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We measure the transverse relaxation of the spin state of an ensemble of ground-state rubidium
atoms trapped in solid parahydrogen at cryogenic temperatures. We find the spin dephasing time of
the ensemble (T∗2) is limited by inhomogeneous broadening. We determine that this broadening is
dominated by electrostatic-like interactions with the host matrix, and can be reduced by preparing
nonclassical spin superposition states. Driving these superposition states gives significantly narrower
electron paramagnetic resonance lines and the longest reported electron spin T ∗2 in any solid-phase
system other than solid helium.
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Measuring the energy splitting between Zeeman lev-
els is at the heart of atomic magnetometry [1], electron
paramagntic resonance (EPR) spectroscopy [2], and fun-
damental physics measurements [3–5]. For an ensemble
of N atoms, the shot-noise limited precision of a single
measurement is σE ∼ ~

T∗
2

√
N

[1], where T∗2 is the ensem-

ble’s spin dephasing time. In this paper, we show that
rubidium atoms in parahydrogen have favorable T∗2 times
for a solid state electron spin ensemble. Moreover, their
T∗2 can be further extended by using nonclassical super-
position states instead of traditional Larmor precession
states.

Our apparatus is similar to that described in Refs.
[6, 7]. We grow our crystal by co-depositing hydrogen
and rubidium gases onto a cryogenically-cooled sapphire
window at 3 Kelvin. We enrich the parahydrogen frac-
tion of hydrogen by flowing the gas over a cryogenically-
cooled catalyst. In the data presented in this paper, the
orthohydrogen fraction is < 10−4. Typical thicknesses
of the doped crystals are ∼ 0.3 mm. We use natural-
isotopic-abundance rubidium; typical rubidium densities
are on the order of 1017 cm−3, or a few ppm.

We apply a static “bias” magnetic field (Bz) normal to
the surface of the crystal. We polarize the spin state of
the implanted Rb atoms by optically pumping the atoms
with a circularly-polarized laser. To minimize magnetic
field inhomogeneities across the sample we optically se-
lect a region of the crystal with transverse dimensions of
roughly ∼ 0.1 mm. We measure the polarization through
circular dichroism, measuring the relative transmission of
left-hand- and right-hand-circularly-polarized light (LHC
and RHC). As described in Ref. [6], the circular dichro-
ism signals observed are roughly an order of magnitude
smaller than for gas-phase atoms, and we are unable to
determine if the reduced signal is due to imperfect op-
tical pumping, readout, or both. Hence our “effective”
atom number in a typical measurement is ∼ 10% of the
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∼ 1012 atoms in a typical sample volume. Larger num-
ber samples could be obtained by using larger-diameter
beams (or a thicker crystal) to address a larger volume
of atoms.

We drive transitions between Zeeman states with
transverse RF magnetic fields generated by a wire a
few mm above the surface of the crystal. We take data
with bias fields ranging from 40 to 120 Gauss, giving
Zeeman shifts that are small compared to the hyperfine
splitting, but sufficiently large that transitions between
different Zeeman levels can be spectrally resolved. The
level structure of ground-state 85Rb is shown in Fig. 1.
In the gas phase, the hyperfine splitting is 3.0357 GHz
[8]. From prior work, the hyperfine constants of alkali
atoms in noble gas matrices are within a few percent of
the free-space atom value [9]; we expect alkali atoms in
parahydrogen to be similar.

We measure rubidium’s transverse relaxation time by
free-induction-decay (FID) measurements. After polar-
izing the spin through optical pumping, an RF pulse is
applied to induce Larmor precession. The Larmor pre-
cession and its decay are measured optically via circular
dichroism [1]. The measured values of T∗2 are on the
order of 10 µs or shorter, as presented in the Supple-
mentary Material [10]. This is significantly shorter than
spin-echo measurements under similar conditions (which
indicate T2 & 1 ms). This indicates that the dominant
limit on T∗2 comes from static inhomogenous broaden-
ing (static on the spin-echo timescale). Significant inho-
mogeneous broadening is not surprising, given that our
matrix growth conditions are expected to produce poly-
crystalline parahydogen [11, 12].

For a magnetically-pure host such as parahydrogen,
we hypothesize that the observed inhomogenous broad-
ening is dominated by electrostatic interactions. We
note that the Hamiltonian for electrostatic interactions
is unchanged under time reversal. Thus, to first order
in the perturbation, the electrostatic energy shift of a
state |ψ〉 and its time-reversed state |ψ̃〉 must be iden-
tical. A superposition state of Zeeman levels which are
time-reversals of each other will have a reduced inhomo-
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geneous broadening. For free-space Rb atoms, |F,±mF 〉
pairs are time reversals of each other in the low-field
limit (the stretched states |F = I + J,mF = ±F 〉 are
time reversals of each other at all fields). We can use
multi-photon transitions, as shown in Fig. 1, to prepare
superpositions of this kind.

Superpositions of these states cannot be studied by
FID techniques. Only superpositions of Zeeman levels
which differ by ∆m = 1 give rise to Larmor precession.
For the superpositions of interest, the expectation value
of the spin projection along a transverse axis is zero.
Thus there is no literal “transverse spin relaxation” time.
However, like any other two-level system, a superposition
of |mF = +1〉 and |mF = −1〉 has a well-defined dephas-
ing time.

To measure T∗2 we use “depolarization spectroscopy”,
wherein we polarize the atoms by optical pumping, then
continuously measure the circular dichroism signal as we
scan the RF frequency across the resonances. When the
frequency is on resonance between two mF energy eigen-
states, population is transferred between them and the
polarization signal changes. In the limit of low RF power
and a slow frequency sweep, the linewidth of the transi-
tion provides a measurement of the inhomogenous broad-
ening and hence T∗2.
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FIG. 1. Schematic of the Zeeman levels of gas-phase 85Rb,
showing some of the relevant transitions of Fig. 2. The en-
ergy eigenstates (black) are labeled by their low-field quan-
tum numbers F and mF , and we refer to them throughout
the paper by that terminology. The slender arrows denote the
single-photon transitions. The wide arrows denote the two-
photon transitions between states which are approximate time
reversals of each other; each two-photon transition is shown
as a single arrow. To better illustrate the nondegenerate fre-
quencies of the transitions, the Zeeman levels are plotted over
a larger range of magnetic fields than used in this experiment;
likewise the transition arrows are horizontally offset for ease
of viewing.
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FIG. 2. Depolarization spectroscopy signals, as discussed in
the text, taken with Bz = 82 G. The vertical axis measures
the ratio of the transmission of LHC and RHC probe beams;
under conditions of no spin polarization the ratio is 1. The
signal is plotted as a function of the RF frequency; in this data
the RF is swept from high to low frequency. The dashed ver-
tical lines mark the calculated single-photon and two-photon
transition frequencies for gas-phase 85Rb [13]; the yellow la-
bels denote mF ↔ m′F .

Fig. 2 shows depolarization data for 85Rb at two dif-
ferent RF powers. For the low-power sweep, we see a
change in the polarization signal at each expected single-
photon resonance frequency. The broadening is suffi-
ciently large that the F = 2 transitions are not fully
resolved from the F = 3 transitions. At higher pow-
ers, the two-photon transitions become observable. The
+1 ↔ −1 transitions at the center of the spectrum are
significantly narrower than all other one- and two-photon
transitions. This is precisely as expected for inhomoge-
nous electrostatic broadening, as they are the only two-
photon transitions between time-reversed states. This
confirms that the dominant inhomogenous broadening
mechanism is time-even in nature (electrostatic-like), as
time-odd (magnetostatic-like) perturbations would result
in a +1 ↔ −1 linewidth approximately twice that of a
0 ↔ ±1 transition. For the +1 ↔ −1 transitions, the
F = 2 and F = 3 transitions are cleanly resolved; the two
transitions cause the circular dichroism signal to change
in opposite directions.

We extract linewidths from this data by assuming the
inhomogenous broadening is Gaussian and fitting each
transition in the depolarization spectrum to a corre-
sponding error function. The extracted linewidths as a
function of magnetic field are shown in Fig. 3 for 85Rb
and 87Rb. These linewidths reflect low-field (i.e. non-
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power-broadened) values. For the single photon tran-
sitions, the linewidths measured through depolarization
spectroscopy match those from FID measurements to
within our experimental error. A comparison is provided
in the Supplementary Material [10].
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FIG. 3. Measured linewidths of 85Rb in the F = 3 hyperfine
state and 87Rb in the F = 2 hyperfine state. For the single-
photon linewidth, we plot the average of the |mF = ±1〉 ↔
|mF = 0〉 transitions. For the two-photon linewidth we plot
the linewidth of the +1↔ −1 transition.

Examining the single-photon linewidths in Fig. 3, we
see that 87Rb exhibits more broadening than 85Rb. This
is as one would naively expect for shifts that are elec-
trostatic in nature, as tensor Stark shifts are larger for
ground-state 87Rb (F = 2) than for 85Rb (F = 3) [14].
For a static electric field, calculations predict the ±1↔ 0
transitions in 87Rb (F = 2) would show 3.2 times the
tensor Stark shift of 85Rb (F = 3) [14], consistent with
the differences seen in the linewidths of Fig. 3.

We attribute the dominant contribution to the
linewidth of the +1↔ −1 transitions to residual electro-
static broadening that arises because these energy eigen-
states are not perfect time-reversals of each other. While
we do not know the exact form of the tensor interac-
tion with the parahydrogen host, we can use perturba-
tion theory to qualitatively predict the linewidth of the
+1 ↔ −1 transition. We consider an atom with hy-
perfine constant of A, a Zeeman splitting of z, and an
interaction with the matrix which is symmetric under
time-reversal and on the order of m. We consider the
limit that A � z � m, and only include perturbations
from m to lowest-order in perturbation theory. In this
limit, we expect the linewidth of the +1↔ −1 transition
to be smaller than the single-photon transitions by a fac-
tor of ∼ z

A (ignoring numerical prefactors). The residual
broadening is due to the breakdown of the time-reversal
symmetry of the | + 1〉 and | − 1〉 energy eigenstates at

nonzero magnetic field. This model qualitatively agrees
with our linewidth measurements (Fig 3), and explains
the observed dependence of the +1 ↔ −1 linewidth on
the magnetic field. We note that measurements of 85Rb
as a function of rubidium density indicate that dipo-
lar broadening does not contribute significantly to the
linewidth.

The only energy eigenstates of the free atom which
are time-reversals of each other at all magnetic fields are
the “stretched states”: |F = 3,mF = ±3〉 for 85Rb and
|F = 2,mF = ±2〉 for 87Rb. Inhomogenous electrostatic
broadening should be further suppressed for these states.
We have not been successful in observing the six-photon
+3 ↔ −3 transition in 85Rb; we suspect this is due to
insufficient RF power. Observations of the four-photon
+2↔ −2 transition in 87Rb at 60 G indicated narrower
lines, but not at a statistically significant level. We sus-
pect the measured linewidth of the 87Rb stretched state
transition is limited by technical limitations of our appa-
ratus (magnetic field gradients, as well as magnetic field
instabilities which prevent averaging) and possible cou-
pling to other states in the multiphoton transition.

To estimate the matrix shifts of the alkali-metal atoms
trapped in solid p-H2, we use a third-order perturbative
expression [15]

∆Ehf =
∑
ij

∑
kl

〈00|Vdd|ij〉〈ij|Hhf |kl〉〈kl|Vdd|00〉
(E00 − Eij)(E00 − Ekl)

− 〈00|Hhf |00〉
∑
kl

〈00|Vdd|kl〉〈kl|Vdd|00〉
(E00 − Ekl)2

(1)

where the unperturbed basis functions |ij〉 = |i〉A|j〉H2

describe the electronic states of noninteracting atom A
and H2, with energies Ekl = EA

k + EH2

l and Hhf is the
atomic hyperfine Hamiltonian [16]. The sums in Eq. (1)
run over all excited electronic, fine, and hyperfine states
of A and H2. The first term in Eq. (1) gives rise to
an mF -dependent tensor matrix shift of the atomic hy-
perfine levels [17] whereas the second term leads to an
mF -independent scalar shift ∆Es

hf . The latter can be es-
timated by assuming that E00−Eik ' EA +EH2

, where
EA is the average excitation energy of atom A and EH2

is that of H2 [15]. Using the closure relation to eliminate
the summations over the excited states in the second term
of Eq. (1) we obtain [15]

∆Es
hf ' −〈00|Hhf |00〉

(
1

EA + EH2

)
Edisp (2)

where Edisp = 〈00|V 2
dd|00〉/(EA + EH2) is the dispersion

interaction energy of A with H2.
To estimate the tensor matrix shift, we take into ac-

count only the diagonal matrix elements of the hyperfine
interaction in Eq. (1) and assume that 〈i|Hhf |i〉 ' AP is
independent of the electronic state i and equal to the hy-
perfine constant of the lowest excited 2P1/2-state of atom
A. Since the hyperfine constants of alkali-metal atoms
decrease rapidly with increasing i [16], these assumptions
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provide a conservative upper bound to the magnitude of
the tensor shift

∆Et
hf < AP

∑
i,j

〈00|Vdd|ij〉〈ij|Vdd|00〉
(E00 − Eij)2

= 0.1∆Es
hf (3)

where the ratio of the tensor to scalar matrix shifts
∆Et

hf/∆E
s
hf ≤ AP /AS = 0.1 for Rb [16]. This is consis-

tent with the fact that the third-order tensor Stark shifts
of alkali-metal atoms are suppressed by a factor of '100
compared to the scalar shifts [18]. Note also that the
ratio of third-order tensor and scalar polarizabilities of

atomic Cs, α
(3)
2 /α

(3)
0 = 0.03 [18] is 4 times smaller than

the upper bound (3).
To obtain the dispersion energy needed to estimate the

tensor matrix shift via Eq. (3), we carried out accurate ab
initio calculations of the Rb-H2 interaction potential us-
ing the unrestricted coupled cluster method with single,
double and perturbative triple excitations [UCCSD(T)]
[19]. A large augmented correlation-consistent polariza-
tion valence quadruple-ζ basis set (aug-cc-pVQZ) [20]
and the ECP28MDF relativistic effective core potential
with the [13s10p5d3f] basis set [21] were used for the H
and Rb atoms, respectively. The basis set superposition
error for Rb-H2 interaction energy was corrected using
the standard approach [22]. All calculations were carried
out with the MOLPRO suit of programs [23] and the po-
tential energy surface (PES) is expressed in the Jacobi
coordinates R and θ, where R is the distance between
the Rb atom and the H2 center of mass, and θ is the
angle between the atom-molecule vector R and the H2

axis. To obtain the effective Rb-H2 potential V0(R) used
in matrix shifts calculations, we averaged 19 PES cuts
corresponding to evenly spaced values of θ ∈ [0o, 90o] us-
ing the hindered rotor model [24]. A contour plot of our
ab initio PES shown in Fig. 4(a) demonstrates that the
Rb-H2 interaction is weakly anisotropic.

Figure 4(b) shows our calculated upper bounds to the
tensor matrix shifts of Rb as a function of the atom-
impurity distance calculated for 6 p-H2 molecules at a
distance R from the impurity. The theoretical bounds
are consistent with the measured values shown in Fig. 3,
reaching their maxima of 59 kHz for 85Rb and 142 kHz
for 87Rb near the minimum of the potential well. The
large magnitude of the shift in 87Rb is due to its larger
hyperfine constant, which exceeds that of 85Rb by a fac-
tor of 3.4. The R dependence of the shifts follows that
of the Rb-H2 interaction energy, reaching a minimum at
Re ' 12.1 a0 and tending to zero at large R. At short
values of R to the left of the potential minimum, the
dominant mechanism responsible for the matrix shifts is
no longer the dispersion interaction, but rather the Pauli
exclusion force arising from the overlap of the electronic
wavefunctions of Rb and H2 [15]. Thus, our matrix shift
estimates at R � 12 a0 should not be considered even
qualitatively accurate. We also note that the calculated
tensor matrix shifts scale with mF (for a given isotope
and F ) as m2

F due to the second-rank tensor nature of
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FIG. 4. (a) Ab initio PES for Rb-H2 plotted as a function of
the Jacobi coordinates R and θ. (b) Tensor matrix shifts of
85Rb (full line) and 87Rb (dashed line) interacting with six
impurity p-H2 molecules as a function of the atom-impurity
distance R.

the magnetic dipole hyperfine interaction in the excited
atomic states [18].

In conclusion, we have established that the spin de-
phasing of Rb atoms in parahydrogen at densities .
1018 cm−3 is dominated by interactions that are elec-
trostatic (or “T-even”) in nature. As such, the T∗2 can
be significantly increased by replacing traditional Lar-
mor precession states (or traditional single-photon EPR
spectroscopy) with superposition states of (or multi-
photon transitions between) Zeeman levels that are time-
reversals of each other.

This will enable greater resolution in EPR spec-
troscopy, and is of use for improving ensemble magne-
tometry [25, 26] and for fundamental physics experiments
with atoms and molecules in matrices [27, 28]. We note
that for these applications, the superposition states we
have explored have two advantages: their inhomogenous
broadening is reduced and they evolve phase faster than
Larmor precession states, limited to a factor of 2F for
the stretched states. The latter advantage has been ex-
plored in recent work with dysprosium atoms [29] and
with mechanical oscillators [30], where larger factors can
be achieved.

Our results are similar to the “double quantum coher-
ence magnetometry” techniques developed for NV cen-
ters in diamond [25, 26, 31, 32], but in a different limit.
NV centers are typically used in the regime where the
electrostatic coupling of the spin to the lattice is � its
coupling to Bz; here we work in a limit where the cou-
pling to Bz is� the electrostatic coupling to the matrix.
The NV-center limit requires the use of a single-crystal
sample with magnetic field parallel to the crystal axis
[25]; in the current work we employ what we expect is
a polycrystalline sample [11, 12], and see no dependence
of the FID linewidths on the magnetic field direction.
We speculate the electrostatic broadening comes from a
combination of inhomogenous trapping sites and inho-
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mogenous crystal axis orientations.

Our narrowest observed linewidth of 5 kHz corresponds
to a T∗2 of 60 µs. We note this ensemble T∗2 is longer
than reported values for ensembles of NV centers in dia-
mond [25]. It is also, surprisingly, an order of magnitude
longer than reported for alkali atoms in superfluid he-
lium [33]. The only condensed-phase electron spin system
with longer reported ensemble T∗2 times is atomic cesium
in solid He, which was measured at a significantly lower
spin density [34].

We expect even longer T∗2 times can be obtained in

parahydrogen by employing stretched-state superposi-
tions and by producing single-crystal samples through
different growth parameters or sample annealing [11, 12].
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