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We report complex band structure (CBS) calculations for the four late transition metal monoxides, MnO, FeO,
CoO and NiO, in their paramagnetic phase. The CBS is obtained from density functional theory plus dynamical
mean field theory (DMFT) calculations to take into account correlation effects. The so-called β parameters,
governing the exponential decay of the transmission probability in the non-resonant tunneling regime of these
oxides, are extracted from the CBS. Different model constructions are examined in the DMFT part of the cal-
culation. The calculated β parameters provide theoretical estimation for the decay length in the evanescent
channel, which would be useful for tunnel junction applications of these materials.

I. INTRODUCTION

Motivated by the application of transition metal oxides
(TMO) in modern electronics, the charge transport through
TMO nano-junctions has been extensively investigated in the
past 20 years, theoretically and experimentally. A large
amount of literature focuses on the non-resonant tunneling
experiments in which the tunneling current decays exponen-
tially, I = I0 · exp(−βL), as the length of the tunnel junction
(L) increases. Although the β parameter depends on the inter-
facial properties between the junction and the metallic elec-
trodes, it is mainly determined by the electronic properties of
the junction material itself. Since many TMOs are strongly
correlated electronic systems, calculation of β from first prin-
ciples with the inclusion of electron correlation would be nec-
essary and important for understanding TMO nano-junctions.
In this work we report ab initio calculations of β, based on
DFT and single-site DMFT, for the late TMO monoxides.

Existing studies have shown the β parameter is related to a
material’s band gap, the hopping parameter t of the insulating
material, and the alignment of the Fermi level in the metal
electrodes with the band gap of the insulating junction1,2.
One way to calculate β from first principle is to evaluate the
complex band structure (CBS)3 rather than the ordinary real
band structure (RBS). Complex band structure is the energy
eigenvalues defined for complex values of ~k. The wavefunc-
tion of a crystal structure has the well-known Bloch form of
ψ = ψ0ei~k·~r, where ~k is real. In fact, only the solutions of
Schrödinger’s equation with real wave vector are considered,
and wavefunctions having complex wave vectors are often not
considered because they would grow exponentially in some
direction which is physically unreasonable for periodic sys-
tems. However, when dealing with surfaces and interfaces of
semiconductors, i.e. finite or non-periodic solids, solutions
with complex wave vectors have physical meaning for ener-
gies within the band gap. They represent the states exponen-
tially decaying into the semiconductor, also called evanescent
interface-induced gap states. If ~k becomes a complex vari-
able ~k = ~kRe + i~kIm, then the wavefunction can be written as
ψ = ψ0ei~k·~r = (ψ0e−~kIm·~r)ei~kRe·~r, yielding an exponential de-

cay factor to the amplitude of the wavefunction. The decay
is for the direction ~kRe, and corresponds to the electron non-
resonant tunneling current decay I = I0 · exp(−βL) in that
direction. The β parameter is associated with the imaginary
part, ~kIm, via the relation β = 2|~kIm|. The energy bands are
generalized to be defined on contours in the complex plane of
~k. A very useful feature of CBS is that one can directly read
~kIm thus β from the band structure without additional calcu-
lations. By picking an arbitrary energy of the wavefunction
within the gap, one can trace sideways to the nearest complex
band at that energy level and trace down to the corresponding
~kIm. In many cases, it is sufficient to apply the CBS approach
with the standard Kohn-Sham (KS) density functional theory
(DFT). However, it could yield wrong results for materials in
which electron correlation plays an important role. The self-
energy due to correlation must be considered in such cases.
There have been CBS studies based on beyond-DFT calcula-
tions. For example, the GW approximation and hybrid den-
sity functionals had been used to calculate β of simple organic
molecules and yielded better agreement with experimentally
known values1,2. In this study, we analyze the CBS and calcu-
late the β of Mott insulating materials, using NiO, CoO, FeO
and MnO as examples. The correlation effect is taken into ac-
count by carrying out DFT plus DMFT calculation and β is
evaluated from the DMFT-corrected band structure.

The series of 3d transition metal monoxides with rock salt
structure present very rich physical properties. Early in the se-
ries, TiO and VO are metallic materials, whereas later mem-
bers, e.g. NiO, CoO, FeO and MnO, show clear insulating
properties and antiferromagnetic (AFM) ordering below the
Neel temperature TN . At room temperature, NiO is in AFM
phase and the other three are in paramagnetic (PM) phase
(TN = 525K, 290K, 198K, 120K for NiO, CoO, FeO and
MnO, respectively)4–7. Because most of the tunnel junction
applications are operated at room temperature or even lower
temperatures, carrying out the calculation of wavefunction de-
cay rate in the PM phase of these materials needs to be justi-
fied, at least for NiO. This is supported by several experiments
as well as developments in the calculation side. It is well
known that DFT in the local density approximation (LDA)
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fails to provide a band gap for these materials. Better match-
ing between the experimental data and the calculated band
structures was reached first by using the spin-resolved ver-
sion of LDA, the local spin density approximation (LSDA)8,9.
Independent angle resolved photo-emission experiments10,11

in the 1990s studied the valence band property of bulk NiO
below 525K. The experiments demonstrated that the valence
band structure from a LSDA calculation with AFM ordering
agreed with the experimental data better than LDA. However
the band structure close to Fermi energy was still very differ-
ent from the measured data and the calculated band gap was
too small (< 1 eV vs. > 4 eV). It was later experimentally ob-
served that there was actually no change in the photo-emission
spectra features during the AFM → PM transition of NiO12,
which contradicts theories that the band gap of NiO is mainly
due to AFM ordering. On the calculation side, the develop-
ment of the LDA+U method provided a much improved band
gap of 3.4 eV for NiO13,14, and the LSDA+U9,15 calculations
also had success in describing the electronic structure of 3d
metal monoxides. These facts suggest that the band gap of
NiO is mainly due to electronic correlation rather than AFM
ordering. The decay rates of evanescent channel calculated
in the PM phase should not be significantly different than in
the magnetic ordered phase, because the β is mainly related to
the materials’ band gap and the band gap is not significantly
affected from the AFM→ PM transition. For CoO, FeO and
MnO, we do not find similar experiments studying whether
the photo-emission spectra features change in AFM → PM
transition. All three are in PM phase at room temperature.

The calculations presented here are carried out in a straight-
forward way. The four materials’ ground state band struc-
tures are first calculated using the full potential linearized aug-
mented planewave (FP-LAPW) method. The obtained band
structures are then used to construct effective Hamiltonian in
Wannier orbital basis, and also used to compute Coulomb in-
teraction matrices using the cRPA method16. With the Hamil-
tonian and the U matrices, we perform DMFT calculations
to get the k-resolved spectral functions and analyze the band
gaps. Using the DMFT self-energy, we construct the full
Green’s function and use it to calculate the complex band
structures (CBS) and extract the decay rate.

Outline : The remainder of the article is organized as fol-
lows. Section II introduces the calculation methods, including
the DFT plus DMFT scheme and the way we obtained the
β parameter from CBS. The essential step of computing the
Coulomb interaction U matrices are grouped in Appendix A.
The resulting spectral function, as well as the k-dependence
of the β parameter, are described in Section III. Section IV
provides the conclusion.

II. METHODS

The CBS can be calculated using either wavefunctions or
Green’s functions. We used the Green’s function approach
because it’s consistent with the DMFT formalism. The self-
energy from DFT+DMFT is used to construct the full Green’s
function, which is then used to evaluate the CBS and β. We

will first describe our DFT and DMFT calculation, then ex-
plain how we calculate CBS from Green’s function, and how
we find β from CBS.

The four monoxides, especially NiO, have been extensively
studied in the DMFT community and used as benchmark ma-
terial for novel computational methods17–19. The existing
DFT+DMFT calculations of NiO were not done in the ex-
actly same way. One difference in our calculation is the use of
cRPA method to calculate the U matrices in the same Wannier
orbital basis used for the Hamiltonian construction. Thus the
hopping and interaction parameters of the effective Hubbard
model are consistently built from the same DFT ground state.

II.A. DFT calculation

Our DFT calculation is done using the FP-LAPW method,
as implemented in a modified version of the ELK code20. The
ground state is calculated within the generalized gradient ap-
proximation (GGA) using the PBE functional. The muffin tin
sphere radii are, for example, 2.02 a0 and 1.72 a0, for Ni
and O, respectively. The experimental values of lattice con-
stants are used4–7. A dense k-point grid of 16x16x16 was
used to perform Brillouin zone integration. Figure 1 displays
the ground state band structure of NiO and orbital characters
(the amount of overlapping between Bloch states and atomic
orbital states).
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FIG. 1: Non-magnetic NiO ground state band structure (solid
lines), and band characters (open circles) calculated by pro-
jecting Bloch states onto atomic orbital states. The radius of
the open circles are proportional to the weight of the atomic
states. Fermi level is at zero.

It is clearly seen that there are five d-like bands around
the Fermi level, representing the partially filled d states of
the transition metal atom and giving the material a metal-
lic state. Below them in the [−8.0,−2.0] eV range are three
bands showing p-orbital character. Above the d-like bands, in
the [+2.0,+8.0] eV range, there is a single band of transition
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metal (TM) 4s character. It is a common feature of the four
materials that the d-like bands and p-like bands are separated
by a small gap. The group of p-like and d-like bands are iso-
lated from lower bands, but are very close to the s-like band
at the Γ point. Within the GGA-PBE calculation, as shown in
Figure 2, we find that the s-like band is slightly gapped from
the d-like bands in the cases of NiO and CoO but is over-
lapping in energy with the d-like bands for FeO and MnO.
Though not shown, we also find that, when using the LDA
functional, the s-like band has overall more overlap with the
d-like bands for these four materials.

(a) (b) (c) (d)

FIG. 2: Non-magnetic ground state band structures (solid
curves) of NiO, CoO, FeO and MnO. And the TM 4s orbital
character only (open circles). Horizontal solid lines are placed
at the maximum of d-like bands, to make the separation or
overlap of s-like and d-like bands clearly seen. Fermi level is
always at zero.
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FIG. 3: DFT band structure of NiO (solid line), and re-
constructed bands (dots) in symmetry-preserving Wannier or-
bital basis, which are identical to DFT bands by construction.
Fermi level is at zero.

The orbitals’ characters in Fig.1 and Fig.2 display a clear d-p
mixing in these materials, which motivates our model con-
struction explained in next section. The s orbital weight is
well located in the singe band in the [+2.0,+8.0] eV range.
We do not observe significant mixing between s and the group
of p and d. We will keep the s-like band in the analysis
because it had been demonstrated in existing DFT+DMFT
studies21,22 that the TM s-like band has significant contribu-
tion to the photo emission spectrum of these monoxides. In
addition, as we will see in later sections, the extension of the
s-like band in the complex domain goes across the gap region;
thus it should be included for a correct determination of Fermi
level pinning position. So, in order to construct localized or-
bital basis for all later calculations, we downfold the Bloch
bands in the energy window [−8.0,+8.0] eV to the symmetry-
preserving Wannier orbital basis that includes the TM d-like
bands, the TM s-like band and the Oxygen p-like bands. The
reconstructed bands of NiO are shown in Fig. 3.

II.B. DMFT calculation

Dynamical mean field theory is one successful way to more
accurately capture the electronic correlation effect and rem-
edy the failure of DFT. Application of DMFT to TMOs orig-
inated from the work of Peierls and Mott23,24. Usually an
appropriate correlation subspace was identified as those elec-
tron states in the partially-filled, transition-metal d shell, and
was associated with interactions including the on-site intra-
d and inter-d interactions. During the past two decades, the
DMFT method25 has been developed for the low energy effec-
tive Hubbard model constructed for real materials’ d-like or
f -like bands. The widely-adopted numerical scheme involves
selecting DFT bands near the Fermi energy as the correlation
subspace and fitting them to a tight-binding model using the
downfolding technique applied to localized orbitals, such as
Wannier orbitals26–28. For each ~k point, the Bloch Hamilto-
nian is downfolded to the Wannier orbital basis20, HWann(~k).
Through the Fourier transformation, HWann(~k) serves as sin-
gle particle hopping ti j in the first term of Eq.(1) below. This
Hamiltonian contains contributions from the effective poten-
tial of the DFT calculation that also creates a double-counting
issue, which is explicitly accounted for by a correction within
DMFT.

The multi-orbital Hubbard model Hamiltonian with on-
site Coulomb interaction can be expressed within the second
quantization framework as29

ĤHubbard = ĤKinetic + ĤCoulomb

=
∑

i, j,µ,ν

tdp
i j,µν ĉ+

i ĉ j +
1
2

∑
i,α,β,γ,δ

Ud
i,αβγδ ĉ+

i,α ĉ+
i,β ĉi,γ ĉi,δ (1)

Here the indices i, j are site indices, and µ,ν are orbital indices
including spin for all orbitals within the correlation subspace.
The indices {α, β, γ, δ} are a subset of {µ,ν} to indicate those
orbitals associated with on-site Coulomb interactions. For the
four monoxides in this study, due to the d-p mixing men-
tioned in Sec.II.A, the correlation subspace includes both d
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and p orbitals and the subset {α, β, γ, δ} of interacting orbitals
is limited to d only. The Coulomb interaction tensor Ud

i,αβγδ
can be computed from first-principle or sometimes used as
empirical parameters of the model. With the hopping and
Coulomb interaction parameters at hand, the DMFT method
iteratively solves the model by mapping it to an effective An-
derson single-impurity model (ASIM). The impurity Green’s
function is often expressed in the path integral formulation,
with integration over Grassmann fields of second quantization
creation and annihilation operators, ĉ+ and ĉ,

Gimp(i1, τ1; i2, τ2) = −

∫
D[ĉ+]D[ĉ]e−S [ĉ+,ĉ] {ĉ(τ1)ĉ+(τ2)}∫

D[ĉ+]D[ĉ]e−S [ĉ+,ĉ]
(2)

In Eq.(2), D[.] is the standard integration measure. S [ĉ+, ĉ] is
the effective action as defined in Eq.(3) below for the impurity.

S [ĉ+, ĉ] = −

∫ β

0
dτ

∫ β

0
dτ′

∑
i, j

ĉ+
i (τ)G−1

0,i j(τ − τ
′))ĉ j(τ′)+∫ β

0
dτĤCoulomb(ĉ+, ĉ) (3)

In Equations (2) and (3), i and τ are the site index and imagi-
nary time. G0,i j is the bare propagator, which is also called the
bath Green’s function. It plays a similar role as the Weiss field
in classical mean-field theory. Specifically, it describes an ef-
fective field coupled to the impurity that contains all non-local
information of the underlying lattice, and the lattice is consid-
ered as a reservoir of non-interacting electrons. The difference
from the classical Weiss field arises in its time dependence,
which accounts for local dynamics. We refer readers to Ref.30

for explicit definitions of D[.] and S [ĉ+, ĉ].
Given the effective action, there exists several well estab-

lished numerical methods to solve for the impurity’s Green’s
function. The family of quantum Monte Carlo (QMC) solvers
are widely accepted and numerically exact if the simulation
time is sufficiently long. We refer readers to Ref.31 for tech-
nical details about general QMC impurity solver. In this
work, we are using the continuous time hybridization ex-
pansion (CT-HYB) QMC solver implemented in the DCA++

code32,33. The solver adopts the segment picture31 to take into
account density-density interactions. The coupling to the bath
is diagonal only in orbital space. Our calculations are per-
formed at inverse temperature 1/kT = 20. The number of
Monte Carlo sweeps in the QMC calculation is 106 in each
solver run. The continuous-pole-expansion method19 is used
for obtaining the self-energy and impurity Green’s function in
real frequency domain.

For material-specific calculations, the lattice Green’s func-
tion is constructed, within the correlation subspace, from the
downfolded Hamiltonian:

G(iωn) =
1

Nk

∑
~k

1

(iωn + µ) − HWann(~k) − Σ(iωn)
(4)

where Nk is the number of ~k points, ωn is the Matsubara fre-
quency and µ the chemical potential. The self-energy Σ(iωn)

is supplied with an initial guess, then updated in each of the
DMFT iteration. One uses the Dyson’s equation in each iter-
ation to derive the bath Green’s function and the effective im-
purity problem numerically, i.e.G−1

0 (iωn) = G(iωn)−1+Σ(iωn),
and solve the impurity problem. For the late TM monox-
ides with strong d-p mixing, we include five d and three
p orbitals in the correlation window, while limiting interac-
tions to d orbitals. Thus the Hamiltonian HWann(~k) and lat-
tice Green’s function G(iωn) in Eq. (4) are eight-dimensional.
Σ(iωn) is always five-dimensional, and is added to the d-block
of HWann(~k). When constructing the bath G−1

0 (iωn) for inter-
acting orbitals, we use the d-block of G(iωn) together with
Σ(iωn) in Dyson’s equation.

The value of interaction parameters in ĤCoulomb(ĉ+, ĉ) are
calculated using ab initio methods from the materials’ DFT
ground states. The constrained Random Phase Approxima-
tion (cRPA) method, as explained in details in Appendix A, is
adopted for this step. The important step in cRPA is to choose
a screening window, within which the particle-hole polariza-
tion are excluded. The d-p mixing gives some arbitrariness
here because one cannot find a window of bands that includes
exactly all d-weight and exclude all p-weight. There are nat-
urally two choices: excluding both d-like and p-like bands in
[-8.0,+2.0] eV which is often called the dp model; exclud-
ing only the five d-like bands which is called the d-dp model.
We have calculated the on-site Coulomb interactions of the
five Wannier d orbitals for the two models. The results are
discussed in Appendix A. The later complex band analysis is
build on the d-dp model only. We present the cRPA results
of both models in this work for the partial purpose of bench-
marking the current cRPA implementation.

The DFT+DMFT calculation scheme and its variants have
been widely used in the past two decades to study TMOs that
have a pronounced correlation effect. It is worth briefly re-
viewing the existing studies and pointing out the differences
and limitations in the current work. One of the earliest appli-
cations using DFT+DMFT for real materials was a study of
NiO34, where a realistic gap and the near-gap spectra were ob-
tained for a correlation subspace that contains d orbitals only.
Shortly after, the oxygen p states of NiO were included35,36,
in a way similar to that described in this section, to provide
fuller description of the valence-band spectrum. It was found
in these studies that doping holes leads to the filling of the cor-
relation gap and a significant transfer of the d spectral weight.
In these studies the low-energy Zhang-Rice bands were also
obtained for the first time. Besides the paramagnetic state,
magnetic state properties of NiO were also investigated within
the framework of DFT+DMFT37,38, where the Iterated Per-
turbation Theory (IPT) solver and the numerical exact diago-
nalization (ED) solver were used to solve the impurity prob-
lem. NiO has also been actively used as a benchmark ma-
terial for DFT+DMFT method development, e.g. new meth-
ods related to the double counting correction18,22,39 and an-
alytical continuation19. The other members of the late TM
monoxides, CoO, FeO and MnO, together with NiO have
been studied within the DFT+DMFT scheme in a system-
atic investigation of the band gaps of these materials22, in-
vestigation of the fundamental quantum entanglement of in-
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distinguishable particles40, and as benchmarking materials in
method developments for determining the Coulomb correla-
tion strength41,42.

Besides studies under ambient conditions, there are a sig-
nificant number of first-principle calculations focusing on
the beyond-equilibrium properties of the late-TM monox-
ides, particularly the changes of electronic structure related
to high pressure and lattice distortions. It was first reported43

that MnO experiences a simultaneous moment collapse, vol-
ume collapse, and metallization transition under a pressure
of about 100 GPa. Upon compression of 60 − 70 GPa, the
B1 structure of FeO has a spin-state transition accompanied
by an orbital-selective Mott metal-insulator transition21,44, in
good agreement with the experimental result45. A pressure-
driven orbital selective insulator-to-metal transition is also ob-
served in CoO46,47. Similar to what is seen in FeO, the t2g
orbitals of Co become metallic first at about 60 GPa, and the
eg orbitals remain insulating until the much higher pressure of
about 170 GPa. It is found that the transition to fully metallic
state is driven by a high-spin to low-spin transition of the Co2+

ions. A systematic study of all four TM monoxides under high
pressure48 reveals a remarkably high pressure of 430 GPa for
the insulator-metal transition in NiO, which is well out of the
range 170 − 40 GPa of MnO–CoO.

The full charge-density self consistent (CSC) DFT+DMFT
scheme is often used in TM oxide calculations under high
pressure because the charge density is subject to change with
lattice distortion. In the CSC scheme49–51, the DMFT iteration
described in this section is nested in an outer iteration of the
charge density. The many-body effect within the correlation
subspace is self-consistently included in the entire system.
It has been demonstrated that the CSC scheme is necessary
in studying the metal-insulator transition of V2O3

52, where a
strong enhancement of the a1g−eπg crystal-field splitting causes
a substantial re-distribution of charge density and thereby in-
fluences the lattice structure due to electron-lattice coupling.
In a recent study of pressure-induced insulator-metal transi-
tion in Fe2O3

53, a site-selective redistribution of the Fe 3d
charges between the t2g and eg orbitals associated with spin
state transition was captured within a CSC DFT+DMFT cal-
culation. The CSC scheme might be important for the cur-
rent study mainly because the 4s-like band enters the cor-
relation window at the Γ-point. If the 4s-like band is sig-
nificantly shifted in a CSC DFT+DMFT calculation then its
complex extension would be shifted too and affect the com-
plex band structure within the Mott gap. Indeed, in exist-
ing CSC DFT+DMFT studies of late TM monoxides under
pressure21,48, the 4s-like band is significantly lowered (by
about 3eV) to become much closer to the Fermi energy. How-
ever, under ambient conditions, the 4s-like band is not signifi-
cantly moved in CSC DFT+DMFT calculations, which makes
sense because of the minimum hybridization between the 4s-
like band and the group of p-like and d-like bands (Fig. 1).
Given the fact that a non-CSC scheme was successfully ap-
plied in many studies of the late TM monoxides36,44,46, we
carry out the calculations in the non-CSC scheme even when
the 4s-like bands of FeO and MnO enter the correlation win-
dow (Fig.2). Though the 4s-like band does not take part in

the DMFT iteration, it is used in constructing the final lattice
Green’s function for complex band analysis.

II.C. Evaluation of CBS and Decay Rate

As mentioned in the Introduction, the wavefunction decay
rate in direction ~k can be estimated by supplying an imagi-
nary part to it, i.e. ~k = ~kRe + i~kIm, and studying the complex
band structure (CBS). Here, ~kRe is the decay direction, and
~kIm yields β. CBS is always defined on the complex plane of ~k
where~kRe lies on the real axis. A grid or path of real~k points in
the sense of traditional Brillouin zone sampling in DFT calcu-
lations is not defined here. Contrary to the normal procedure
of solving for eigenenergies after specifying real ~k points, one
needs to first specify the value of the eigenenergy, then search
the complex plane of ~k at that eigenenergy for poles of the
full Green’s function to locate the ~k(s) for that eigenenergy. In
practice, it’s convenient to express any ~k in the 1st Brillouin
zone as:

~k = C1 · k̂⊥ + (C2 · k̂2 + C3 · k̂3) ≡ ~k⊥ + ~k‖ (5)

where the real unit vector k̂⊥ is always the decay direction,
and C1 is the complex coefficient that defines the complex
plane of searching for poles, i.e. (C1 · k̂⊥) ≡ ~k⊥. Here, the
quantity (Re[C1] · k̂⊥) is same as the ~kRe used at the beginning
of this section. And, k̂2 and k̂3 are user-defined real unit vec-
tors in the plane perpendicular to k̂⊥. C2 and C3 are both real.
C2 · k̂2 + C3 · k̂3 ≡ ~k‖ defines the parallel component of ~k.

The DMFT self-energy in real frequency domain is used
to construct the lattice Green’s function of the subspace con-
taining s, p and d orbitals (9-dimensional). The full Green’s
function is expressed in the usual way:

G(~k, ω) =
1

ω + µ − H̃Wann(~k) − ΣDMFT (ω)
(6)

In Eq.(6), µ is the Fermi energy, Σ(ω) is the converged
DMFT self-energy after analytical continuation. The original
HWann(~k) is Fourier transformed to real space hopping ti j(~R),
then Fourier transformed back to H̃Wann(~k) at any ~k, real or
complex, as defined in Eq.(5). For given k̂⊥ and ~k‖, H̃Wann(~k)
can be considered as a function of C1 only. Thus the Green’s
function is a function of C1 and ω, i.e. G(C1, ω). Fig.4 shows
an example case of the complex plane defined by G(C1, ω).
In the example k̂⊥ is chosen to be the unit reciprocal lattice
vector ~b3/|~b3| and ~k‖ = 0. The poles of G(C1, ω) are resolved
by finding roots of the equation: det|G−1(C1, ω)|= 0. The set
of roots for different values of ω gives the complex bands.
In the following work, we study the complex band and decay
rate in three directions: (a) k̂⊥ = (kx, ky, kz) = (1, 0, 0); (b)
k̂⊥ = (1, 1, 0)/

√
2; (c) k̂⊥ = (1, 1, 1)/

√
3, where kx, ky, kz are

Cartesian coordinates in k-space.
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FIG. 4: Complex plane of C1 for searching poles of G(C1, ω),
for the direction k̂⊥ = ~b3/|~b3|. Shaded area is the searching
area, which includes the real axis and boundaries of the 1st
Brillouin zone.

III. RESULTS AND DISCUSSION

The main purpose is to study the features of the CBS when
the correlation effect is included. In this section, we first re-
port the band gaps and spectral functions from DFT+DMFT
and compare it to experimental data and existing calculations.
Then the CBS and β parameters are studied at the so-called
charge neutrality level within the band gap, which is further
related to the Fermi level pining position and the height of
Schottky barrier in tunnel junction applications.

III.A. Band Gaps from DFT+DMFT

The resulting density of states (DOS) from the DMFT cal-
culations are presented in Fig.5 for the dp and d-dp mod-
els. The band gaps are measured between the widths at half
height of the conduction band and valence band in DOS. Ta-
ble I has the measured band gaps. Here we briefly compare to
the experiments. NiO and MnO have been extensively stud-
ied in experiments. The band gap of NiO was determined
to be 3.7–4.5 eV54,55. The experimental values of MnO gap
is in the range of 3.6–4.0 eV54,56. The present calculation of
the d-dp model are in agreement with experiments for these
two materials. Experimental values of the band gap of CoO
has diverse values. Some experiments reported a band gap
of 2.5–2.8 eV57. Some other studies found higher values, e.g.
5.4 eV gap based on ellipsometry spectra data58 and indirect
gap of 2.8 eV and direct gap of 5 eV based on absorption
spectrum from measured dielectric function57. The value of
our calculated band gap based on the d-dp model falls in the
range and is close to the conductivity experiment59. Quasi-
particle calculations using the hybridfunctional and the G0W0
method yields similar value (3.4 eV) for the band gap60 of
CoO. It seems the absorption experiments underestimates the
gap compared to DMFT results. Unfortunately, there are very
limited experiments reporting the measured band gaps of FeO
in PM phase. This is because the preparation of a pure FeO

sample is difficult due to Fe segregation61. Thus, compari-
son of theoretical calculation with experimental spectra is very
rare. The only reported experimental estimate that we found
is 2.4 eV from an optical absorption measurement61. We are
not sure if this is an underestimated value.

FIG. 5: Total(black), t2g(blue), eg(green) and p(red) spectral
functions, A(ω), of the two models of NiO, CoO, FeO and
MnO.

Band Gap (eV) NiO CoO FeO MnO

DFT+DMFT, dp model 6.74 6.63 6.05 6.74

DFT+DMFT, d-dp model 4.76 3.72 3.37 3.72

Exp(conductivity) 3.7 3.6 n/a 3.8

Exp(XAS-XES) 4.0 2.6 n/a 4.1

Exp(PES-BIS) 4.5 2.5 n/a 3.9

Exp(absorption) 4.0 2.8 2.4 3.6-3.8

TABLE I: The band gaps measured from DFT+DMFT den-
sity of states. Sources of the experimental gaps are in text of
Sec.III.A.
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We noticed our band gap result of the d-dp model of NiO
is in general agreement with existing DFT+DMFT calcula-
tions. Though the existing calculations are not exactly same,
most of them are performed in the PM state and are not in
CSC scheme. In Ref.17 a similar model construction was
considered and U = 6.6 eV (no J involved) calculated from
constrained-LDA was used. A band gap of about 4 eV was
obtained. In Ref.34, only the Ni-d orbitals were taken into ac-
count (which should be called d-d model following the nam-
ing convention used here) and U = 8.0 eV and J = 1.0 eV
were used in the calculation. They calculated a band gap of
4.3 eV for NiO. Ref.18 had used NiO to test a new double
counting method, where they used the same U = 8.0 eV and
J = 1.0 eV and involved both d and p orbitals. The calcula-
tion was carried at high T of 2300K. They found a band gap
of about 4.3 eV as well. Within this study, both the size of
band gap and the position of the p orbital peak below Fermi
energy depend on the double counting potential.

(a) NiO (b) CoO

(c) FeO (d) MnO

FIG. 6: ~k-resolved spectral functions of the d-dp model, of
NiO, CoO, FeO and MnO.

In our calculation, the correct representation of the U ma-
trices is important to yield accurate band gaps for the four
materials. We have found results from the d-dp model are
in better agreement with existing experiments than the dp
model, which seems to overestimate the band gap. However,
the preference of the d-dp model over the dp model should
be more carefully supported by taking into consideration of
other important factors. For example, it has been proposed
that the current cRPA method could be improved by includ-
ing the Pauli exclusion principle in the formalism, and overall
the effect would be a reduction of the interaction strength62.
There are also other factors within the DMFT, e.g. different
double counting methods, that affect the resulting band gap
and spectral function. For example the double counting meth-
ods introduced in Ref.18 and Ref.63. Those factors are worthy
of dedicated studies and are outside the scope of the current

work. Thus we limit our discussion to be within the original
d-dp cRPA scheme and with only fully localized limit (FLL)
double counting in the DMFT part. The dp cRPA scheme
is not used in later decay rate analysis, but exists in the Ap-
pendix for purpose of benchmarking the cRPA implementa-
tion. We would like to emphasize that, for consistency, one
set of projected Wannier orbital basis functions is used in both
the downfolded Hamiltonian H(k) and the cRPA-calculated
Coulomb U matrices, which is different from existing calcu-
lations of these materials.

In order to include the effect of the TM 4s band in the later
complex band analysis, we prepare the full Green’s function,
Eq. (6), in the Wannier orbital basis containing d, p, and s or-
bitals. The DMFT self energy is associated with the d orbitals.
The k-resolved spectral functionA(~k, ω) = (−1/π)=[G(~k, ω)]
of the d-dp model is shown in Fig. 6. The rest of the calcula-
tions are based on this Green’s function.

III.B. Complex band structure including DMFT self-energy

The complex band structure (CBS) and real band structure
(RBS) are obtained from resolving poles of the Green’s func-
tion, as explained in Section II. In this section we analyze the
obtained complex band structure and argue about the pinning
position of the Fermi level for tunnel junction applications and
calculating the β parameter at that energy level.

In a general tunnel junction setup, where the insulating ma-
terial is connected to metal leads on both sides, the Fermi lev-
els of the two materials are brought into coincidence. At the
interface, there are metal-induced gap states (MIGS)64 in the
insulator gap region decaying exponentially into the material,
which are Bloch states of the insulator with complex wave
vector. For semiconductors, this forms a continuum of states
around the Fermi energy (EF) within the gap. The gap states
continuously change (as function of energy) from valence- to
conduction-band character, appearing as an arch-shaped com-
plex band connecting the real valence band with the real con-
duction band. The idea of local charge neutrality, proposed
by Tersoff65, says: when the density of MIGS is reasonably
large, it is necessary to occupy those MIGS which are pri-
marily valence-band character, while leaving those of mainly
conduction-band character empty. Therefore, EF should be
pinned at or near the energy where the gap states cross over
from valence- to conduction-band character. If the complex
band within the gap is a smooth curve, the crossing over is
naturally found at dE/dk → ∞, which is called the branch
point, and the corresponding energy is called the charge neu-
trality level EB

65–67.
Fig.7 displays the CBS and RBS for k̂⊥ = ~b1/|~b1| and

~k‖ = 0, where ~b1 is a reciprocal lattice vector. The CBS
part, (Re[C1], Im[C1]) = (0.0,−0.5) → (0.0, 0.0) in the left
half of Fig.7, contains important information for determin-
ing the charge neutrality level EB and wavefunction decay
rate β. One major observation is that the gap states transi-
tioning from below to above the Mott gap are not continu-
ous. The real conduction bands and the top of valence bands
are both primarily d-orbitals, as seen in the DOS. The exten-
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sions of these bands into the complex sector cross each other
rather than connect smoothly, which is different from typi-
cal semiconductors. For NiO in Fig.7, the crossing happens at
about 3.5 eV above the DFT+DMFT Fermi level (EDMFT

F ) and
C1 = (0.00,−0.37). Assuming the charge neutrality condition
still applies, the gap states of valence-band character are oc-
cupied and EB should be pinned at or near the crossing point,
where dE/dk has a finite jump rather than→ ∞. This is more
clearly shown in Fig.8. We call this crossing point the Mott
branch point, and the corresponding energy level EMott

B . The
conduction band obtained from DFT+DMFT is very flat. Its
extension in the complex domain is almost a straight line of
small slope, while the complex band originated from valence
bands goes up steeply from below the gap. This feature leads
to the EMott

B being very close to the conduction band minimum
Econd.

min (which is found at Γ in our case). The small difference
between EMott

B and Econd.
min gives a small Schottky barrier height

ΦB of the tunnel junction, i.e. ΦB = Econd.
min − EMott

B . Our cal-
culation implies NiO is a junction material with large gap and
small barrier height (comparing with the 1.0–1.5 eV band gap
and 0.7–1.0 eV barrier height of typical semiconductors like
Si and GaAs). We found ΦNiO

B ≈ 0.35 eV from the calculated
CBS of the d-dp model of NiO, as indicated in Fig.8. There is
not much reported work on tunnel junction experiments using
late transition metal monoxides. We found the most relevant
work was done on the Ni-NiO-Ni tunnel junction68, where
the system was found to be a very-low-barrier system with
ΦB ≈ 0.2 eV. The barrier height varies slightly from 0.22 eV
at 4 K to 0.19 eV at 295 K. This is in qualitative agreement
with our calculation. Ni was used as metal leads for easy man-
ufacture. It is possible to tune the composition of the metal
and oxide so as to raise the barrier height slightly.

The 4s band plays an interesting role here. By follow-
ing the path: (Re[C1], Im[C1]) = (0.5, 0.0) → (0.0, 0.0) →
(0.0,−0.5), we observe that the real 4s band goes from high to
low energy at the Γ point, which is a common feature in Fig.7.
NiO presents a different feature in the complex sector: it first
decreases to about the Fermi energy and then starts to increase
to higher energy, while the 4s bands of the other three mate-
rials decrease in energy monotonically. In the case of NiO in
Fig.8, the complex 4s band crosses the complex extension of
valence d band at a point very close to EDMFT

F , and the real 4s
band has Econd.

min ≈ 2 eV at Γ. By using the 4s band instead of
the conduction 3d band, one keeps the Fermi level pinned very
close to EDMFT

F (i.e. there would be nearly no shift in a tun-
nel junction), and ΦB ≈ 2 eV for NiO, which is too far away
from experiment. We believe the 4s band is not responsible
for correctly determining the Schottky barrier height also be-
cause the orbital character should not suddenly change (from
3d to 4s) at the branch point. The correct EMott

B in Fig.8 is
located by following the same d orbital character. The same
argument applies to CoO, where the complex 4s band is just
touching the complex valence d band at a point close to the
gap bottom. CoO should also be a very small barrier junc-
tion material. The 4s bands of FeO and MnO fall into an area
where no other complex band is found. We can expect them
to be small-barrier materials based on only complex d bands.

FIG. 7: Complex band structures of the d-dp model. The de-
cay direction being studied is k̂⊥ = ~b1/|~b1|, with C2 = C3 = 0
(see Eq.(5) for definition). The path for the band plot is:
(Re[C1], Im[C1]) = (0,−0.5) → (0, 0) → (0.5, 0). The
DFT+DMFT Fermi level, EDMFT

F , is at zero.
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E
DMFT
F

E
Mott
B

E
d-p
B

E
cond.
min

ΦB = 0.35 eV

NiO

FIG. 8: The CBS of the d-dp model of NiO. x-axis is the path
of (Re[C1], Im[C1]). EDMFT

F is at zero (eV). EMott
B is located

at the crossing of the imaginary extension of conduction band
(small slope arrow) and the imaginary extension of valence
band (large slope arrow). EDMFT

F is at zero. Ed−p
B is found

within the imaginary band connecting d- and p-valence bands
where dE/dk → ∞. The conduction band minimum Econd.

min
(short horizontal dash line) is found at Γ at a slightly higher
energy than EMott

B . The Schottky barrier height is measured to
be: ΦB = Econd.

min − EMott
B ≈ 0.35 eV.

It is worthwhile to mention that we do observe a continuous
transition of ”gap” states below EDMFT

F , where real p-orbital
bands and d-orbital bands are connected by continuous com-
plex bands. This is also shown in Fig.8. The point where
dE/dk → ∞ can be located, and we call it the d-p branch
point. The corresponding energy level is Ed−p

B . The feature
actually exists in the DFT calculation alone, despite the fact
that it yields a metallic ground state. The feature largely re-
mains after the DMFT calculation. The energy range of the
arch-shaped complex band containing Ed−p

B may decrease due
to the gap opened by DMFT, as seen in the CBS of CoO, FeO
and MnO in Fig.7.

Numerically some regions of the complex and real bands
smear out, for example near Γ in energy range of [−7,−3] eV
below EDMFT

F . Such smearing is explained within the quasi-
particle picture in which spectral weights have spreads, as
seen in the ~k-resolved spectral functions in Fig.6.

In the rest of this section, we turn to the calculation of β at
EMott

B for the d-dp model of the four materials and study the
direction dependence of β.

The values of the decay rate β should be anisotropic
for crystal structures. As already mentioned in the end of
Sec.II.C, we perform the calculation of β in three decay di-
rections: (a) k̂⊥ = (1, 0, 0), (b) k̂⊥ = (1, 1, 0)/

√
2 and (c)

k̂⊥ = (1, 1, 1)/
√

3. The values EMott
B and Ed−p

B are determined
for each direction. We found EMott

B , or Ed−p
B , stays the same

for the three different decay directions. If the wavefunction

propagates perfectly along one direction, then we get the de-
cay rate by directly reading off Im[C1] (thus β ≡ |2 · Im[C1]|)
at the branch point. This has been done for the three direc-
tions and for the four materials. The results are summarized
in Table II. We found the values of β at EMott

B are all within the
range of [0.29,0.40].

NiO CoO FeO MnO

ΦB = Econd.
min − EMott

B (eV) 0.35 0.32 0.27 0.30

EMott
B (eV, from EDMFT

F ) +3.5 +2.0 +1.5 +1.1

β@EMott
B

k̂⊥ : (0,0,1) 0.29 0.31 0.32 0.29

k̂⊥ : (0,1,1) 0.33 0.34 0.35 0.33

k̂⊥ : (1,1,1) 0.37 0.37 0.40 0.38

Ed−p
B (eV, from EDMFT

F ) -2.5 -2.3 -2.8 -3.0

β@Ed−p
B

k̂⊥ : (0,0,1) 0.15 0.14 0.16 0.13

k̂⊥ : (0,1,1) 0.17 0.16 0.16 0.13

k̂⊥ : (1,1,1) 0.18 0.16 0.17 0.14

TABLE II: The calculated values of ΦB and locations of EMott
B

and Ed−p
B , and the decay rates β in different directions at the

corresponding energy levels.

(a) NiO (b) CoO

(c) FeO (d) MnO

FIG. 9: The distribution of β(C2,C3) at EMott
B for the decay

direction (1,0,0).

While Table II gives us an idea of the decay rates at spe-
cific single directions, in reality the wavefunctions may not
be perfectly propagating along a given direction. The non-
perpendicular incident components can be taken into account
by simply allowing C2 and C3 (defined in Eq.(5)) to vary, re-
sulting in a distribution of β(C2,C3) for a certain decay direc-
tion k̂⊥. This means we assume the tunnelling barrier system
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has translational symmetry in the plane parallel to the inter-
face, so that the transmission conserves ~k‖. At EMott

B , we have
obtained the β(C2,C3) as shown in Fig.9, Fig.10, and Fig.11.

(a) NiO (b) CoO

(c) FeO (d) MnO

FIG. 10: The distribution of β(C2,C3) at EMott
B for the decay

direction (1,1,0).

(a) NiO (b) CoO

(c) FeO (d) MnO

FIG. 11: The distribution of β(C2,C3) at EMott
B for the decay

direction (1,1,1).

At first glance, the symmetry of these distributions is con-
sistent with the crystal symmetry, which makes sense because
single-site DMFT assumes a completely localized self-energy.
The ranges of values of β are quite different in different direc-
tions. The observation becomes clearer when one introduces
the β-resolved density of states n(β).69 Ideally n(β) dβ would

be the number of ”states” with β values in the infinitesimal in-
terval (β, β + dβ). Numerically, we calculated β on the grid of
C2×C3 = 80×80 points within [0,1]x[0,1], and applied linear
interpolation to make the grid denser. The resulting density is
shown in Fig.12. It is clear that the decay rates cluster around
0.3 for the (1,1,1) direction, and extend to larger and larger
values in (0,1,1) and (0,0,1) directions.

FIG. 12: β-resolved density of state n(β) for the three direc-
tions: (0,0,1) upper, (0,1,1) middle, (1,1,1) down. The β is
measured at EMott

B . The y-axis scale is same for the three plots.

In general, the probability for wavefunction transmission
through the tunnel junction can be written as the product of the
probability for transmission across each of the interfaces times
a factor that describes the exponential decay of the electron
probability within the junction material70,71.

TB(~k‖) = TL(~k‖) · TR(~k‖) · T evan
tot (d) (7)

Here TB is the transmission probability through the junction.
TL and TR are the probabilities for an electron to be trans-
mitted across the left and right electrode barrier interfaces re-
spectively, and T evan

tot is the evanescent channel contribution
to the conductance. We use a simplified model to estimate
the evanescent channel transmission probability T evan

tot . The
transmission probability for each~k‖ takes the form: T evan

~k‖
(d) =

T0 · exp(−β~k‖ · d), where d is the thickness (number of layers)
of the tunneling barrier and β~k‖ is the distribution of β(C2,C3)
obtained in Fig.9, Fig.10, and Fig.11. The total evanescent
transmission probability for the direction k̂⊥, at a given en-
ergy level, is given by:

T evan
tot (d) =

1
N~k‖

∑
~k‖

T evan
~k‖

(d) (8)

We calculate the relative evanescent transmission probabil-
ity T evan

tot (d)/T evan
tot (d = 0) at EMott

B , as shown in Fig.13. The
common feature of exponential decay is clear, and the relative
transmission becomes very small after about 10 layers of the
unit cell, for all four materials. The larger values of β in the
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(0,0,1) direction results in a slightly faster decay than for the
other two directions. The differences in T evan

tot (d) between the
three directions is overall not significant after averaging ~k‖.

(a) (0,0,1) (b) (0,0,1), log scale

(c) (0,1,1) (d) (0,1,1), log scale

(e) (1,1,1) (f) (1,1,1), log scale

FIG. 13: Relative transmission probability on linear and log
scale for the directions: (0,0,1), upper two plots; (0,1,1), mid-
dle two plots; (1,1,1), lower two plots;

IV. CONCLUSION

In summary, we have performed DFT plus single-site
DMFT calculation for the four transition metal monoxides,
NiO, CoO, FeO and MnO, in the non-spin-polarized phase,
and have studied the complex band structures of them by in-
cluding the DMFT self-energy in the Green’s function. The
d and p orbitals are included in the DMFT calculation, and
the TM 4s orbital is included in the Green’s function for com-
plex band analysis. Both the dp and d-dp models have been
considered, and the corresponding screened Coulomb interac-
tion parameters are calculated from first-principles using the
cRPA method. The resulting spectral functions of the d-dp
model present a clear band gap in general agreement with ex-
periments, improving upon the gapless DFT ground state cal-
culation.

By using the full Green’s function that includes s, p, d or-
bitals and the DMFT self-energy, we have observed the com-
plex band structures of these Mott insulators. Motivated by
the tunnel junction application of these materials, we analyzed
the pinning position of the Fermi level by applying the charge
neutrality condition. In the complex domain, the gap states
transitioning from valence-band character to conduction-band
character displays a jump in dE/dk, rather than the continu-
ous transition seen in traditional semiconductors. The branch
point is found to be at the jump point, and is very close to con-

duction band minimum. The TM 4s band is carefully studied,
and we argue that the 4s band is not responsible for determin-
ing the Fermi level pinning position, which is supported by
experiment on NiO tunnel junctions. The calculated results
are in consistent with experimental observations that NiO has
large band gap and small Schottky barrier height. The trans-
mission decay parameter, β, has been calculated for different
directions in k-space to give us insight into the evanescent
channel contribution to the conductance. We have investigated
β in detail at the Mott branch point within the correlation win-
dow. We found that the β parameter has very different values
and distributions for different directions. When the decay di-
rection and the incident direction are not the same, β generally
becomes larger and forms non-trivial patterns depending on
the relative direction.

The CBS analysis relies on the DMFT self-energy. Our
DFT+DMFT calculation based on the modified ELK code
and DCA++ code is a single shot implementation, not a fully
charge density self-consistent one. The current work assumed
the TM 4s band is not significantly shifted in a CSC treatment,
which is reasonable based on existing studies. We noticed the
existing CSC DFT+DMFT calculations of the same materi-
als have shown the necessity of updating charge density when
structural changes due to pressure and strain are closely tied
to electronic transitions, which raises interesting direction to
motivate our future work.

In conclusion, the presented work carries out a fully ab ini-
tio study of the charge neutrality level and wavefunction decay
rate in the evanescent channel of late transition metal monox-
ides in their PM phase under ambient condition, by using the
combination of CBS method and DFT+DMFT calculation.
The DFT+DMFT band gap calculations, along with the cRPA
calculations of Coulomb U matrices, are done in a standard
way. The main physical features are captured. The newly ob-
served feature of the CBS and location of branch point of these
Mott insulators are different from band insulators. In addi-
tion, the TM 4s band of NiO is found to have different feature
in the complex domain than that of the other three materials.
The barrier height, values of decay rate and its direction de-
pendence can all be obtained from first principle. This numer-
ical study could be useful when Mott insulating materials are
used for tunnel junction applications. The approach could be
applied to more complicated structures or lower dimensional
cases, as long as the application of singe-site DFT+DMFT is
justified.
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VI. APPENDIX A

The on-site Coulomb interaction U-matrix is required in-
put for the impurity problem. One reliable way to calculate
these parameters from first principles is the constrained Ran-
dom Phase Approximation(cRPA) method, which has been
well described in the literatures16,72. Here we first summa-
rize the original idea. Then we explain our implementation
based on the density response function, and list our results of
U-matrices for the two models and the four materials.

The cRPA calculation is based on a DFT ground state calcu-
lation that includes many empty bands. One aims to get an es-
timation of the screened Coulomb interaction for the selected
bands of interest, or an energy window. For this purpose, the
particle-hole polarization between all possible pairs of occu-
pied state and unoccupied state are taken into account. Within
the RPA, the particle-hole polarization is calculated as73:

Ptot(r, r′;ω) =

occ.∑
i

unocc.∑
j

ψ∗i (r)ψ j(r′)ψ∗j(r)ψi(r′)×

(
1

ω − ε j + εi + iδ
+

1
ω + ε j − εi − iδ

) (9)

where ψi and εi are the eigenfunctions and eigenenergies of
the one-particle Hamiltonian in DFT.

The selected bands of interest are often around the Fermi
level, and have a particular orbital character, for example d-
like in our case. Following the convention in the literatures,
we label the bands of interest or energy window as the d-
space. If both the occupied state and the unoccupied state
are within the d-space, then the polarization contributes to
Pd(r, r′;ω). All the other pairs of occupied and unoccupied
states contribute to Pr, where r stands for the rest of the
bands. Thus, the total polarization is divided into two parts:
Ptot = Pd + Pr. Pr is related to the partially screened Coulomb
interaction16:

Wr(ω) = [1 − ν · Pr(ω)]−1 · ν (10)

In the above equation, ν is the bare Coulomb interaction.
It’s obvious that the total polarization, Ptot, screens the bare
Coulomb interaction, ν, to give the fully screened interac-
tion W. With the same logic, Pd screens Wr to give the
fully screened interaction W. Thus, Wr is identified as the
on-site Coulomb interaction for the bands of interest, i.e.
U(ω) ≡ Wr(ω), which has included the screening effect from
the realistic environment of the material.

Our cRPA calculation is based on the partial Kohn-Sham
susceptibility20,73:

χKS
r (r, r′;ω) =

∑
i, j 6⊂C.S.

( fi − f j)ψ∗i (r)ψ j(r′)ψ∗j(r)ψi(r′)

ω − ε j + εi + iδ
(11)

where fi and εi are the occupancy and energy of the eigenstate
ψi. The summation over band indices runs over all bands ex-
cluding the cases where both i and j are inside the correlation
subspace (C.S. under the summation sign means correlation

subspace). In general, the density response function χ(r, r′;ω)
is related to the Kohn-Sham susceptibility by the following in-
tegral equation73:

χ(r, r′;ω) = χKS (r, r′;ω) +

"
dr1dr2 χ

KS (r, r1;ω)

×

(
1

|r1 − r2|
+ f xc(r1, r2;ω)

)
× χ(r2, r′;ω) (12)

where the f xc is the functional derivative of the exchange-
correlation potential with respect to the charge density, which
is often neglected in the random phase approximation. Since
we are considering periodic crystal structures, the integral
equation is often written in the Fourier-transformed form
where χ(r, r′;ω) becomes χ(q, q′;ω) with q and q′ the recip-
rocal lattice vectors. Due to the invariance of the real space
response function with respect to a shift by a lattice vector R:
χ(r +R, r′+R;ω) = χ(r, r′;ω), the χ(q, q′;ω) is only nonezero
when q and q′ differ by a reciprocal lattice vector G. One can
replace q by q + G, replace q′ by q + G′, and restrict q to
be always within the first Brillouin zone. Thus the Fourier-
transformed integral equation has the form:

χGG′ (q, ω) = χKS
GG′ (q, ω) +

∑
G1G2

χKS
GG1

(q, ω)×(
vG1+qδG1G2 + f xc

G1G2
(q, ω)

)
× χG2G′ (q, ω) (13)

where vG+q = 4π/|G + q|2 is the expansion coefficient of the
bare Coulomb interaction. By using the partial Kohn-Sham
susceptibility χKS

r,GG′ (q, ω) (Fourier transform of Eq.(11)) and
neglecting the f xc term in Eq.(13), we reach the equation for
the partial RPA density response function χRPA

r (q, ω):

χRPA
r,GG′ (q, ω) = χKS

r,GG′ (q, ω)+∑
G1

vG1+q × χ
KS
r,GG1

(q, ω) × χRPA
r,G1G′ (q, ω) (14)

Note that the subscript r in Eq.(14) stands for the rest of
the bands, as same as in Eq.(10). Eq.(14) is first solved for
χRPA

r (q, ω) in the calculation. The rest calculation is based
on the linear respone theory74, where the partially screened
Coulomb interaction Wr is related to inverse dielectric func-
tion ε−1 and bare Coulomb interaction ν: Wr(r1, r2;ω) =∫

drε−1(r1, r;ω)ν(r, r2). The inverse dielectric function ε−1 is
determined by ε−1(r1, r;ω) = 1 + ν ·χRPA

r (r1, r;ω). Finally the
frequency-dependent screened Coulomb interaction is com-
puted from the partial RPA density response function and the
bare Coulomb interaction:

Wr,GG′ (q, ω) = vG+qδGG′ + vG+q · χ
RPA
r,GG′ (q, ω) · vG′+q (15)

The above calculations have been implemented in the
Exciting-Plus code (a modified version of ELK code)20,75,
which we used for the U matrix calculations. The Wannier
orbitals are constructed by projection to preserve symmetry,
and no spatial localization procedure is applied. In addition to
the DFT calculation described in Sec.II.A, 100 empty bands
are included for the cRPA calculation.
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NiO, dp model:

Uσσ
mm′ =


9.69 8.03 7.97 8.03 9.10
8.03 9.69 8.82 8.03 8.25
7.97 8.82 10.27 8.82 8.19
8.03 8.03 8.82 9.69 8.25
9.10 8.25 8.19 8.25 10.27



Uσσ
mm′ =


0.00 7.21 6.97 7.21 8.66
7.21 0.00 8.24 7.21 7.39
6.97 8.24 0.00 8.24 7.15
7.21 7.21 8.24 0.00 7.39
8.66 7.39 7.15 7.39 0.00


NiO, d-dp model:

Uσσ
mm′ =


7.29 5.67 5.42 5.67 6.48
5.67 7.29 6.21 5.67 5.69
5.42 6.21 7.38 6.21 5.44
5.67 5.67 6.21 7.29 5.69
6.48 5.69 5.44 5.69 7.38



Uσσ
mm′ =


0.00 4.85 4.44 4.85 6.04
4.85 0.00 5.64 4.85 4.84
4.44 5.64 0.00 5.64 4.47
4.85 4.85 5.64 0.00 4.84
6.04 4.84 4.47 4.84 0.00


CoO, dp model:

Uσσ
mm′ =


9.27 7.70 7.69 7.70 8.73
7.70 9.27 8.47 7.70 7.95
7.69 8.47 9.92 8.47 7.93
7.70 7.70 8.47 9.27 7.95
8.73 7.95 7.93 7.95 9.92



Uσσ
mm′ =


0.00 6.92 6.73 6.92 8.30
6.92 0.00 7.91 6.92 7.12
6.73 7.91 0.00 7.91 6.93
6.92 6.92 7.91 0.00 7.12
8.30 7.12 6.93 7.12 0.00


CoO, d-dp model:

Uσσ
mm′ =


6.47 4.94 4.71 4.94 5.68
4.94 6.47 5.43 4.94 4.96
4.71 5.44 6.57 5.44 4.74
4.94 4.94 5.44 6.47 4.96
5.68 4.96 4.74 4.96 6.57



Uσσ
mm′ =


0.00 4.16 3.78 4.16 5.25
4.16 0.00 4.89 4.16 4.15
3.78 4.89 0.00 4.89 3.82
4.16 4.16 4.89 0.00 4.15
5.25 4.15 3.82 4.15 0.00



FeO, dp model:

Uσσ
mm′ =


8.91 7.49 7.53 7.49 8.40
7.49 8.91 8.18 7.49 7.75
7.53 8.18 9.59 8.18 7.79
7.49 7.49 8.18 8.91 7.75
8.40 7.75 7.79 7.75 9.59



Uσσ
mm′ =


0.00 6.76 6.64 6.76 7.98
6.76 0.00 7.65 6.76 6.98
6.64 7.65 0.00 7.65 6.89
6.76 6.76 7.65 0.00 6.98
7.98 6.98 6.89 6.98 0.00


FeO, d-dp model:

Uσσ
mm′ =


5.89 4.50 4.33 4.50 5.13
4.50 5.89 4.93 4.50 4.53
4.33 4.93 6.02 4.93 4.35
4.50 4.50 4.93 5.89 4.53
5.13 4.53 4.35 4.53 6.02



Uσσ
mm′ =


0.00 3.78 3.47 3.78 4.71
3.78 0.00 4.40 3.78 3.78
3.47 4.40 0.00 4.40 3.52
3.78 3.78 4.40 0.00 3.78
4.71 3.78 3.52 3.78 0.00


MnO, dp model:

Uσσ
mm′ =


8.68 7.34 7.39 7.34 8.18
7.34 8.68 7.99 7.34 7.59
7.39 7.99 9.34 7.99 7.65
7.34 7.34 7.99 8.68 7.59
8.18 7.59 7.65 7.59 9.34



Uσσ
mm′ =


0.00 6.65 6.56 6.65 7.78
6.65 0.00 7.47 6.65 6.87
6.56 7.47 0.00 7.47 6.80
6.65 6.65 7.47 0.00 6.87
7.78 6.87 6.80 6.87 0.00


MnO, d-dp model:

Uσσ
mm′ =


5.59 4.28 4.13 4.28 4.86
4.28 5.59 4.68 4.28 4.31
4.13 4.68 5.73 4.68 4.17
4.28 4.28 4.68 5.59 4.31
4.86 4.31 4.17 4.31 5.73



Uσσ
mm′ =


0.00 3.60 3.33 3.60 4.46
3.60 0.00 4.18 3.60 3.61
3.33 4.18 0.00 4.18 3.38
3.60 3.60 4.18 0.00 3.61
4.46 3.61 3.38 3.61 0.00


The cRPA calculation directly provides the intra-, inter-

orbital and exchange interaction parameters. We derived sin-
gle value intra-, inter-orbital and exchange interaction param-
eters U, U′ and J from averaging the matrix elements, in order
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to compare with the existing calculations. By definition, the
diagonal elements of Uσσ

mm′ are the intra-orbital interactions,
and the average value is: U = 1

5 TrUσσ
mm′ . The inter-orbital

interactions are the off-diagonal elements of Uσσ
mm′ , thus U′ =

1
20

∑
m6=m′ Uσσ

mm′ . The inter-orbital exchange is the off-diagonal
elements of Uσσ

mm′ −Uσσ
mm′ , so J = 1

20
∑

m6=m′ (Uσσ
mm′ −Uσσ

mm′ ). The
values of U, U′ and J for the two models are summarized in
Table III. We found general agreement with other cRPA cal-
culation of the same materials in the literature41.

(eV) NiO CoO FeO MnO
U, dp 9.92(10.3) 9.53(9.8) 9.09(9.5) 8.95(9.2)

U, d-dp 7.33(7.6) 6.51(6.8) 5.94(6.3) 5.65(6.1)
U′, dp 8.35(8.6) 8.03(8.1) 7.71(7.9) 7.64(7.7)

U′, d-dp 5.81(5.9) 5.07(5.2) 4.62(4.8) 4.40(4.6)
J, dp 0.78(0.9) 0.75(0.8) 0.70(0.8) 0.66(0.7)

J, d-dp 0.77(0.9) 0.73(0.8) 0.68(0.8) 0.64(0.7)

TABLE III: The values of U, U′ and J deduced from the
cRPA calculation. Values in parenthesis are from Ref.41 for
the exactly same model construction using a different code

based on Maximum Localized Wannier Functions.
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