ball orbits [26–28] to
the density of states – a non-generic feature of the sta-
dium – is subtracted in order to obtain the near-perfect
agreement between the level-spacing distribution and the
Wigner surmise. Throughout the paper, we consider the
billiard with unit aspect ratio a/R = 1, where 2a is the
length of the straight segments of the walls and R is the
radius of the circular ones. We use the units where both
the area of the billiard A = (π + 4)R2 and the particle
mass m are set to 1. We also choose a certain momen-
tum p0 as the third unit. Later, it will play the role of
the quantum-particle’s average momentum. In the semi-
classical limit, p0 translates into the momentum of the
classical particle inside the billiard. In these units, the
Schrödinger equation and the boundary condition read:

−~2
eff

2
∇2Ψ(x, y) = EΨ(x, y), Ψ(r)

∣∣∣
r∈billard walls

≡ 0, (2)

where ~eff = ~/(p0

√
A). The stadium billiard has

two reflection symmetries: x ↔ −x and y ↔ −y.
Correspondingly, its eigenstates have one of four pos-
sible parities [32]. E.g., the odd-odd-parity functions
Ψoo(−x, y) ≡ Ψoo(x,−y) ≡ −Ψoo(x, y). As it is usually
done, in order to enforce these parities and speed up the
calculations, we use a quarter of the billiard imposing
Dirichlet and/or Neumann boundary conditions on the
cuts to obtain solutions of all four parities separately.

We solve these boundary-value problems for the
Laplace operator numerically using the finite-element
method. It is known that the accuracy of the numeri-
cal solution deteriorates with the number of found eigen-
states [35]. We use the Weyl’s formula for the number
of modes [36] to control it. According to the Weyl’s law,
the average number of eigenstates below energy E asymp-
totes to:

N (E) ' A

4π

2

~2
eff

E − P

4π

√
2

~2
eff

E, E →∞, (3)
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where P is the billiard’s perimeter. We do all calcula-
tions in several ranges. The smallest range is limited to
about N = 5000 eigenstates and preserves almost exact
agreement with the Weyl’s formula, and the largest one
is over N = 105 states. We verify that our results do not
depend on the truncation size N . In addition, we bench-
mark our solutions against those we obtain independently
via the boundary-integral method, and reach the same
level of accuracy with both approaches. We should note
that the absolute error in the number of the found en-
ergy levels (as compared to the Weyl’s formula) grows
quadratically with energy for the levels En, n & 2000
with a very small prefactor. However, while the over-
all magnitude of the energy starts to overestimate the
Weyl’s expression – the inverse of Eq. (3) – after this
point, the structure of the spectrum is preserved. This is
verified by varying the algorithm’s accuracy, comparing
the results to those obtained via the boundary-integral
method, and subtracting the smooth quadratic function
that brings the spectra obtained by all methods on top of
each other. In the tests we performed, our results for the
distributions did not show any influence of this deviation
as it is completely canceled by the spectrum unfolding
anyway.

III. UNIVERSAL STATISTICS OF THE
LYAPUNOVIAN

Let us turn to the central subject of the work – the level
statistics of the out-of-time-ordered operators. Apart
from the Lyapunovian [Eq. (1)], we also define the Her-
mitian operators:

Ĉ(k)(t) = (−i)k [x̂(t), p̂x(0)]
k +

= exp [k t Λ̂k(t)], (4)

with k ∈ N, such that Ĉ(2)(t) ≡ Ĉ(t). For even k = 2n,

Λ̂2n(t) ≡ Λ̂(t), while for odd k = 2n − 1, we only de-

fine Λ̂2n−1(t) within the positive-eigenvalue subspaces of

Ĉ2n−1(t), which is indicated by the “
+

= ” sign. In ad-
dition, we consider a closely related Hermitian operator
that defines a 4-point-correlator part of OTOC:

F̂ (t) = x̂(t)p̂x(0)x̂(t)p̂x(0) + H. c.
+

= exp [Γ̂(t)]. (5)

We use the energy eigenstates |En〉 to construct

matrices C
(k)
nm(t) = 〈En|Ĉ(k)(t)|Em〉 and Fnm(t) =

〈En|F̂ (t)|Em〉. For numerical calculations, we truncate
the operators to finite N ×N matrices according to the
number of the eigenstates in use. Then the finite matri-
ces are numerically diagonalized and the statistics of the
spacings between the logarithms of eigenvalues as well as
between the eigenvalues themselves are studied. Due to
the definite parities of the energy eigenfunctions, the ma-

trices C
(k)
nm(t) and Fnm(t) are 4 × 4 block-diagonal, and

each block corresponds to one parity. Level spacings are
thus only calculated within each block separately (be-
cause eigenvalues in different blocks are not correlated

FIG. 2. Eigenvalue-spacing distribution for the bulk of the
Lyapunovian spectrum for every second state (within each
parity block, combined). The total number of levels is 105.

Insets: (a) bulk level spacing distribution for Γ̂(t = 0); (b)

the same for Γ̂(t 6= 0). Solid lines show the corresponding
Wigner-Dyson distributions.

with each other), and then these four sets of the spacings

are combined for statistical analysis. The operators Ĉ(k)

and F̂ have the same bulk level statistics as their respec-
tive logarithms, Λ̂k and Γ̂ [37]. Therefore, we only show
the results for the logarithmic operators. We observe dif-
ferent ensembles for different operators.

Note that at t = 0, Ĉ(k)(0) = ~keff are c-numbers,
so they do not have level-spacing distributions. How-
ever, the operator F̂ (0) = x̂(0)p̂x(0)x̂(0)p̂x(0) + H. c. is
a non-trivial Hermitian operator, and its matrix Fnm(0)
is real-valued. We find – see inset (a) in Fig. 2 – that the

bulk level statistics for Γ̂(0) [and for F̂ (0)] corresponds
to GOE – the same ensemble as that of the Hamilto-
nian. The reason for this can be understood by repre-
senting the momentum operator as p̂x = i

~eff
[Ĥ, x̂], where

Ĥ =
p̂2x+p̂2y

2 + Vwalls(x̂, ŷ) is the Hamiltonian of the bil-

liard. Then F̂ (0) = −~−2
eff

(
x̂ [Ĥ, x̂]

)2

+ H.c.

At any finite time, t 6= 0, all C
(k)
nm(t) and Fnm(t) be-

come non-trivial Hermitian matrices with complex en-
tries due to the unitary evolution of the operator x̂(t) =

eiĤtx̂e−iĤt with the random-matrix-like Hamiltonian. In
Fig. 2, main plot and inset (b) show the bulk level statis-

tics of the Lyapunovian and Γ̂(t), respectively, at a fixed
time t 6= 0. Of course, microscopic details of both spec-
tra are different and time-dependent, as the individual
eigenvalues move with time. But we find that their bulk
spectral statistics appear to be completely universal and
remain the same for any t 6= 0. We should stress that for
the operators defined this way in the entire Hilbert space,
there is no notion of short time (such as the collision or
Ehrenfest times), so all times are equivalent, indeed. On
the other hand, as shown in Sec. IV, one can observe
dynamical evolution of the spectral properties of these
operators when they are projected to a sub-space of the
Hilbert space that consists of initially non-overlapping
classical-like states only. In this case, after these classical-
like states “dissolve” in the semiclassical phase space as
the time reaches and exceeds tE , the statistics tends to
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develop from the initial uncorrelated Poisson-like one to
the Wigner-Dyson statistics – similar to that shown for
the operators in the entire Hilbert space in Fig. 2.

The bulk level statistics of Λ̂2n−1 and Γ̂ correspond to
GUE [Fig. 2, inset (b)], while extracting level statistics of

the Lyapunovian [the operators Λ̂ ≡ Λ̂2n and Ĉ(2n)] re-

quires one more step. The bulk level statistics of Ĉ(1) and
Λ̂1 correspond to GUE. But since the spectrum of Ĉ(1)

has positive and negative branches, and Ĉ ≡
[
Ĉ(1)

]2
,

the spectrum of Ĉ consists of these positive and nega-
tive branches squared and superimposed onto each other
(this translates to the spectrum of the operator Λ̂, as
well). This results in the effective suppression of level
repulsion, because the neighboring levels that originate
from different branches of the spectrum of Ĉ(1) have no
short-range correlation. We present two ways to account
for this effect. First, provided the knowledge of the spec-
trum of Ĉ(1), one can filter the eigenvalues of Ĉ that
originate from only one – positive or negative – branch.
This results in the GUE filtered bulk level statistics for Ĉ
and the Lyapunovian. Alternatively, without the knowl-
edge of the spectrum of Ĉ(1), but given that it is ap-
proximately evenly distributed around zero (the matrix
tends to be traceless as its size is increased), one can filter

every second eigenvalue of Ĉ to greatly reduce the frac-
tion of uncorrelated neighboring eigenstates. Following
this approach, for every second level in the bulk of the
spectra of Ĉ and Λ̂, one finds the Wigner-Dyson distri-
bution that corresponds to the Gaussian ensemble with
the Dyson index β = 3 – intermediate between GUE and
GSE [Fig. 2, main plot].

While the former (GUE) result is natural, the β = 3
ensemble for every second level of the Lyapunovian re-
sults from the combination of the operator’s intrinsic
structure and the filtering algorithm. However, it is still
general – the same statistical properties can be found
for next-nearest-neighbor level spacing in the bulk of the
spectra of positive-definite matrices of the form M2 (or
lnM2), where M is an Hermitian random matrix drawn
from GUE. This argument suggests that for all odd pow-
ers 2n − 1, the bulk level statistics of Ĉ(2n−1)(t 6= 0)
should correspond to GUE, and for all even powers
2n, the bulk level statistics for every second level of
Ĉ(2n)(t 6= 0) should correspond to the Gaussian ensemble
with β = 3. We have verified that it is indeed the case
for k = 1, 2, 3, and 4.

We stress that in integrable models, the spectral struc-
ture of the Lyapunovian-type operators is drastically dif-
ferent from that in the non-integrable ones. There are
multiple degeneracies in the Lyapunov-operator spec-
tra in the integrable case, and the corresponding level-
spacing distributions of the operators Λ̂1 and Λ̂ are thus
very tightly peaked around zero and are generally not
even well defined, because the unfolding procedure can-
not be performed. We checked it specifically for a circular
billiard, a rectangular billiard, and for a 1D particle-in-
a-box model (semi-analytically). In all these cases, the

FIG. 3. Eigenvalue-spacing distribution for the bulk of the
spectra of an ensemble of projections of Ĉ(1)(t) onto the
coherent-state subspaces averaged over that ensemble and
over time in two ranges of time: (a) at t < tE , the distribu-
tion shows clear signatures of the Poisson component related
to the uncorrelated nature of the phase space; (b) at t > tE ,
the statistics tends to the universal GUE Wigner-Dyson dis-
tribution as phase-space correlations build up. With larger
matrices, one can see that it becomes exact, such as the one
shown in Fig. 2(b) in the main text. The low quality of the
histograms is related to the small size of the subspaces (8× 8
matrices).

level repulsion is absent, and most of the Lyapunovian
eigenstates are (quasi)degenerate. So, one can readily
distinguish such systems from the chaotic ones.

IV. TIME-DEPENDENT LEVEL STATISTICS

We now turn to the particularly interesting question
of connection between the exponential Lyapunov growth

of the OTOC, C(t) = 〈Ψ|e2 t Λ̂(t)|Ψ〉 ∝ e2λ̃t, at early
times and the Wigner-Dyson level statistics of the op-
erator Λ̂(t). There appears to be a disconnect between
the two: the former – the Lyapunov growth – is an early-
time (t < tE) classical behavior in the absence of quan-
tum interference, while the latter is a consequence of
well-developed quantum interference. We begin with a
schematic demonstration of the mechanism of the cor-
relation buildup between initially almost uncorrelated
classical-like states. It also translates to the correlation
build-up between the phase-space cells discussed in the
next section. We start by projecting the operator Ĉ(1)(t)
onto an ensemble of 20 subspaces of the Hilbert space to
form an ensemble of 20 projected operators (to improve
statistics). Every subspace is composed of 8 almost non-
overlapping minimal-uncertainty wave packets, each has
unit average momentum. Note that although all possi-
ble coherent states form an over-complete basis, we do
not have to project operators onto all of them and, in-
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stead, have to take a subset that consists of states which
form an (almost) orthonormal basis in the corresponding
subspace. Our subsets that satisfy these requirements
are small due to numerical limitations, but in principle,
can be arbitrary large, given small enough ~eff . Let-
ting these states evolve in time, we calculate eigenvalue-
spacing distribution for the projected operators at differ-
ent times (excluding the smallest and the largest eigen-
values). Then we average these distributions over the en-
semble of projected operators and, for better statistics,
over time in two intervals: short times (between 10−3tE
and tE/2) and long times (between 2tE and 200tE). Af-
ter unfolding, we obtain distributions that roughly show
the conversion from the uncorrelated – Fig. 3 (a) – to the
correlated – Fig. 3 (b) – state of the phase space. The
quality of the distribution is very limited by the small
number of non-overlapping classical-like states that we
fit into the billiard, but the principle can be observed.

V. PHASE-SPACE DESCRIPTION OF OTOC

We study two related phenomena: {1} the exponen-
tial growth of OTOC at early times (to be discussed
in Sec. VI) and {2} the transition in the level statis-
tics of “the projected Lyapunovian” from the Poisson
to the Wigner-Dyson distribution. Here “the projected
Lyapunovian” is a shorthand referral to a projection of
the Lyapunov operator to a subspace of virtually non-
overlapping classical-like states, as discussed above. To
develop further intuition about the connection between
{1} and {2}, we follow Cotler et al. [38] and consider
the Lyapunov operator within the phase-space formula-
tion. This is achieved by describing the quantum dynam-
ics in terms of the Wigner function, W (r,p, t), in the
four-dimensional phase space that we parameterize by
z = (r,p) for brevity. All operators are translated into
phase-space distributions via the Wigner transform [39].

In particular, the out-of-time-ordered operator Ĉ(t)
corresponds to the Moyal brackets:

CMB(z, t) = −JX(z, t), P (z, 0)K2, (6)

where we can choose P (z, 0) = pcl(z, 0) to be classical,
and X(z, t) is the solution of the Moyal evolution equa-

tion: Ẋ(z, t) = JH(z), X(z, t)K, where we also choose
a classical initial condition X(z, 0) = xcl(z, 0). These
choices correspond to the projection we introduced in
the previous section. We can then express

X(z, t) = xcl(z, t) +

∞∑
k=1

~2k
effx

(2k)(z, t), (7)

and the series of quantum corrections vanishes at t = 0
according to the initial conditions: x(2k)(z, 0) = 0. This
choice of initial conditions ensures that X(z, t) is the
Moyal trajectory which coincides with the classical tra-
jectory xcl(z, t) in the ~eff → 0 limit. The classical tra-
jectories are obtained by solving the Hamilton-Jacobi

𝜆(𝑥2, 𝑝2)

𝜆(𝑥1, 𝑝1)

𝑝1

𝑝2

𝑡 = 0

ℎ

0 < 𝑡 < 𝑡𝐸
𝑝

𝑥

ℎ

𝑡 ~ 𝑡𝐸
𝑝

𝑥𝑥2𝑥1

ℎ

𝑝

𝑥

𝑝1

𝑝2

𝑝1

𝑝2

(𝑎) (𝑐)(𝑏)

𝑡
Poisson distribution Fully developed WD distribution

𝑥2𝑥1 𝑥2𝑥1

FIG. 4. Schematics of the correlation development in phase
space with time if initial states are semiclassical. (a) At times
t� tE , the local finite-time Lyapunov exponents are indepen-
dent in different cells. (b) As time goes towards tE , the cor-
relations build up. (c) Around tE , the phase-space becomes
fully correlated, as shown by the distributions in Fig. 2.

equation. The ~eff -dependent corrections are obtained
by solving the series of the following evolution equations:

ẋ(2n)(z, t) =

n∑
k=0

JH(z), x(2k)(z, t)K2(n−k), (8)

where the indexed brackets are defined as

JA,BK2n ≡
A(z)

(←−
∂ r
−→
∂ p −

←−
∂ p
−→
∂ r

)2n+1

B(z)

(2n+ 1)! (−4)
n . (9)

The initial conditions for the higher-order corrections are
x(2k)(z, 0) = 0 for all k > 0, since at time t = 0 all
distributions are classical and are captured within the
Poisson-bracket term of the evolution equation.

In this semiclassical approach, the classical phase space
can be thought of as partitioned into the cells with the
phase volume δz = (2π~eff)2. Within the phase-space
formulation, the Lyapunov operator is represented via
a matrix whose indices enumerate these cells. The ele-
ments of this matrix are functions supported only within
one cell. The ~eff -expansion of the corresponding evo-
lution shows that the zeroth-order Larkin-Ovchinnikov
classical term, [∂xcl(z, t)/∂x(z, 0)]2 ∝ e2λ(z)t, leads to in-
dependent Lyapunov exponents for each cell [Fig. 4(a)].
In other words, the Lyapunov operator in the classical
limit is a matrix of uncorrelated Lyapunov exponents. A
typical correlation term comes from an expression of the
type ~2

eff

[
∂x(2)(z, t)/∂x(z, 0)

]
[∂xcl(z, t)/∂x(z, 0)], which

is the ~2
eff -order correction to the trajectory [38]. The

~2
eff -dependent corrections to CMB(z, t) generate correla-

tions between the cells, and repulsion between the eigen-
values of the Lyapunov matrix “commences” [Fig. 4(b)].
Such correlations fully develop around the Ehrenfest time
when the phase space becomes highly correlated [40] lead-
ing to the breakdown of the Moyal expansion – or any
semiclassical description of OTOC [20] [Fig. 4(c)]. The

full quantum operators such as Ĉ(t) generally correspond
to late times (t > tE) in this picture, since they encapsu-
late full quantum interference effects resulting in the uni-
versal Wigner-Dyson statistics as shown in Fig. 2. How-
ever, as shown in Sec. IV, when projected to a subspace
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FIG. 5. OTOC as the operator (1) averaged over the initial
state (10) at early times (semi-log scale). ~eff = 2−7, x0 =
y0 = 0, p0x/p0y = e, σ = 1/

√
2. Between tc and tE , the

growth is nearly exponential, C(t) ∝ e2λ̃t, for the time longer

than 4/(2λ̃), but the value of λ̃ is not self-averaged yet.

of initially classical-like states, these operators demon-
strate the statistics change across the Ehrenfest time
from the Poisson-dominated distribution to the Wigner-
Dyson one.

VI. EARLY-TIME BEHAVIOR OF OTOC

Finally, we address the question of how to actually
extract the classical Lyapunov exponent from the Lya-
punov operator in a way similar to that in Ref. [14]. As
noted above, not any matrix element would result in the
exponential growth. For example, Hashimoto et al. [41]
reported lack of exponential growth in the thermal av-
erage of the out-of-time-ordered operator – defined as
OTOCβ(t) = Z−1

∑
n
e−βEn 〈En|Ĉ(t)|En〉 – for the quan-

tum stadium billiard. One would expect it to be the case,
indeed, because the quantum thermal state in this system
has no semiclassical description, which would correspond
to a particle moving with a definite velocity. Instead, it
mixes up different momenta and positions. So, this ther-
mal average involves the states with well-developed quan-
tum interference, where no classical dynamics is present
already at t = 0. In addition, it primarily accounts for
“the most quantum” low-energy states (unless the tem-
perature β−1 is very high) that also have low momenta,
while the Lyapunov exponent is proportional to the mo-
mentum.

To get exponential growth in this and, we believe, in
many other systems, we have to identify “the most clas-
sical” initial state and let it evolve with time. In the case
of a billiard, the natural choice is a Gaussian minimal-
uncertainty wave packet:

Ψcl(r) ∝ exp

[
− (r− r0)2

2~effσ2
+

i

~eff
p0 · r

]
, (10)

where σ controls initial squeezing, and the parameters r0

and p0 are the initial average position and momentum of

the wave packet. |p0| = p0 = 1 is the unit of momentum
introduced before.

Let λcl denote the classical Lyapunov exponent of the
system at unit momentum |p| = 1 (the mass is fixed at
m = 1, so λcl|p ∝ |p|). There are two relevant time
scales: the collision time tc ∼ 1/λcl is of the order of the
time it takes the wave packet to hit the billiard’s wall,
and the Ehrenfest time tE ∼ | ln ~eff |/λcl is of the order
of the time it takes a minimal-uncertainty wave packet
to spread across the entire system. Classically, λcl is de-
fined as the infinite-time average and can be obtained for
(almost) any initial condition by allowing enough time
for a trial trajectory to explore a sufficient fraction of
the phase space. At early times, though, the exponent
fluctuates a lot before it reaches its average value, and
the early-time values depend on the initial conditions. In
the quantum calculation, the classical physics is limited
to t < tE , which in our case allows for just a few collisions
with the walls. But instead of a single trial trajectory,
we start with a wave packet that is equivalent to aver-
aging over an ensemble of trajectories, which, in turn, is
equivalent to averaging over a longer time and decreases
the fluctuations. Within our numerics, we were still un-
able to reach complete self-averaging, so while we see a
robust exponential growth spanning the interval between
tc and tE , the value of the exponent does depend on the
initial wave packet and fluctuates moderately. However,
it does not indicate any disagreement between quantum
and classical description at early times. Classically, one
can see the same fluctuations in the short-time Lyapunov
exponent averaged over Wigner distributions of initial
conditions that correspond to minimal-uncertainty wave
packets used as initial conditions in our quantum calcu-
lations [42]. The fluctuations occur both as functions of
time and initial conditions.

As shown in Fig. 5, at early times (t < tE), OTOC does

grow exponentially: C(t) ∝ e2λ̃t. In this semiclassical
regime, we can replace the commutator with the Poisson
brackets and average them classically over the ensemble
of trajectories that corresponds to the Gaussian Wigner
distribution Wcl(z) built from the initial state |Ψcl〉. We
denote this average as 〈〈 . . . 〉〉 [43]. We then have C(t) ≈
Ccl(t) at t < tE , where:

C(t) = 〈Ψcl|Ĉ(t)|Ψcl〉 ∝ e2λ̃t, (11)

Ccl(t) = ~2

〈〈(
∂x(z, t)

∂x(z, 0)

)2
〉〉
∝
〈〈
e2λps

cl (z,t)t
〉〉

= e2λt, (12)

and λps
cl (z, t) accounts for both the proportionality to

the total momentum and the short-time effects giving
λps

cl (z, t) the dependence on the rest of the phase-space
coordinates and time. Note that λ in Eq. (12) is very
close in spirit to the notion of the expansion entropy used
for the recently updated definition of classical chaos [44].
Strictly speaking, one has to compare the quantum ex-
ponent λ̃ to the classical value of λ. But as noted above,
available time t < tE is not sufficient for the quantum
exponent λ̃ to self-average, and we do not reach exact
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quantitative agreement. Instead, in various calculations,
we got λ̃ in the interval between λcl/2 and 3λcl/2, while
λ ' λcl. λcl ≈ 1.15 is calculated for the classical stadium
billiard in Refs. [31, 45]. We reproduced the same value
in our classical-billiard calculation. The example of the
quantum-billiard calculation in Fig. 4 has λ̃ ≈ 0.85 [46].

VII. SUMMARY AND OUTLOOK

We proposed a novel tool to study and even define
quantum chaos in general quantum systems – the Lya-
punov operator. We investigated the behavior of its level
statistics and benchmarked it in a simple example of the
stadium billiard. The Lyapunovian allowed us to unify
the early-time signatures of chaos in the absence of quan-
tum interference and the late-time ones related to well
developed interference in a single quantity. Moreover,
the Lyapunov operator can probe the transition between
the two regimes and generalize a straightforward intu-
ition behind the quantum-to-classical correspondence to
a wider class of quantum systems. As compared to the
OTOC, the Lyapunovian is free from the ambiguity of
the initial-state choice, and thus can more reliably an-

swer the question of regular-vs-chaotic nature of a given
system.

We also demonstrated that, as opposed to the recently
reported results [41], OTOC can be found to grow expo-
nentially in chaotic systems when averaged appropriately.

Note that the level-spacing statistics is only one of the
ways to study spectral correlations, and it only captures
those at short ranges. Other statistical tools can uncover
additional information hidden in the Lyapunovian. One
interesting question is to study long-range correlations
in the spectra of Lyapunov operators with such tools as
spectral rigidity.
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