
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamical Ginzburg criterion for the quantum-classical
crossover of the Kibble-Zurek mechanism

Matthias Gerster, Benedikt Haggenmiller, Ferdinand Tschirsich, Pietro Silvi, and Simone
Montangero

Phys. Rev. B 100, 024311 — Published 29 July 2019
DOI: 10.1103/PhysRevB.100.024311

http://dx.doi.org/10.1103/PhysRevB.100.024311


Dynamical Ginzburg criterion for the quantum–classical crossover of the
Kibble–Zurek mechanism

Matthias Gerster,1 Benedikt Haggenmiller,1 Ferdinand Tschirsich,1 Pietro Silvi,2, 1 and Simone Montangero1, 3, 4

1Institute for Complex Quantum Systems & Center for Integrated Quantum
Science and Technologies, Universität Ulm, D-89069 Ulm, Germany.

2Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics,
University of Innsbruck & Institute for Quantum Optics and Quantum Information,

Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
3Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany.

4Dipartimento di Fisica e Astronomia “G. Galilei”, Universitá degli Studi di Padova, I-35131 Italy.
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We introduce a simple criterion for lattice models to predict quantitatively the crossover between
the classical and the quantum scaling of the Kibble–Zurek mechanism, as the one observed in a
quantum φ4-model on a 1D lattice [Phys. Rev. Lett. 116, 225701 (2016)]. We corroborate that the
crossover is a general feature of critical models on a lattice, by testing our paradigm on the quantum
Ising model in transverse field for arbitrary spin-s (s ≥ 1/2) in one spatial dimension. By means of
tensor network methods, we fully characterize the equilibrium properties of this model, and locate
the quantum critical regions via our dynamical Ginzburg criterion. We numerically simulate the
Kibble–Zurek quench dynamics and show the validity of our picture, also according to finite-time
scaling analysis.
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I. INTRODUCTION

Understanding the behavior of correlated matter when
a physical system is driven out of equilibrium is a prob-
lem of paramount importance in classical and quantum
mechanics, material science, and engineering. In partic-
ular, the Kibble–Zurek (KZ) mechanism, the description
of quasi-adiabatic quenches across a phase transition, has
been studied both in classical and quantum scenarios,
spanning lengthscales from atomic sizes to galaxies1–19.
With the advent of quantum technologies — enabled by
recent advancements in experimental platforms based on
atomic, molecular and optical physics — the KZ mech-
anism keeps being practical as well as fundamental. In-
deed, quasi-adiabatic or beyond-adiabatic9,20 quenches
are still the most straightforward method for realizing
complex quantum phases of matter in real experiments
and to perform adiabatic quantum computations, e.g.,
quantum annealing to solve classical hard problems21,22.
Similarly, from a theoretical perspective, the KZ frame-
work is a key scenario to deeply understand the interface
between the classical macroscopic and the quantum mi-
croscopic world, especially in the context of critical phe-
nomena and phase transitions, where the two worlds dis-
play quantitatively and qualitatively different emergent
collective behaviors.

One particular example of the interplay, or rather
competition, between the classical and the quantum KZ
mechanism was recently numerically observed in Ref. 23,
by some of the authors, in quenches across the linear-
zigzag phase transition of ion coulomb crystals. They
showed that two distinct regimes of quench times τQ
emerge: A slow regime where the scaling of defects
with τQ is governed by a quantum theoretical descrip-

tion, and a fast regime where the defects scale according
to a mean-field theory prediction, equivalent to a classi-
cal (zero-temperature) phase transition treatment. The
crossover timescale between these two regimes (classical
and quantum) can be roughly estimated by means of the
Ginzburg criterion24, i.e. by comparing the order param-
eter with its own fluctuations.

In this work, we argue that such a crossover is not
limited to a specific model: We show that this effect
appears in the paradigmatic example for second order
quantum phase transitions — the one-dimensional Ising
model in transverse field — for any spin representation s.
We first fully characterize the phase diagram, and then
analyze the KZ mechanism of the model focusing on the
quantum–classical crossover for 1

2 ≤ s ≤ 5. As the
Ginzburg criterion delivers imprecise quantitative predic-
tions for s� 1/2 (see Appendix E), we propose a simple
argument based on the properties at equilibrium, the Dy-
namical Ginzburg Criterion (DGC), to better predict at
which quench times τ×Q the crossover is expected to occur
in lattice models. This prediction is practical and quan-
titative, allowing an arbitrary experimental platform to
quickly test whether the crossover timescales are reach-
able within the platform specifications and typical coher-
ence times.

II. THE KIBBLE–ZUREK ARGUMENT

The KZ picture predicts a scaling law of the density of
defects n during a linear quench across a phase transition,
as a function of the quench rate (or the total quench
time τQ)1,2. It is based on the assumption that at quasi-
equilibrium the system has a response timescale τR(t)
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which scales as τR ∝ |h− hc|−νz with the distance from
the critical point hc of the driving parameter

h(t) = hc + t ·∆h/τQ , (1)

controlling the Hamiltonian H(h). During the quench,
the system follows the adiabatic trajectory as long
as the relaxation time τR is shorter than the driving
timescale τD, that is, the inverse relative rate of change
of any scaling quantity q of the system: τD = |q/q̇|. For
a linear ramp quench, we thus obtain τD ∝ |t|. As the
system response slows down, we encounter a specific in-
stant t̂ (freeze-out time) when the system abandons the
adiabatic trajectory: The dynamics of the order param-
eter thus freezes out, and the density of defects n in the
order is given by the equilibrium correlation length ξ at
this instant, n̂ = ξ−1(h(t̂)) ∝ |h(t̂) − hc|ν . This occurs
when the response becomes slower than the driving, i.e.
when τD(t̂) ' τR(t̂). Combining all scaling laws delivers

t̂ ∝ τνz/(1+νz)
Q , or equivalently |ĥ−hc| ∝ τ−1/(1+νz)

Q with

ĥ = h(t̂), and in turn n̂ ∝ τ−κQ with the KZ exponent

κ = ν/(1 + νz). In this expression, ν and νz are the
scaling exponents of lengthscales and timescales, respec-
tively, and they depend on whether the order parameter
is ruled by a classical- or quantum critical scaling.

A. The quantum scaling

In the quantum regime, outside of a quantum crit-
ical point, the energy gap remains finite and directly
determines the relaxation timescale7,8,25. Precisely, at
quasi-equilibrium where the system occupies mostly the
ground state of the instantaneous Hamiltonian H(t), the
slowest response timescale of the system is given by
τR ' ~/Egap(t), where Egap is the energy difference be-
tween the first excited state and the ground state of H.
Egap is an equilibrium property, and near the critical
point it scales with the control parameter, i.e. the ex-
ternal field h, as Egap = ϕ|h − hc|νz. Equivalently, it
scales with the correlation length of the order parameter
as Egap ∝ ξ−z. Consequently, the relaxation timescale τR
scales with the critical exponents {z, ν} from the quan-
tum critical point at equilibrium, which can be extracted
by the corresponding conformal field theory based on di-
mensionality and symmetry breaking. For the univer-
sality class of the quantum Ising model in one spatial
dimension, these exponents are ν = z = 1, regardless of
the local spin representation s, as verified numerically in
Appendix D. The KZ exponent of the quantum regime is
thus κ = 1/2.

B. The classical scaling

Conversely, in the mean-field (or classical) regime, the
scaling exponents of the relaxation timescale τR are well

described within Landau theory26, and explicitly evalu-
ated in Ref. 27. A simplified, intuitive picture to un-
derstand this exponent can be obtained by considering a
continuum classical field model, and the effective time-
dependent Ginzburg equation for the order parameter
φ28,29. Specifically, by requesting that the Ginzburg
equation scales covariantly, we are able to identify the
corresponding scaling exponents for τR and ξ with re-
spect to h′ = h − hc. The Ginzburg equation for a
model with Ising criticality, a Z2 symmetry breaking, is
the one obtained from the Lagrangian of the φ4-model
and reads29

∂2
t φ− ∂2

xφ+ h′φ+ φ3 = 0 , (2)

where we consider both noise and damping to be negli-
gible. We now perform the scale transformation

h′ → λh′ , φ→ λβφ , x→ λ−νx , t→ λ−νzt , (3)

and require covariance of the Ginzburg equation. This
delivers ν = 1/2 and z = 1 (as well as β = 1/2). The
KZ exponent of the classical regime is therefore κ = 1/3,
quantitatively different from the quantum case.

III. THE DYNAMICAL GINZBURG
CRITERION

We adopt the following criterion to predict whether
around a given quench time τQ we expect to see the quan-
tum or the classical scaling: We first estimate quantita-

tively the correlation length at equilibrium ξ̂ = ξ(ĥ) at

the freeze-out point ĥ for that specific quench time τQ. If
this correlation length is larger than the lattice spacing a

(ξ̂(τQ)� a), then we expect to observe the quantum KZ

scaling. Conversely, if it is smaller (ξ̂(τQ)� a) we expect
to see the classical KZ scaling. We motivate this criterion
based on the following argument: Consider a quantum
system where the correlation length ξ for some order pa-
rameter is smaller than the lattice constant. Then, the
properties of such order are not ruled by entanglement,
but only by local quantities. If the entanglement does
not play a role, then the mean-field picture is a reliable
description for this type of order. Therefore, during the
quench, if the system is not given sufficient time to build

up quantum correlations leading to a ξ̂ larger than the
lattice constant, then, at freeze-out, the mean-field de-
scription of the order is still valid: We expect to observe
the classical KZ scaling resulting from the scaling expo-
nents of the mean-field (Ginzburg) picture. Conversely,

if the quench times τQ are sufficiently large so that ξ̂ is
larger than a, then the order properties at freeze-out are
ruled by entanglement, thus the quantum KZ scaling will
emerge.

To make this argument quantitative, we start by es-
timating the dynamical quantum critical region, i.e. the

value of external field h× at which ξ̂(h×) = a at equi-
librium, which lies in the disordered phase (see Fig. 1).
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Figure 1. Phase diagram of the quantum Ising model (8) in
1D as a function of the external field h and the inverse spin
1/s. The black dots represent the phase transition points
at the thermodynamical limit estimated via the von Neu-
mann entropy (see Appendix B), while the solid black curve

crossing them shows the fit hc(s) = hc(∞) − ã(|ln s| − b̃)/s.
These points separate the ferromagnetic phase, with white
background, from the paramagnetic phase, with colored back-
ground. The crosses with error bars show the DGC points h×,
estimated numerically via DMRG. The dashed line is a power-
law fit in 1/s of the deviation h×(∞) − h×(s). The color in
the paramagnetic phase encodes the single-site entanglement
entropy SVN(ρj).

We perform this estimation via numerical simulations at
equilibrium. Then, we exploit τR ' ~/Egap and Egap '
ϕ|h − hc|νz, where the scaling prefactor ϕ is calculated
numerically. For estimating the driving timescale τD we
adopt τD ' |ε(t)/ε̇(t)| = |t|, where ε(t) = h(t) − hc

7.
Under these assumptions the KZ equation τD(t̂) = τR(t̂)
becomes

t̂ = ~ |ĥ− hc|−νz/ϕ . (4)

Using the definition of the driving parameter h(t) from
Eq. (1), the freeze-out time can also be expressed as

t̂ = (ĥ− hc) τQ/∆h . (5)

Combining Eqs. (4) and (5) yields

τQ =
~ · |∆h|

ϕ · |ĥ− hc|1+νz
, (6)

which allows to quantify the crossover quench time as

τ×Q =
~ · |∆h|

ϕ · |h× − hc|1+νz
, (7)

discriminating timescale regimes where the quantum
(τQ � τ×Q ) or the classical (τQ � τ×Q ) KZ scaling will
respectively emerge. As an additional requirement to ac-
tually observe the classical KZ scaling, the quench must
start outside the dynamical quantum critical region or

the mean-field description will never be valid: This trans-
lates to a condition on the parametric quench interval,
which reads |∆h| � |h× − hc|. The parametric DGC
point h× is thus a relevant point in the phase diagram,
representing where the correlation length is equal to the
lattice spacing, at equilibrium in the disordered phase.

IV. NUMERICAL RESULTS

In the following, we discuss numerical results corrob-
orating the validity of the DGC criterion. We consider
a one-dimensional lattice of spin-s sites with the Ising
Hamiltonian, with ferromagnetic interaction and trans-
verse field h > 0,

H(s, h) = − 1

s2

L∑
j=1

Sxj S
x
j+1 +

h

s

L∑
j=1

Szj , (8)

where Sµj are the spin-s matrices at site j, satisfying

[Skj , S
l
j′ ] = iSmj εklmδjj′ and Sxj

2 +Syj
2

+Szj
2 = s(s+ 1)1,

with ~ = 1 henceforth. The prefactors 1/s and 1/s2

ensure that the whole class of Hamiltonians H(s, h)
yields exactly the same mean-field treatment for all s
(see Appendix A). We carry out simulations for the
model in Eq. (8) using DMRG for Tree Tensor Net-
works for ground-state properties30–32, and the Time-
Evolving Block Decimation (TEBD) algorithm33,34 fea-
turing RSVD-compression35,36 for out-of-equilibrium dy-
namics, respectively. We adopt a Tensor Network (TN)
encoding which protects the Z2 parity symmetry

Π = exp

iπ L∑
j=1

(s− Szj )

 . (9)

The system size L in the simulations is chosen large
enough to guarantee that finite size effects do not affect
the presented results.

A. Equilibrium simulations

We perform equilibrium simulations to characterize the
phase diagram for all s, in order to detect the DGC point
h×(s), in addition to the critical point hc(s). While the
critical exponents ν = 1 and z = 1 are independent of s in
proximity of hc, it can be shown that order correlations
scale as 1/s (see Appendix C). Moreover, hc increases
monotonically with s, with extrema at the limiting cases
hc(1/2) = 1 and hc(∞) = hMF

c = 2, where hMF
c is the

critical point of the mean-field treatment of the model,
which is independent of s (see Appendix A). The exact
form of the dependence of the deviation from the mean-
field value ε(s) = hMF

c − hc(s) on the strength of the
quantum fluctuations has been shown to be given by37

ε(s) =
ã

s

(
|ln s| − b̃

)
, (10)
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where ã, b̃ are non-universal fit constants. In Fig. 1 we
numerically verify this behavior by plotting the location
of the critical points for various values of s, together
with the fitted function. The resulting fit parameters
are ã ≈ 0.28 and b̃ ≈ −2.4. Additionally, we highlight
the critical region by plotting the von Neumann entropy
SVN(ρj) of the single-body reduced density matrix ρj ,
in the paramagnetic phase: We observe that only inside
the critical region the entropy grows above 10%. Finally,
Fig. 1 contains the location of the DGC points, obtained
from the condition ξ(h×) = a = 1. Here, ξ is the corre-
lation length derived from the ferromagnetic correlation
matrix Cj,k = 〈Sxj Sxk 〉/s2. We numerically estimate ξ via

ξ =

√∑
r=1

(r − 1)2C(r)/
∑
r=1

C(r) , (11)

where

C(r) =
1

L− r

L−r∑
j=1

Cj,j+r (12)

is the spatially-averaged correlation function38. One can
show (see Appendix C) that h×(s → ∞) = 2 cosh(1).
For finite s, the trend towards this limit value seems
to be well approximated by a power-law decay h×(s) =
h×(s → ∞) − c̃ s−η̃, yielding fitted constants c̃ ≈ 0.31
and η̃ ≈ 0.52. Remarkably, the DGC delivers a finite in-
terval [2, 2 cosh(1)] of the quantum critical region in the
quasiclassical limit s→∞, in contrast to the traditional
Ginzburg criterion.

B. Out-of-equilibrium simulations

We performed numerical simulations of the many-
body dynamics generated by the linearly quenched Ising
Hamiltonian of Eq. (8). We considered various values of
s and system sizes L of the order of 102 sites, using a
fixed quench interval from hini = 30 (deep in the param-
agnetic phase) to hfin = 0.5 (in the ferromagnetic phase).
We use the correlation length ξ of the final state as in-
verse defect measure. The results of the simulations, for
two different values of the spin quantum number (s = 1/2
and s = 5), are reported in Fig. 2. Both scenarios deliver
the predicted behavior: For small quench durations, the
fitted KZ exponent is very close to κ = 1/3, while for
long quenches it is very close to κ = 1/2. The observed
crossover quench time τ̄×Q between the two regimes is well

approximated by the τ×Q estimated from Eq. (7), where

ϕ has been determined for the accessible gap (see Ap-
pendix D 3)7.

To further strengthen our results, we perform a Finite-
Time Scaling (FTS) analysis39,40, the out-of-equilibrium
analog of the finite-size scaling analysis41. Within this
framework, we fully embrace the KZ approximation, ac-
cording to which the evolution is adiabatic until freeze-
out, while the order properties stay constant afterwards.
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Figure 2. Comparison between estimated and observed KZ
crossover quench times, for L = 128 and two different spins:
s = 1/2 (top panel) and s = 5 (bottom panel). Both panels
show the crossover between the classical KZ scaling κ ' 1/3
and the quantum KZ scaling κ ' 1/2, which allows us to
identify the observed crossover quench time τ̄×Q , where the
two power-laws intersect (blue arrow). The red arrow shows
the estimated crossover quench time, obtained from Eq. (7)
via the DGC. Data points are shown for different bond di-
mensions m and numbers of TEBD time steps n, in order to
demonstrate numerical convergence of the simulation data.
The plateau at extremely short timescales corresponds to the
sudden-quench defect bound, given by the initial correlation
length ξ(hini) (green arrow).

In this picture, the time-dependent correlation length
ξ(t) during the quench must undergo the following scal-
ing:

ξ(t) ' τ
ν

1+νz

Q f
(
t τ
− νz

1+νz

Q

)
, (13)

as long as ξ < L, where f(·) is a non-universal func-
tion. This expression guarantees that t̂, ξ(0) and ξ(t̂)
scale with τQ with the correct KZ exponents. In Fig. 3
we observe a collapse of the curves ξ(t) according to
Eq. (13). Again, we observe excellent agreement with our
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Figure 3. Finite-time scaling of the (inverse) density of
defects during the quench, for s = 1/2. The curves show
the correlation length as a function of time, for various total
quench times τQ, where the axes have been rescaled according
to Eq. (13) for two different sets of critical exponents: the clas-
sical ones (top panel) and the quantum ones (bottom panel).
As expected, only the curves corresponding to quench times
shorter (longer) than the crossover quench time, signaled by
warm colors (cold colors), collapse into a main trend, while
the other curves are outliers.

predictions: When using the quantum critical exponents
z = ν = 1 (classical critical exponents z = 2ν = 1) we
observe a collapse only of the curves with quench times
longer (shorter) than the estimated crossover τQ > τ×Q
(τQ < τ×Q ), while the other curves being clear outliers.

V. CONCLUSION

We proposed a general, yet simple criterion based
on quantitative equilibrium properties to predict the
timescale at which the crossover between a classical KZ
scaling of defects, and a quantum KZ scaling, is expected
to occur for linear quenches on nearest-neighbor inter-
acting lattice models. Our DGC simply discriminates
whether the correlation length at freeze-out is longer or
shorter than the lattice constant, resulting in a quantum
or classical scaling respectively. We tested our conjecture
on the spin-s quantum Ising model class in 1D, and ob-
served remarkable agreement with the DGC estimation.

This study puts more solid ground on the phenomenon

of the quantum–classical KZ crossover. Moreover, the
DGC criterion is a ready-to-use estimator, for any quan-
tum lattice experiment of quench dynamics, to quickly
understand whether the quantum KZ regime is accessible
within its experimental specifications. We estimate that
our conjecture could be readily verified experimentally
on atomic quantum-simulator platforms, such as analog
quantum simulators on trapped ion architectures42,43, or
Rydberg atoms trapped in arrays of optical tweezers44

where recently the first observation of a genuinely quan-
tum KZ mechanism was made45.
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Appendix A: Mean-field equivalence of the spin-s
Ising model

In this section, we show that the Single-Body Mean-
Field (SBMF) solution of the spin-s Ising model in 1D,
given by Eq. (8), is independent of s. In the SBMF
ansatz, the reduced density matrices decompose into
their single-body components ρj,j′ = ρj ⊗ ρj′ , which will
be homogeneous ρj = ρj′ ∀j, j′ since the ferromagnetic
interaction we consider does not spontaneously break
translational invariance. We now prove that, regardless
of the spin s, the critical point is always at hMF

c = 2

and the order parameter is 〈O〉 = 1
2

√
4− h2 for h ≤ 2

while 〈O〉 = 0 for h ≥ 2, where O = 1
sS

x. To do this,
we first derive the spin-1/2 solution and then show that
larger spins lead to an analogous classical minimization
functional.

1. Spin-1/2

In this scenario, we explicitly write the single-spin den-

sity matrix ρj = 1
21+ ~r

2 ·~σ, where now ~σ = 1
s
~S is the vec-

tor of Pauli matrices, and O = σx. Positivity of the den-
sity matrix requires |~r| ≤ 1, and clearly 〈σx〉 = rx while
〈σz〉 = rz. In order to respect the bound r2

x+r2
z ≤ |~r| ≤ 1

we use the parametrization rx = r cos θ and rz = r sin θ,
with r ∈ [0, 1]. The SBMF functional to minimize then
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reads

〈H(1/2, h)〉MF = − 1

s2
〈Sx〉2 +

h

s
〈Sz〉 =

− 〈σx〉2 + h〈σz〉 = −r2 cos2 θ + hr sin θ , (A1)

The solution will definitely be in the interval θ ∈ [−π, 0],
since for any θ value within [0, π], the angle θ′ = −θ
returns an equal or better value of the functional. Within
this interval, both summands in the expression (A1) will
be negative. Therefore, the global minimum will be at
r = 1, and the coordinates of the optimal solution can
be given analytically:

rmin = 1 , (A2)

θmin =

{
− arcsin

(
h
2

)
, for 0 ≤ h ≤ 2

−π2 , for h ≥ 2 ,

while the minimized energy functional is equal to

〈H(1/2, h)〉min
MF =

{
−1− h2

4 , for 0 ≤ h ≤ 2

−h , for h ≥ 2,
(A3)

and the order parameter is 〈O〉 = 1
2

√
4− h2. Interest-

ingly, the corresponding critical exponent β, which re-
lates to the spontaneous local order 〈O〉 ∼ (hc − h)β ,
corresponds to β = 1/2 for the SBMF transition, in con-
trast to the known β = 1/8 of the full quantum treat-
ment47.

2. Spin-s

Here we show that the SBMF treatment leads to min-
imizing a functional equivalent to Eq. (A1). We first

prove that |〈~S〉|2 ≤ s2, which is strictly smaller than

〈|~S|2〉 = s(s + 1). This is seen by setting ~a = 〈~S〉 and
then noticing that

~a · ~a =

(
~a · ~a
|~a|

)2

= 〈~S · ~a/|~a|〉2 . (A4)

Since now ~a/|~a| is a vector of modulus one, we know that
~S · ~a/|~a| is a rotated spin-s matrix, and its spectrum is

between −s and s. It follows that −s ≤ 〈~S · ~a/|~a|〉 ≤ s,

and therefore 〈~S ·~a/|~a|〉2 = |〈~S〉|2 ≤ s2. This means that

1

s2
〈Sx〉2 +

1

s2
〈Sz〉2 ≤ 1 (A5)

regardless of s. And since Eq. (A2) is the most generic
solution of the functional (A1) under this constraint, we
can conclude that spin-s cannot exhibit a better solution
than Eq. (A2). Moreover, let us now show that this solu-
tion exists for every s: Specifically, we consider the spin-s
subclass of states

|θ〉 = ei(π/2−θ)S
y

|m = +s〉 (A6)
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Figure 4. Determination of the critical field strength hc

for s = 2 (top) and s = 20 (bottom), using different system
sizes L and TN bond dimensions m.

parametrized by θ ∈ [0, 2π]. These states exhibit by con-
struction 〈Sx〉 = s cos θ and 〈Sz〉 = s sin θ. The solution
given by Eq. (A2) thus exists and minimizes the SBMF
functional, which makes it the minimal solution for all s.

Appendix B: Procedure for determining the critical
point

The critical points hc shown in Fig. 1 haven been nu-
merically obtained from TN simulations via the following
procedure: Precisely at the critical point, the von Neu-
mann entropy in a system of size L with periodic bound-
ary conditions (PBC) is known to scale like48

SVN(`) =
c

3
log2 [crd(`)] + c′1 , (B1)

as a function of the partition size `, with crd(`) =
L/π sin(π`/L). Here, c is the conformal central charge
(for the Ising universality class we have c = 1/2), and
c′1 is a non-universal constant. The strategy is now to
fit the numerical data to this expression for various val-
ues of the field strength h, in order to probe agreement
with the critical scaling. The value of h where the fit
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Figure 5. Comparison of the numerically determined GS en-
ergies in the paramagnetic phase with the large-s HP result
Eq. (C8), and with the GS energies from the linear approxima-
tion elin0 = −h. The TN simulations have system size L, bond
dimension m, and either open (OBC) or periodic boundary
conditions (PBC).

displays maximal agreement, quantified by the fit’s root
mean square deviation ∆RMS, represents the location of
the critical point hc. This procedure is shown in Fig. 4,
for two different values of s, and various system sizes L
and TN bond dimensions m.

Appendix C: Analytical solution for large s via
Holstein–Primakoff transformation

We employ the Holstein–Primakoff (HP) transforma-
tion49

Szj = a†jaj − s

S+
j =

√
2s a†j

√
1− a†jaj/(2s)

S−j =
√

2s
√

1− a†jaj/(2s) aj , (C1)

with S±j = Sxj ± iS
y
j the raising and lowering operators

as usual, and aj (a†j) is a bosonic annihilation (creation)

operator. We expand the square roots in Eq. (C1) to
lowest order:

S+
j '

√
2s a†j , S−j '

√
2s aj , (C2)
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Figure 6. Comparison of the numerically determined energy
gaps with the large-s HP result Eq. (C10), and with the gaps
predicted by the linear approximation Elin

gap = (h− 1)/s.

which is a good approximation for sufficiently large s.
Note that this transformation from a finite- to an infinite-
dimensional Hilbert space is only faithful for states which
populate exclusively one end of the level spectrum of Szj .
Thus, for the spin-s Ising model, this transformation is
only useful in the paramagnetic phase, while in the fer-
romagnetic phase it fails to preserve the physics of the
model. Via this transformation, we obtain from the orig-
inal spin Hamiltonian defined in Eq. (8) the following
bosonic quadratic Hamiltonian:

HHP = − 1

2s

L∑
j=1

(
ajaj+1 + aja

†
j+1

)
+ h.c.

+
h

s

L∑
j=1

a†jaj − Lh . (C3)

In order to diagonalize HHP, we first perform a transfor-
mation to k-space, using a new set of bosonic operators:

ãk =
1√
L

L∑
j=1

e−ikj aj , k ∈
{

2π

L
m | m = −L

2
...
L

2
− 1

}
aj =

1√
L

∑
k

eikj ãk (C4)
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After applying this transformation, the Hamiltonian
Eq. (C3) becomes:

H̃HP =
1

s

∑
k

(h− cos(k)) ã†kãk

− 1

2s

∑
k

(
e−ik ãkã−k + h.c.

)
− Lh (C5)

Finally, we use a Bogoliubov transformation50

bk = cosh(φ) ãk − sinh(φ) ã†−k

ãk = cosh(φ) bk + sinh(φ) b†−k , (C6)

which diagonalizes H̃HP, if the parameter φ is chosen
such that it satisfies the relation tanh(2φ) = cos(k)/[h−
cos(k)]. The resulting diagonal Hamiltonian then reads

HBog =
h

s

∑
k

√
1− 2 cos(k)/h b†kbk

− h

4s

∑
k

(√
1− 2 cos(k)/h− 1

)2

− Lh . (C7)

From HBog one immediately obtains the ground state
(GS) energy per site e0 = E0/L. For L→∞, i.e. in the
thermodynamic limit, it reads

e0 =
1

s

(
1

π

√
h(h+ 2) E[4/(h+ 2)]− h

2

)
− h , (C8)

where E[x] is the complete elliptic integral of the second
kind

E[x] =

∫ π/2

0

√
1− x sin2(θ) dθ . (C9)

Fig. 5 shows a comparison of the expression Eq. (C8)
with numerically determined GS energies in the param-
agnetic phase. We observe (see Fig. 5) that the GS ener-
gies obtained from the HP approximation have an error
of order O(1/s2), i.e. they are the next-order correction
to the linear GS energy elin

0 = −h, which is exact in the
limit h→∞ and has an error of O(1/s) for finite h.

According to HBog, the energy gap to the first excited
state is

Egap =
h

s

√
1− 2/h . (C10)

Fig. 6 shows a comparison of this expression with nu-
merical data, demonstrating again its improved accuracy
over the expression Elin

gap = (h − 1)/s, valid in the limit
h→∞.

The sequence of transformations outlined above also
allows to calculate the GS correlation function C(r). This
can be achieved by considering the expectation value
〈Ψ0|

∑
j S

x
j S

x
j+r|Ψ0〉/Ls2, where |Ψ0〉 is the GS. After
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Figure 7. Top panel: Comparison of correlation functions
from TN simulations with the large-s HP result Eq. (C12)
(orange points), for fixed field strength h = 3 and two different
spin quantum numbers s = 2 (squares) and s = 50 (circles).
The inset shows how ξr (as defined in Eq. (C13)) approaches
the constant [arcosh(h/2)]−1 (gray line) for r → ∞. Bottom
panel: Comparison of the HP correlation length Eq. (C14)
with TN correlation lengths, as a function of the field strength
h and for various s. The inset shows the same data, but now
plotting the differences between the TN curves and the HP
curve.

again transforming the spin operators to the set of Bo-

goliubov operators {bk}, {b
†
k}, one readily obtains (for

L→∞):

C(r) =
1

2s

1

2π

∫ π

−π

cos(rk)√
1− 2 cos(k)/h

dk . (C11)

The solution of this integral can be written as the follow-
ing series:

C(r) =
1

2s

√
h

h+ 2
(C12)

×
∞∑
n=r

[(2n)!]
2

(n− r)! (n+ r)! [n!]
2

(
1

4(h+ 2)

)n
A comparison of this expression with correlation func-
tions obtained from TN simulations is shown in the top
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Figure 8. Universality of the phase transition: numerically
determined central charge c and energy gap exponent zν as a
function of the spin quantum number s.

panel of Fig. 7, for a fixed field strength h = 3. As ex-
pected, the larger the spin quantum number s, the better
the agreement. Or, in other words: Eq. (C12) becomes
exact (but also trivial) for s → ∞. One can show that
the ratio C(r)/C(r+1) approaches a constant for r →∞,
allowing one to calculate the correlation length

ξr =
1

log [C(r)/C(r + 1)]
(C13)

by taking the limit r →∞. This leads to

ξ(h) =
1

log
[
h/2 +

√
h2/4− 1

] =
1

arcosh(h/2)
. (C14)

Note that this expression for ξ(h) does not contain s,
meaning that our lowest-order expansion of the HP trans-
formation fails to capture the s-dependence of the corre-
lation length. Nevertheless, Eq. (C14) is still quite use-
ful because the convergence of the numerical correlation
lengths (determined from TN simulations) to Eq. (C14)
is rather fast with increasing s: This is demonstrated
in the bottom panel of Fig. 7, where TN data is com-
pared to Eq. (C14). Moreover, Eq. (C14) allows us to
easily calculate the DGC point h× in the limit s → ∞:
Since by definition ξ(h×) = 1, we immediately arrive at
h×(s→∞) = 2 cosh(1).

Appendix D: Equilibrium properties of the spin-s
Ising Model

Here we discuss in more detail the (zero temperature)
equilibrium properties of the spin-s Ising model as de-
fined in Eq. (8). Because of[

Saj
s
,
Sbj′

s

]
= iδjj′εabc

Scj
s

1

s
, a, b, c ∈ {x, y, z} , (D1)

the quantum frustration of the Hamiltonian terms de-
creases for increasing s, and the inverse spin 1/s can be
interpreted as an “effective ~”. For s → ∞ this effec-
tive ~ vanishes. The “rescaled” spin operators Sa/s have

log10 Cj,j+1

hc

h×

0 1 2 3 4 5

h

0

0.5

1

1.5

2

1
/
s

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 9. Phase diagram as a function of the transverse field h
and the inverse spin 1/s: The critical points hc separate the
ferromagnetic phase (h < hc) from the paramagnetic phase
(h > hc). The color in the paramagnetic phase indicates
the magnitude of the nearest-neighbor correlations, visual-
izing the vanishing of quantum fluctuations for s → ∞ or
h→∞. The crosses mark the values h× at which the corre-
lation length ξ equals one lattice site, i.e. ξ(h ≶ h×) ≷ 1.

a bounded spectrum of equispaced eigenvalues in the in-
terval [−1, 1], which in the limit s → ∞ becomes con-
tinuous. These observations justify the statement that
for s→∞ the spin-s Ising model becomes quasiclassical:
All operators commute with each other, and the quanti-
zation of expectation values disappears. Via mean-field
theory, which becomes exact for infinitely large s, it can
be shown (see Appendix A) that for s→∞ the model has
a critical point at |hc| = 2, separating the ferromagnetic
phase |h| < 2 with non-vanishing ferromagnetic local or-
der parameter

M =

√√√√ 1

L(L− 1)

∑
j 6=k

〈Sxj Sxk 〉
s2

(D2)

from the paramagnetic phase |h| > 2 with vanishing M
at L → ∞. The other limiting case, namely s = 1/2,
can also be solved analytically, via a mapping to free
fermions51. The quantum phase transition in this case
occurs at |hc| = 1. For all other finite values of s we re-
sort to numerical Tensor Network (TN) simulations based
on the DMRG algorithm31,52 in order to determine the
critical point and other quantities of interest.

1. Quantum phase transition and critical behavior

We start by characterizing the quantum phase tran-
sition of the model, occurring for all finite values of s.
As a consequence of scale invariance in the vicinity of
the quantum critical point, the physics of the model at
the transition is insensitive to microscopical details. It is
therefore completely determined by its underlying con-
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formal field theory, which in turn is determined by the
model’s universality class. The universality class of a
model only depends on the symmetries that are broken
at the phase transition, and the dimensionality of the
model. Since the broken symmetry of the Ising model is
always Z2, and we are always working in one spatial di-
mension, it is to be expected that the critical properties of
the model do not depend on s. In particular, the critical
exponents ν and z (determining the power-law scalings
of the correlation length ξ ∝ |h−hc|−ν and of the energy
gap Egap ∝ |h − hc|zν), as well as the central charge c,
should be constant. In Fig. 8 we verify that this is indeed
the case: For all values of s, the numerically determined
values of the aforementioned quantities are compatible
with ν = 1, z = 1, and c = 1/2, corresponding to the
so-called Ising universality class.

On the other hand, we have argued above that the
strength of the quantum fluctuations (the “effective ~”)
is proportional to 1/s. This means that the interval
around the critical point where quantum fluctuations
are predominant (critical region) is shrinking for increas-
ing s. Another immediate consequence of reduced quan-
tum fluctuations is a shift of the critical point hc towards
larger values: The smaller the quantum fluctuations, the
larger the transverse field strength hc required to com-
pletely destroy the ferromagnetic order. In Fig. 9, we
show the shrinking of the critical region on the paramag-
netic side of the phase diagram by plotting the nearest-
neighbor correlations Cj,j+1 = 〈Sxj Sxj+1〉/s2. This serves
as a witness of quantum fluctuations because only their
presence allows Cj,j+1 to be non-vanishing in the para-
magnetic phase. An alternative way to evidence quan-
tum fluctuations, namely via an entanglement measure,
is given by the color plot in Fig. 1. There, the von Neu-
mann entropy SVN(ρj) of the single-body density matrix
ρj is plotted. More precisely,

ρj = Tr{1,...,L}\j |Ψ0〉〈Ψ0| , (D3)

where |Ψ0〉 is the ground state of the spin-s Ising Hamil-
tonian, and the trace runs over all sites except j.

2. Behavior of the correlation length

Valuable information on the spatial extent of correla-
tions of a given ground state is provided by its correlation
length ξ. It can be obtained by considering the two-
site correlations Cj,k = 〈Sxj Sxk 〉/s2 and the correspond-
ing correlation function C(r) = Cj,j+r. In the param-
agnetic phase this correlation function decays exponen-
tially, i.e. according to C(r) ∝ exp(−r/ξ), for r large
enough. In Fig. 10 we show numerically determined cor-
relation lengths ξ(h), using the example s = 5. Close to
the phase transition, i.e. for |h−hc| � 1, this data can be
used to determine the critical exponent ν. The numeri-
cally determined value ν ≈ 0.9 is indeed compatible with
the quantum prediction ν = 1. On the other hand, far
from the phase transition, ξ tends to zero. Based on the
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Figure 10. Numerically determined correlation lengths in the
paramagnetic phase, for s = 5 and various system sizes L
and bond dimensions m. The blue line is a power-law fit in
order to determine the critical exponent ν close to the phase
transition.
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Figure 11. Energy gap Egap in the paramagnetic phase, as a
function of the transverse field h and the inverse spin 1/s.

definition of the DGC outlined in Sec. III, we determine
h× via the condition ξ(h×) = 1: For h > h×, quantum
correlations are negligible and the ground state of the
model is very similar to a classical paramagnet.

3. Behavior of the energy gap

We now investigate the energy gap Egap = E1 − E0

(where E0 is the ground state energy and E1 is the en-
ergy of the first excited state), again as a function of
both h and s. Fig. 11 shows numerical data for Egap in
the paramagnetic phase. Egap(h) vanishes for s → ∞,
as expected for a classical model made from constituents
with a continuous energy spectrum. Or, stated differ-
ently, for s → ∞ excitations of arbitrarily small energy
are possible because quantization vanishes. For all fi-
nite s, Egap(h) scales linearly in the field strength both
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Figure 12. Top panel: Numerically determined energy-gap
opening in the paramagnetic phase, for s = 5 and various
system sizes L and bond dimensions m. The blue line is
a power-law fit in order to determine the critical exponent
zν close to the phase transition. The inset shows the nu-
merically determined ϕ(s), together with a power-law with
fitted exponent η. Bottom panel: Ratio between the accessi-
ble energy gap E′gap and the energy gap Egap, demonstrating
E′gap = 2Egap, apart from finite-size effects.

in immediate proximity to the phase transition, where

Egap(|h− hc| � 1) = ϕ(s) |h− hc| , (D4)

(using zν = 1), and far from the phase transition, where

Egap(h� 1) =
1

s
(h− 1) , (D5)

as can be seen, for example, from the HP treatment out-
lined in Appendix C. We verified numerically that ϕ(s) >
1/s, i.e. for intermediate values of h there is a transition
from the steeper slope ϕ(s) to the smaller slope 1/s (ex-
cept for the limiting case s = 1/2, where ϕ(s) = 1/s = 2).
This behavior is illustrated in Fig. 12, using again the ex-
ample s = 5. Moreover, in the inset of Fig. 12 we show
via a fit that ϕ(s) ≈

√
2/s.

Finally, we note that for accurate predictions of the
crossover quench time τ×Q , the relevant quantity is the

energy difference E′gap between the ground state and the
lowest accessible excited state (i.e. of equal parity) at the
freeze-out point, which in the paramagnetic phase of the
Ising model is about twice the gap7. In the thermody-
namic limit L → ∞, E′gap = 2Egap is strictly true for

s = 1/251 and s→∞ (see Appendix C), and we verified
numerically that for h = h× it remains practically exact
in all of our simulations (see lower panel of Fig. 12 for
s = 5). Accordingly, in Eq. (7) we use ϕ = 2ϕ(s).

Appendix E: Comparison between DGC and
“traditional” Ginzburg criterion

Here we show numerical evidence that our strategy for
estimating the crossover timescale τ×Q , summarized by

Eq. (7), delivers better predictions than more naive ap-
proaches, at least for the class of quantum models consid-
ered here. Specifically, in Ref. 23 the crossover timescale
τ×Q was estimated by using the mean-field critical point

h′× = hMF
c = 2 as the phase crossover point, instead

of the equilibrium point h× where the correlation length
matches the lattice spacing. In Fig. 13 we explicitly show
that our estimator delivers more accurate quantitative
predictions of the crossover, especially in the case of large
spin s, where |h× − hc| and |h′× − hc| differ by orders of
magnitude.
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