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Topological protection offers unprecedented opportunities for wave manipulation and energy trans-
port in various fields of physics, including elasticity, acoustics, quantum mechanics and electromag-
netism. Distinct classes of topological waves have been investigated by establishing analogues with
the quantum, spin and valley Hall effects. We here propose and experimentally demonstrate the
possibility of supporting multiple classes of topological modes within a single platform.
Starting from a patterned elastic plate featuring a double Dirac cone, we create distinct topological
interfaces by lifting such degeneracy through selective breaking of symmetries across the thickness
and in the plane of the plate. We observe the propagation of a new class of heterogeneous helical-
valley edge waves capable of isolating modes on the basis of their distinct polarization, i.e., the
specific mode wavefield distribution within the unit cell.
Our results show the onset of wave splitting resulting from the interaction of multiple topological
equal-frequency wave modes, which may have significance in applications involving elastic beam-
splitters, switches, and filters.

INTRODUCTION

Interfaces between distinct topological phases of mat-
ter1 support exotic localized wave modes that allow
defect-immune, lossless energy transport in various fields
of physics, including elasticity2–6, acoustics7,8, quantum
mechanics9 and electromagnetism10–12.

Distinct classes of topological phases exist depending
on the dimension and the symmetries associated with dif-
ferent interface modes13,14. Examples in two dimensions
include analogues of the quantum Hall15–17, spin Hall18

and valley Hall19 effects, supporting chiral, helical and
valley modes, respectively20–28.

While chiral modes require the breaking of time-
reversal symmetry, helical and valley modes involve
solely passive components and arise from the break-
ing of geometrical symmetries in lattices whose recipro-
cal space is characterized by singularities such as dou-
ble Dirac cones29 and Weyl points30. Recent studies
have indicated that novel physical phenomena may arise
from the interaction of distinct classes of topological
modes. However, while structures supporting chiral, he-
lical and valley modes separately have been broadly in-
vestigated so far, the implementation of a single plat-
form supporting multiple classes of such modes has only
recently been proposed and its experimental observa-
tion is limited to pioneering works in photonics31–34,
while this approach has not been illustrated in elastic-
ity, yet. This is mainly due to the fact that the gov-
erning equations of the full 3D elasticity implies the
unique coupled shear-longitudinal-compressional behav-
ior (described by the well-known Lamé system of equa-
tions), implying that, differently from the transverse op-
tical wave and longitudinal acoustic wave cases, elastic
waves in solids can support both the longitudinal and
transverse components simultaneously. Therefore, realiz-

ing the iso-frequency wave-splitting of helical edge mode
through their (pseudo)spin and valley degrees of freedom
in elastic systems is a particularly challenging task, as in
the case of elastic plates, due to the presence of multiple
guided wave modes and their tendency to hybridize at
interfaces and free boundaries35. We here report on an
elastic plate capable of hosting purely helical and het-
erogeneous helical-valley modes. Numerical models and
experimental implementations investigate the interaction
of helical edge waves at interfaces between configurations
that are topologically distinct. Through this platform,
we demonstrate the ability to split equal-frequency heli-
cal edge waves differing on the basis of their polarization,
i.e., the specific mode wavefield distribution within the
unit cell when they impinge on distinct interfaces at a
common junction, in the case of continuous elastic sys-
tems.

RESULTS

Breaking of symmetries allowing for the splitting of
topological helical waves

We consider an elastic plate patterned with a peri-
odic array of through-the-thickness circular and triangu-
lar holes4, as shown in Fig. 1a. The plate is periodic
along the directions defined by the a1 and a2 vectors.
Its band structure exhibits an isolated double Dirac cone
at the K point as illustrated by the dispersion curves
denoted by the red circles in Fig. 1d. The Dirac cones
arise as a result of the D3h symmetry of the structure,
i.e. consisting of C3 (three fold rotational) symmetry, σh
symmetry (or reflection symmetry about the mid-plane
of the plate), and σv symmetry (or inversion symmetry
about a plane normal to the mid-plane of the plate and
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along the lattice vectors).

Starting from this configuration, geometric perturba-
tions are introduced so to break the σh and σv sym-
metries, and produce nontrivial bandgaps that respec-
tively support helical and valley modes in a common fre-
quency range. Specifically, we break the σh symmetry
by replacing the through holes with blind holes of height
h, as shown in Fig. 1b. We denote the configuration
with the blind holes on the top (bottom) surface as H+

(H−). This geometric perturbation causes modes span-
ning the two Dirac cones to hybridize in analogy with
the spin-orbital coupling interaction in QSHE, which
breaks the degeneracy and opens a topological bandgap
(Fig. 1e). The interface between H+ and H−, here de-
noted as I(H+, H−), separates phases that are inverted
(σh-transformed) copies of each other, and supports two
helical edge modes spanning the gap with positive (Φ+)
and negative (Φ−) group velocity, respectively (Fig. 2a).

Next, we break the σv while preserving C3 and σh sym-
metries, by considering holes in each unit cell of different
radii, namely r and R. This leads to two distinct phases,
denoted as V r and V R (Fig. 1c). Contrary to the previ-
ous case, an interface that separates two σv-transformed
copies of the structure supports a single valley mode,
with positive or negative group velocity, depending on
the type of interface, namely I(V r, V r) or I(V R, V R)
with two adjacent holes of diameter r or R, respectively.
The existence of these edge modes is a consequence of
the bulk-boundary correspondence principle33 and can
be predicted by computing the valley Chern numbers.
Although the total Chern number is zero in each band,
the Chern number computed around the K and K ′ points
will have non-zero values36. Based on these assumptions,
we can infer that an interface between structures sup-
porting helical and valley modes will still support a sin-
gle hybrid edge mode, named helical-valley (HV) mode
hereafter, with either positive (Ψ+), as in the case of
I(H+, V R) (Fig. 2c), or negative (Ψ−) group velocity
for I(H−, V r) (Fig. 2e).

The existence of the above mentioned hybrid HV edge
modes is verified through the computation of the band
structure of finite strips including a total of 20 × 1 unit
cells, with periodicity conditions imposed along the a1
direction and free boundaries along a2 (see Methods
for details on computations). Results are reported in
Figs. 2a, 2c and 2e, where the bulk modes are shaded
in gray, while the edge states are denoted by the black,
blue and red circles for the I(H+, H−), I(H+, V R) and
I(H−, V r), respectively. The additional notation of the
indexes +/− for the modes keeps track of their different
group velocity with respect to the direction of propaga-
tion. As noted above, two edge modes Φ+,− are sup-
ported by the I(H+, H−) interface, while a single mode
exist at the HV interfaces: Ψ+ and Ψ− for I(H+, V R)
and I(H−, V r), respectively.

Numerical and experimental observation of
equal-frequency splitting

A domain wall formed according to each of the three
interfaces considered, i.e. I(H+, H−), I(H+, V R) and
I(H−, V r), separates two phases in the middle of the
strip. Let us consider the two edge waves that initially
propagate along the I(H+, H−) interface and subse-
quently encounter two I(H,V ) interfaces, each support-
ing a single HV mode with distinct polarization. At the
y-junction, each wave follows the interface that matches
its polarization, thus causing the two wave modes to split.
This is possible under the condition that the frequen-
cies for the 3 edge states match. To ensure this, the
bandgaps of the H and V lattices are designed to occur
in a common range of frequencies highlighted by the gray
rectangles in Figs. 1e,f which is achieved by properly
selecting the geometric perturbations that produce the
distinct topological phases. Specifically, the results for
the H phase (Fig. 1e) correspond to a blind hole depth
h = 0.91H, with H denoting the plate thickness, while
the V phase results (Fig. 1f) are obtained for r = 0.51R.

Numerical evaluations of the mode shapes at point C
(Fig. 2c) and D (Fig. 2e), shown in Figs. 2d,f respec-
tively for the two interfaces, confirm the localized nature
of the modes and reveal their distinct distribution of the
displacement magnitude and phase along the interface
(see the zoomed-in plots). The magnitude displacement
and phase plots suggest the possibility of selective modal
excitation by applying an input at the locations shown in
the figures, which highlight the spatial separation of the
maximum amplitude points for the two modes. For ex-
ample, preferential excitation of mode Ψ+ (Ψ−) could be
achieved by injecting a perturbation at locations where
the motion of the interface unit cells is high, and where
the displacement for the other mode Ψ− (Ψ+) is small
(see zoomed-in views in Figs. 2d,f). To confirm the split-
ting of the topologically protected helical waves, we de-
signed and fabricated a waveguide made of 35 (in the
a1 direction) × 25 (in the a2 direction) unit cells host-
ing the three different domains H+ (green boundary),
H− (blue boundary) and V (red boundary), as shown
in Fig. 3a. These domains are separated by three in-
terfaces: I(H+, H−), I(H+, V R) and I(H−, V r). Such
an arrangement is chosen to illustrate the ability of the
waveguide to split the two helical waves (Φ+ and Φ−) at
the y-shaped junction. The plate is made of aluminum
and the unit cell lattice parameter is a = 20.5 mm.

First, numerical simulations are conducted to evalu-
ate the distinct propagation patterns followed by the
edge modes along the interfaces, depending on the se-
lective mode excitation. A Finite Element (FE) model
for the finite plate shown in Fig. 3a is implemented in
ABAQUS. Calculations are conducted in the frequency
domain. Elastic waves are excited by imposing an out-of-
plane harmonic excitation at half of the I(H+, H−) inter-
face (white dot in Figs. 3c and 3d) according to the Ψ+

and Ψ− configurations presented in Figs. 2d and 2f. The
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frequency content of the excitation is set to 98 kHz, so
to prevent the excitation of bulk modes. The connection
between the two helical edge states Φ+ and Φ− existing
at the I(H+, H−) interface and those at I(H+, V R) and
I(H−, V r) interfaces, Ψ+ and Ψ− respectively, is given
by the similar displacement distribution existing between
(i) Φ+ and Ψ+ and (ii) Φ− and Ψ− (compare the close-
ups of Fig. 2b and those of Figs. 2d,f). This implies that
when a specific mode, excited at the I(H+, H−) inter-
face (Φ+ or Φ−), reaches the y-junction, it will trigger
the Ψ+ or Ψ− respectively, according to its mode shape.
If both Φ+ and Φ− modes are excited at the I(H+, H−)
interface, both Ψ+ and Ψ− will be generated at the y-
junction. The resulting distribution of the von Mises
stress fields, reported in Figs. 3c,d, clearly show that
when the wave reaches the y-shaped junction it follows
either the I(H+, V R) or I(H−, V r) interface depending
on the initial type of input. In both cases, weak pene-
tration inside the bulk region is observed. Refer to SM37

for additional transient dynamic simulations.

The splitting of these modes is then demonstrated ex-
perimentally testing the plate (Fig. 3a) by means of a
Scanning laser Doppler Vibrometer (SLDV). The SLDV
measures the out-of-plane velocity component of the mo-
tion of the plate surface produced by a surface bonded
piezoelectric transducer, measuring 12 mm in diameter.
The excitation is applied along the I(H+, H−) interface
at the location denoted by the yellow dot in Fig. 3b, and
consists of a 51-cycle sine burst modulated by a Hanning
window. The center frequency is 98 kHz which falls inside
the bulk bandgap and excites both Φ+ and Φ− waves4.
The frequency range has been intentionally left as much
narrow as possible with a twofold objective: (i) to prevent
the excitation of bulk waves and (ii) to avoid excitation
of frequencies where the two modes overlap, with the in-
tent of clearly showing that the two modes belong to Ψ+

and Ψ−, respectively. First, one dimensional (1D) line
scans of a spatial step of 0.2 mm are conducted along the
interfaces I(H+, V R) and I(H−, V r) (the locations of
line scan measurements are shown as dotted black lines
in Fig. 3b). A temporal window of 800 µs is applied
to the recorded signals to eliminate reflections from the
plate edges. Next, the recorded signals are represented in
the frequency/wavenumber domain by performing a tem-
poral/spatial Fourier transform (2D-FT), whose magni-
tude is superimposed in Figs. 4a to the numerical disper-
sion predictions (white square dots) for the I(H+, V R)
and I(H−, V r) finite strips. The 2D-FT magnitude col-
ormaps clearly confirm the numerical edge state predic-
tions along the two interfaces, and show how the two
energy spots are associated to different modes in the dis-
persion diagrams, confirming the wave splitting.

To fully unveil the distinct nature of the Ψ+ and Ψ−

modes, two fine scans are conducted over the two 2 × 2
unit cell areas shown in red in Fig. 3b. The velocity dis-
tributions at specific representative time instants t = 842
µs and t = 980 µs are shown in Fig. 4b, where 1 V in the
colorbar corresponds to a velocity of 20 mm/s. The two

modes feature opposite spins (clockwise/anti-clockwise)
of the velocity field across the interface, which is high-
lighted by the black arrows drawn on the basis of the
phase evolution of the measured wavefield. These rep-
resentations provide further evidence of mode splitting
occurring at the y junction. Clear visualization of the
opposite spins of the two modes along the two interfaces
is obtained from the measurements time animations pro-
vided in the SM37.

Finally, the 2D wavefield recorded over the region high-
lighted by the blue dots, and labeled as “2D scan region”
in Fig. 3b, illustrates the I(H+, H−) interface bounded
propagation along with the splitting occurring at the
y-junction (Fig. 4f). Specifically, the measured out-of-
plane velocity distribution at an instant of time after the
wave splitting, i.e. for t = 1120 µs from the excitation,
is reported. The wavefield at the considered instant of
time is then represented in the wavenumber domain by
performing a spatial/spatial 2D-FT, which effectively il-
lustrates the modal content of the wavefield in the re-
ciprocal space kx, ky. The results of this analysis shown
in the 2D-FT amplitude contours of Fig. 4c, illustrates
the presence of 2 pairs of diffraction peaks, each corre-
sponding to two distinct modes that co-exist at the ex-
citation frequency, and are characterized by two distinct
wavenumbers, k1 = 60 rad/m and k2 = 80 rad/m. These
wavenumbers are highlighted by the red and black circles
of different radii in Fig. 4c, and correspond to the two
wavenumber values associated with modes Ψ+ and Ψ−,
respectively. The contribution of the two modes to the
wavefield of Fig. 4f can be effectively separated through
wavenumber filtering in reciprocal space38. To this end,
the 2D-FT for the wavefield is masked by 2D Gaussian
windows (see Methods) centered at k1 and k2, whose ap-
plication leads to the filtered 2D-FT in Figs. 4d,e showing
the two separated modes. Inverse 2D-FT transforma-
tion in physical space provides the decoupled contribu-
tions to the wavefield shown in Figs. 4g,h. From these
figures it clearly emerges that when the two rightward-
propagating helical modes Φ+ and Φ− (Fig. 2a) reach
the y-shaped junction, they split and respectively follow
the I(H+, V R) and I(H−, V r) interface as Ψ+ and Ψ−

modes on the basis of their polarization. The need of the
post-processing derived from the fact that an ideal selec-
tive mode excitation can only be achieved by assigning
a displacement field into specific regions of the unit cell
where one mode (for instance Ψ+) exhibits large ampli-
tude displacement while the other one (Ψ−) is charac-
terized by an almost zero-displacement (refer to red and
blue colors, respectively, of the close-ups shown in Figs.
2d and 2f). However, given (i) the chosen unit cell dimen-
sion (a = 20.5 mm) and (ii) the magnitudes of the dis-
placement distribution of Ψ+ and Ψ− (see Figs. 2d and
2f), a single mode could only be excited if the excitation
distribution is limited over an area of maximum 2 mm2.
While this can be (and indeed has been) achieved in nu-
merical models (see Figs. 3c,d), where displacements can
be assigned to single mesh nodes, in the experiments the
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dimension of realistic piezoelectric transducers (12-mm
diameter) capable of generating elastic guided waves on
a 6 mm-thick aluminum plate did not allow such a lo-
calized excitation, simultaneously exciting both Ψ+ and
Ψ− modes.

DISCUSSION

In conclusion, for the first time we proposed and ex-
perimentally tested a platform that supports multiple
classes of topological modes. In the proposed configu-
ration, implemented on a patterned plate, topologically
non-trivial gaps are obtained by creating interfaces be-
tween material phases that selectively break spatial inver-
sion symmetries. Through engineering of the nontrivial
gaps, the considered system is capable of splitting purely
topological protected helical edge waves into heteroge-
neous helical-valley modes on the basis of the initial po-
larization. The results presented herein, both numerical
and experimental, provide fundamental insights in the
behavior of topologically protected edge modes in elas-
tic systems, and suggest new avenues for topologically
protected wave transmission that may be extended to
other physical domains, such as acoustics, and photon-
ics. The findings of this study have direct implications
for applications where selective waveguiding, or the iso-
lation and control of vibrations are ultimate goals, as in
civil, mechanical and aerospace engineering structures.
Also, the wave mode selective capabilities of the consid-
ered interfaces and y-junction may be of significance for
the transmission of information through elastic or acous-
tic waves as, for example, in the case of surface acoustic
wave (SAW) devices.

APPENDIXES

A1. Simulations. Dispersion diagrams and mode shapes
presented in Figs. 1d-f and Fig. 2 are computed using Bloch-
Floquet theory in full 3D FEM simulations carried out via
the Finite Element solver COMSOL Multiphysics. Full 3D
models are implemented to capture all possible wave modes
supported by the plate structure. A linear elastic constitutive
law is adopted and the following mechanical parameters used
for the plate material (aluminum): density ρ = 2700 kg/m3,
Young modulus E = 70 GPa, and Poisson ratio ν = 0.33.
The elastic domain is meshed by means of 8-node hexaedral
elements of maximum size LFE = 0.5 mm, which is found
to provide accurate eigen solutions up to the frequency of
interest39.
The band structures shown in Fig. 1d-f are obtained assum-
ing periodic conditions along the lattice vectors a1 and a2.
Dispersion diagrams shown in Figs. 2 are computed instead
considering a 20 × 1 a1-periodic strip. The resulting eigen-
value problem (K − ω2M)u = 0 is solved by varying the
non-dimensional wavevector k along the boundaries of the ir-
reducible Brillouin zone [Γ,M,K] for dispersion diagrams in
Fig. 1d-f and within [−π, π] for band structures presented in
Figs. 2.

The distribution of the von Mises stress fields reported in
Figs. 3c,d are conducted in the frequency domain via the Fi-
nite Element solver ABAQUS. Free boundary conditions are
applied at the edges of waveguide.

A2. Experimental measurements and data process-
ing. The plate, consisting of 35 (in the a1 direction) × 25 (in
the a2 direction) unit cells, is fabricated through a two-step
machining process. First, the triangular holes are obtained
through water-jet cutting. Circular blind and through holes
are then obtained via a computer assisted drilling process.
The specimen is made of aluminum 6082 T6, with the fol-
lowing nominal properties: density ρ = 2700 kg/m3, Young
modulus E = 70 GPa, and Poisson ratio ν = 0.33. The
plate dimensions and key geometrical parameters are as fol-
lows: a = 20.5 mm, H = 5.9 mm, h = 0.5 mm, R = 1.75 and
r = 0.8 mm. Elastic waves are excited through a piezoelectric
disk (12 mm diameter) bonded to the top surface of the plate
at location shown in Fig. 3b. Ultrasonic pulses consisting of
51 sine cycles modulated by a Hanning window of central fre-
quency of 98 kHz are used as the excitation signals.
The experimental wavefields shown in Figs. 4b and 4f are
recorded by a scanning laser Doppler vibrometer (SLDV) that
measures the out-of-plane velocity of points belonging to a
predefined grid over the structure. The spatial resolution of
the grid is approximately 0.2 mm for the 2D local scan repre-
sented by the red dotted area in Fig. 3b and 0.6 mm for the
2D local scan in the blue dotted area also in Fig. 3b.

The frequency/wavenumber representation of the edge
modes presented in Figs. 4a are obtained by performing a
temporal and spatial Fourier transform (2D-FT) of the signals
detected along the 1D-scan lines reported as black dotted lines
in Fig. 3b. The wavenumber content of the 2D scan wavefield
shown in Fig. 4f-h are obtained by performing spatial 2D-FT
of the acquired data interpolated over a regular square grid.
Filtering in the wavenumber domain38 for modal separation
relies on the application of 2D Gaussian windowing functions
centered at wavenumber ki, which ca be expressed as follows:

Hi(kx, ky) = e
−(k−ki)

2

2σ2

where i = 1, 2, with k1 = 60 [rad/m], k2 = 80 [rad/m],
k =

√
k2x + k2y, σ2 = 50. The wavefields corresponding to

the separated modal contributions shown in Figs. 4g,h are
obtained through an inverse 2D-FT of the filtered wavenum-
ber representations shown in Figs. 4d,e.

A3. The specimen manufacturing and further ex-
perimental measurement details. Fig. A1 reports the
digital models implemented in AutoCad for the computer
aided design supporting the two-step machining process. A
pristine aluminum plate of 6±0.3 mm of thickness is grounded
to a thickness of H = 5.9 mm and then waterjet machining
according to the design reported in Fig. A1a. Next, circular
blind and through-the-thickness holes are drilled by means of
a drilling machine according to the color scheme of Fig. A1b:
holes in red (green) define the H+ (H−) topological phase
and are blind, i.e. drilled for a height of h = 5.4 mm from
the top (bottom) to the bottom (top) of the plate with a ra-
dius R = 1.75 mm. Holes in blue (violet) define the V R (V r)
topological phase and are drilled through the plate thickness,
with a radius of R = 1.75 (r = 0.90) mm.

Figure A2 reports the time history of the ultrasonic pulse
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fed to the piezoelectric transducer (12 mm of diameter and
1 mm of thickness) bonded to the top surface of the plate
(yellow dot in Fig. 3b) and used to excite the elastic waves.
It consists of 51 sine cycles modulated by a Hanning window
of central frequency of 98 kHz. The FT of the signal (lower
panel) shows how the energy content of the signal is centered
inside the bulk bandgap. Such a frequency content is chosen
to prevent bulk mode excitation.

The scanning laser Doppler vibrometer (SLDV) acquiring
the out-of-plane velocity is positioned perpendicularly to the
plate, 102 cm away from the surface to monitor. The acquired
signals are recorded using a sampling ratio of 40, 000 points
and multiple (64) measurements are performed and averaged
for each acquisition point to increase the signal to noise ratio.

A4. Further insights on the concept of positive
and negative spin for the HV modes. The two het-
erogeneous edge modes Ψ+,− supported by the I(H+, V R)
and I(H−, V r) interfaces are characterized by opposite spin
while propagating the energy (rightward or leftward). This
can be seen as an opposite condition of vorticity of the wave
while propagating. Specifically, Fig. A3 shows a schematics
of the two conditions (for the rightward propagating case),
where the vorticity of the velocity field of the unit cells
composing the two topological phases defining the interfaces
(straight black line) is reported as circular arrows: in the
case of I(H+, V R) interface, the positive spin reveals an anti-
clockwise (clockwise) vorticity of the velocity field for the
H+ (V R) unit cell. The situation is reversed for the case
of I(H−, V r) interface.

A5. Numerical procedure and additional numerical
full model simulation. The dynamic response of the plate
is governed by the elastic equilibrium equation for an isotropic
material, which has the well known form:

ρü = (λ+ µ)∇(∇ · u) + µ∇2u = 0

where ρ is the density of the material, u denotes the dis-
placement vector field, while λ, µ are the Lamé constants.
The discretized form of this equation is employed within the
COMSOL Finite Element environment, where full a 3D finite
element model is developed in order to capture all possible
wave modes. The existence of the modes predicted in Fig. 2
is also verified by transient numerical simulations of the full
3D Finite Element (FE) model formulated using ABAQUS as
solver. Calculations are conducted in the time domain, repro-
ducing the same experimental configuration (both in terms of
location and input signal exciting elastic waves). The tran-
sient animations are reported in the SM, as movies showing
the distribution of the von Mises stress field as a function of
time. See Appendix F for further details on the animation of
the numerical full wavefield reconstruction.

A6. Wavenumber filtering. In what follows, the steps
to perform the 2D-FT and the wavenumber filtering proce-
dure are discussed in detail. Fig. A4 reports a schematic
representation of the procedure which consists of 5 steps38:

1) The data are acquired in the direct domain by means
of a SLDV over an irregular grid (black dots);

2) The data are interpolated over a regular grid of 121
points both in the x and y direction (red dots);

3) The interpolated data are 2D-FT in order to obtain
their representation in the wavenumber domain (x →
kx, y → ky);

4) Applying ad-hoc designed filters it is possible to se-
lectively filter specific wave components, offering the
opportunity to further isolate the wavenumber compo-
nents of the Ψ+ and Ψ− modes;

5) Inverse Fourier transforming the filtered data (in the
wavenumber domain) allows us the reconstruct the
wavefield in the direct space for the single modes Ψ+

or Ψ− (see Fig. 4) propagating along the I(H+, V R)
and I(H−, V r) interfaces, respectively.
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FIG. 1. Design of the unit cells leading to distinct topological phases and their dispersion properties. a, In-plane
and cross-sectional view of the unit cell with through holes. The holes have equal diameter R = 0.0875a, where a = 20.5
mm is the magnitude of the lattice vectors (a = a1 = a2) and H = 5.9 mm denotes the plate thickness. The inset shows
the irreducible Brillouin zone and the high symmetry points Γ, K and M . b, Perspective and cross-sectional view of the unit
cells (H+ and H−) emulating spin orbital coupling in Quantum spin Hall effect with σh broken symmetry (blind holes). c,
Perspective and cross-sectional views of the unit cells (V r and V R) emulating the Quantum valley Hall effect with σv broken
symmetry (through holes of radii r 6= R). d-f, Calculated phononic band structure for the plate with through holes, and for the
plates composed of H+ (H−) and V r (V R) unit cells, respectively. The plate with through holes is characterized by a double
degenerate Dirac point visible in (d), while the cases of H+ (H−) (e) and V r (V R) (f) feature a complete bandgap (light gray
rectangle) centered at approximately 102 kHz. The widths and center frequency of the bandgaps are matched by selecting the
partial depth of the blind holes h in the H+ (H−) configuration (h = 0.91H for the band diagram shown), and the radii r and
R of the through holes in the V r (V R) case (r = 0.51R for the diagrams shown). Refer to the Methods section Simulations for
details on band structure calculations.
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FIG. 2. Non-trivial interfaces: band structure and edge states a,c,e, Dispersion diagrams for the non-trivial waveguides
defined by I(H+, H−), I(H+, V R), and I(H−, V r) interfaces. The band structures are computed considering a 20 × 1 a1-
periodic strip (10 unit cells on each side of the domain wall). The bulk modes are reported as gray dots while the interface
modes in black, blue and red dotted lines, respectively. The edge modes are denoted by the index + (−) according to the
positive (negative) group velocity relative to the propagation direction. b,d,f, Corresponding eigenvectors (colors represent
magnitudes of the absolute normalized displacement, varying from zero (blue) to maximum (red)) show mode localization at
the interface (the deformation for only 6 cells is reported for the clarity of representation). The close-ups of the mode shapes
(rainbow scale) clearly illustrate the connection between the two helical edge states Φ+ and Φ− existing at the I(H+, H−)
interface and those at I(H+, V R) and I(H−, V r) interfaces, Ψ+ and Ψ− respectively, in terms of normalized out-of-plane
displacement field distribution. The different displacement distribution and phases (positive in blue and negative in red) of the
modes at the interfaces suggests the possibility of selective mode excitation.The preferential mode excitation for Ψ+ (Ψ−) can
be achieved by applying an excitation at the maximum amplitude point highlighted in the insets. The selective mode excitation
can be achieved by assigning a displacement field into specific regions of the unit cell where one mode (for instance Ψ+ / Φ+)
exhibits large amplitude displacement while the other one (Ψ− / Φ−) is characterized by an almost zero-displacement. For the
Ψ+ and Ψ− modes, the distribution of phases (positive in blue and negative in red) is reported as well.
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FIG. 3. Configuration of the finite structure and numerical simulations showing selective mode waveguiding. a,
Schematic representation and experimental implementation of the non-trivial waveguide hosting H+ (in red), H− (in green) and
V (in blue) phases giving rise to 3 interfaces: I(H+, H−) (blue-green), I(H+, V R) (blue-red), and I(H−, V r) (red-green). b,
Waveguide schematic showing the locations of the excitation and 1D and 2D scan points/regions considered in the experiments
(1D scans are the black dotted lines, local 2D scans are the red dotted areas, while large 2D scan of the y-junction region is
the blue dotted area). c,d, Numerical distribution of the von Mises stress field resulting from harmonic excitation at 98 kHz,
i.e. within the bulk gap. The excitation is applied at the location shown by the white dot as an out-of-plane displacement
distribution. Specific displacement distribution of the surface stress is applied according to the modal content of the modes
shown in Fig. 2d,f in order to selectively induce mode Ψ+ (c) and Ψ− (d), respectively. The calculations clearly illustrate the
possibility to preferentially excite one of the two modes and to remotely select the interface along which the wave propagates.
Colors indicate the von Mises stress magnitude, ranging from zero displacement (blue) to maximum displacement (red). Refer
to SM37 for additional transient dynamic simulations.
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FIG. 4. Experimental observation. a, Spatio/temporal 2D-FT of 1D line scans along interfaces I(H+, V R) and I(H−, V r).
Colormaps show normalized 2D-FT amplitudes, superimposed to the numerically predicted band structure (white square dots)
highlighting the Ψ+ (left panel) and Ψ− (right panel) modes. b, Measured wavefield for the Ψ+ and Ψ− propagating edge
modes displaying opposite spins profiles, as highlighted by the superimposed black arrows. The measurements correspond to
the area denoted as “2D local scan regions” in Fig. 2b. Time animations of the measured wavefields are provided in the SM37.
c, Spatial 2D-FT for a representative snapshot (t = 1120µ) of the wavefield recorded over the “2D scan region” in Fig. 3b and
shown in Fig. 4f. The 2D-FT highlights the presence of a pair of diffraction peaks defined by the concentration at contour
levels in the reciprocal space kx, ky, which are associated with wavenumbers k1 = 60 rad/m (red circle) and k2 = 80 (black
circle) rad/m, corresponding to the distinct modes of propagation Ψ+ and Ψ−. d,e Filtered 2D-FTs with isolated modes and
g,h corresponding propagation in physical space showing the decoupled wavefields and distinction propagation paths for the
two separated modes.
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FIG. A1. Digital models assisting the two steps machining process. a, Digital model assisting the waterjet cutting.
b, Digital model assisting the drilling machine. Holes in red (green) define the H+ (H−) topological phase and are blind, i.e.
drilled for a height of h = 5.4 mm from the top (bottom) to the bottom (top) of the plate with a radius R = 1.75 mm. Holes
in blue (violet) define the V R (V r) topological phase and are drilled through the plate thickness, with a radius of R = 1.75
(r = 0.90) mm
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FIG. A2. Excitation pulse. Temporal (upper panel) and frequency content (lower panel) of the applied pulse made of 98
kHz centered 51 sinusoidal cycles modulated by a Hanning window.
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I(H−, V r) interfaces (black line) along with the vorticity of the (rightward) propagating velocity field of the heterogeneous HV
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