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4Joint Institute for Advanced Materials at the University of Tennessee, Knoxville, Tennessee 37996, USA

(Dated: July 11, 2019)

Monte Carlo (MC) simulations are essential computational approaches with widespread use
throughout all areas of science. We present a method for accelerating lattice MC simulations using
fully-connected and convolutional artificial neural networks that are trained to perform local and
global moves in configuration space, respectively. Both networks take local spacetime MC configura-
tions as input features and can, therefore, be trained using samples generated by conventional MC
runs on smaller lattices before being utilized for simulations on larger systems. This new approach
is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-
dimensional Holstein model. We find that both artificial neural networks are capable of learning an
unspecified effective model that accurately reproduces the MC configuration weights of the original
Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm.
Our approach is broadly applicable to many classical and quantum lattice MC algorithms.

Introduction — As their full potential becomes ap-
parent, machine learning algorithms are assuming more
prominent roles in the process of scientific discovery.
Meanwhile, the boundary lines between industry appli-
cations of machine learning, data and computer science,
and other disciplines have blurred. Applications ranging
from the high-quality feature extraction from astrophys-
ical images of galaxies [1] to helping with the real-time
data analysis of particle accelerators [2–4] to discovering
phases of matter [5–7] have emerged.

A series of early studies have underscored the potential
for machine learning in the context of condensed matter
physics by using artificial neural networks and dimension-
reduction techniques to locate phase transitions [5, 6],
or represent ground states of quantum many-body sys-
tems [8]. Machine learning algorithms have also been
employed to help gain insight into classical and quantum
systems [9–17] as well as accelerate specific numerical al-
gorithms [18–23]. These applications are not only helping
to automate and streamline scientific processes that could
take many years to accomplish with more conventional
computational approaches, but they are also uncovering
previously inaccessible phenomena.

One machine learning application that has attracted
significant attention is in accelerating MC simula-
tions [18, 19, 24–31]. For example, in the so-called self-
learning Monte Carlo (SLMC) method [24], an effective
bosonic model is trained to mimic the statistics of the
original Hamiltonian. Once trained, the effective model is
then used to perform the same simulations much more ef-
ficiently. The primary advantage of this approach is that
the action of the effective model is often much easier to
compute than the action for the full fermion model, thus
granting access to larger system sizes. This approach
has also been extended to include correlations in both

the real space and imaginary time domains [25, 26]. De-
spite their power, however, the SLMC methods require
that the form of the effective model be known a priori.
This limitation can be significant as different effective
models may be required for the same fermionic model as
the model parameters, system size, or simulation temper-
ature changes, and the overall effectiveness of these ap-
proaches is severely limited if the wrong effective model is
chosen. To overcome this problem, several groups have
used artificial neural networks to learn the form of the
model in some instances [27, 29–31] (e.g. QMC simula-
tions of the Anderson impurity model); however, general-
izing this approach to lattice QMC problems has not yet
been achieved. One reason for this is the fact that such
problems typically involve thousands of auxiliary space-
time fields and any neural network using that many input
features will often generalize poorly.

Here, we show how to design artificial neural networks
that can be trained to represent an effective bosonic
model for lattice QMC simulations. Inspired by appli-
cations of the traveling cluster approximation to spin-
fermion models [32, 33], we design fully-connected and
convolutional neural networks that only require informa-
tion from surrounding auxiliary fields (see. Fig. 1) to
perform both local and global moves of the MC configura-
tions. This method does not suffer from the scaling issues
restricting other self-learning methods and can be easily
generalized across models and parameter regimes without
changes in the underlying algorithm, provided the neural
networks are versatile enough to learn the effective mod-
els. To demonstrate the efficiency of this approach, we
apply it to determinant quantum Monte Carlo (DQMC)
simulations of the two-dimensional Holstein model. This
problem is particularly challenging owing to long auto-
correlation times [34], the need for both local and global
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FIG. 1: A sketch of the architecture of the (a) fully-connected and (b) convolutional neural networks (CNN) used to perform
local and global updates of the auxilary fields, respectively. The first and second hidden layers of the fully-connected neural
network use softplus activation functions f(x) = ln(1 + ex), while the output layer uses a linear activation function. The first
and second hidden layers of the CNN use sigmoid functions f(x) = (1 + e−x)−1, while the output layer uses a linear function.
The number of neurons in the first hidden layer of the CNN is set by the stride and kernel. A measure of the performance of the
two networks is presented in the insets, which compare the predicted β∆ENN against the exact β∆E for the fully-connected
and the CNN, respectively. These results were obtained using networks trained on an N = 6×6 cluster, an inverse temperature
β = 4.1/t, filling 〈n̂〉 = 1, λ = t/2, and Ω = t/2.

MC moves to ensure ergodicity [35, 36], and competition
between charge-density-wave (CDW) and superconduct-
ing ground states [37] that may require different effective
boson models. Reproducing known results, we obtain an
order of magnitude of speedup with our algorithm.

Model — The single-band Holstein Hamiltonian [38] is

H = H0 +Hlat +He-ph, where H0 = −t
∑
〈i,j〉,σ c

†
i,σcj,σ−

µ
∑
i,σ n̂i,σ, Hlat =

∑
i

(
1

2M P̂ 2
i + MΩ2

2 X̂2
i

)
, and He-ph =

g
∑
i,σ X̂in̂i,σ. Here, 〈· · · 〉 denotes a summation over

nearest neighbors; c†i,σ (ci,σ) creates (annihilates) an elec-

tron with spin σ on site i; n̂i,σ = c†i,σci,σ is the particle
number operator; t is the nearest-neighbor hoping inte-
gral; M is the ion mass and Ω is the phonon frequency;
X̂i and P̂i are the lattice position and momentum op-
erators, respectively; and g is the strength of the e-ph
coupling. Throughout, we set M = t = 1 as the unit of
mass and energy, and we study this Hamiltonian on an
N = N2

x square lattice, where Nx is the linear size of the
cluster. To facilitate a direct comparison with a recent
state-of-the-art simulation [28], we focus on Ω = t/2 and

dimensionless e-ph coupling strength λ = g2

8tΩ2 = 0.5.

Determinant quantum Monte Carlo — DQMC is an
auxiliary field, imaginary time technique that computes
expectation values of an observable within the grand
canonical ensemble. In a DQMC simulation, the imag-

inary time interval τ ∈ [0, β] is evenly divided into
L discrete slices of length ∆τ = β/L (= 0.1 in this
work). Using the Trotter approximation, the parti-
tion function is then given by Z = Tr

(
e−∆τLH

)
≈

Tr
(
e−∆τHe-phe−∆τ(H0+Hlat)

)L
. After integrating out the

electronic degrees of freedom, the partition function can
be reduced to Z =

∫
W ({X}) dX, where the configura-

tion weight is W ({X}) = e−Sph∆τdetM↑detM↓. Here,∫
dX is shorthand for integrating over all of continu-

ous displacements Xi,l defined at each spacetime point
(i, l), Mσ = I + BσLB

σ
L−1 · · ·Bσ1 , where I is an N × N

identity matrix, and Bσl = e−∆τHe-phe−∆τH0 , and Sph =
M

2∆τ2

∑
i,l (Xi,l+1 −Xi,l)

2
+MΩ2

2

∑
i,lX

2
i,l is lattice’s con-

tribution to the total action. Note that Bσl matrices for
the Holstein model do not depend on spin but are depen-
dent on the fields Xi,l through He-ph. For more details,
we refer the reader to Refs. 39–41.

Two types of MC updates are needed in the simula-
tion. The first are local updates Xi,l → Xi,l + ∆Xi,l,
which are made at each spacetime point. The sec-
ond are global or block updates, where the fields for a
given site are updated simultaneously at all timeslices
Xi,l → Xi,l + ∆Xi, ∀l ∈ [0, L]. Such block updates are
needed to help move phonon configurations out of local
minima at low temperatures and large couplings [35, 36].
DQMC accepts both kinds of moves with a probabil-
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ity p = W ({X ′}) /W ({X}) ≡ e−β∆E , which requires
the costly evaluation of matrix determinants. More-
over, since the matrices Mσ depend on the fields, these
must also be updated after every accepted change in the
phonon fields [see Refs. 19, 24, 25 and Eq. (1)]. While an
efficient update algorithm exists for performing local up-
dates [39], no such algorithm is known for block updates.
The computational cost for performing a full sweep of
(fast) local updates and block updates is O(N3L) and
O(N4L) [42], respectively.

To reduce this cost, we train our networks to pre-
dict β∆E appearing in the definition of the configuration
weight given only changes in, and local information of,
the phonon fields and their expected behavior at large
displacements as input. This reduces the total computa-
tional complexity of determining whether both kinds of
updates will be accepted to the time needed to evaluate
the networks, which is O(1) for the case of the simply
connected network and O(L) for the convolutional neu-
ral network. As with other SLMC methods, we then use
the neural networks to propose many MC updates that
are ultimately accepted or rejected based on the configu-
ration weights of the original model. While determining
this final acceptance probability requires the evaluation
of the matrix determinants, this task can be done infre-
quently enough that a considerable speedup is achieved.
Another advantage of our approach is that the networks
can be trained using data generated by the conventional
DQMC algorithm on inexpensive small clusters before
being generalized to larger systems. In this way, our
method combines the flexibility of neural networks with
the inexpensive training costs seen in SLMC approaches
making use of largely local effective models. We have
found that the precise design of the networks does re-
quire some experimentation; additional discussion of the
physical and practical considerations informing our de-
signs are provided in the supplementary materials [43].

Local Updates — Local updates are performed us-
ing a fully-connected network with two hidden layers
[Fig. 1(a)]. Assuming that the update is proposed at
spacetime site (i, l), the learning objective is to predict
β∆E given only ∆Xi,l and the field values at the sur-
rounding spacetime points as input features. Here, we
include nearest- and next-nearest neighbor phonon fields
in both space and imaginary time, and neglect long-range
correlations. While there is justification for a short-range
effective interaction in proximity to the CDW phase at
half-filling [37], this approximation can also be system-
atically improved by taking more input features. We
have found, however, that next-nearest-neighbor inputs
are sufficient. We also supply an additional neuron in
the input layer that enforces known behavior at large
displacements [28, 43].

Global Updates — Global updates are performed using
a convolutional neural network (CNN) with four layers
[Fig. 1(b)], where the objective again is to predict β∆E
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FIG. 2: (a) The CDW structure factor SCDW

(
π
a
, π
a

)
and (b)

its autocorrelation time as a function of the linear cluster
size Nx obtained with conventional DQMC and NNMC algo-
rithms. The inset shows the reduction of the autocorrelation
time and increase of the simulation runtime as the number of
update sweeps per Monte Carlo sweep Nu is increased. (c) A
comparison of CPU time to complete 8 × 104 warm-up and
8 × 104 measurement sweeps as a function of Nx using the
conventional and neural network sampling schemes. In both
cases, we performed global updates randomly at all sites in the
cluster after every one full spacetime sweep of local updates.
To make a robust comparison between the two methods, we
took identical parameters for both sets of simulations. The
solid lines are fits to the data of the form tCPU = αNz. (d)
The cumulative update ratio of the NNMC algorithm com-
pared against the values achieved using the SLMC method as
described in Ref. 28.

given only local information about the phonon fields.
Assuming the update occurs at site i, the input layer
has three columns of input features: the first contains
fields Xi,l across all imaginary time slices; the second

and third columns contain averages X̄
(1)
i,l = 1

4

∑
〈j〉Xj,l

and X̄
(2)
i,l = 1

4

∑
〈〈j〉〉Xj,l, respectively, at all time slices,

where 〈j〉 and 〈〈j〉〉 denote nearest- and next-nearest-

neighbor sums around site i. The use of X̄
(1)
i,l and X̄

(2)
i,l

enforces C4 rotational symmetry and reduces the cost of
training the CNN. The convolution operation from the
input layer to the first hidden layer is standard [43].

For each set of (fixed) input parameters {β, µ,Ω, g}
we train both networks using training examples gener-
ated with the conventional DQMC algorithm on a 6× 6
cluster. Throughout, we generated 8 × 104 samples,
which were randomly partitioned into 6 × 104 training
and 2× 104 test samples. We first show results for their
performance; the insets of Figs. 1(a) and 1(b) compare
the predicted β∆ENN against the exact β∆E values ob-
tained from our test data sets for the local and global up-
dates, respectively. This simulation was performed close
to the CDW transition for the model [Fig. 3]. Both net-
works accurately predict the MC configure weights but
the fully-connected neural network is slightly more ac-



4

curate. While the accuracy can be systematically im-
proved by taking more input features, we find that the
knowledge learned by both networks can be transferred
to larger clusters remarkably well based on Fig. 2 (a).

Once our networks have been trained and tested, we
then define a full MC sweep as consisting of Nu com-
plete sweeps of local updates performed at each space-
time point (i, l) using the fully-connected neural network,
followed by Nu sweeps of global updates performed at
every lattice site i using the CNN. (This sampling proce-
dure differs from the conventional one [36], where global
updates are performed on a subset of sites to minimize
the total computational cost.) After performing these
sweeps, the original field configuration {X} is replaced
with a newly proposed one {X ′} in a cumulative update
[19, 24, 25] with a probability min [1, pc], where

pc =
W ({X ′})
W ({X})

exp(−βENN[{X}])
exp(−βENN[{X ′}])

. (1)

Benchmarks — To benchmark the neural network
Monte Carlo (NNMC), we performed direct comparisons
with the conventional DQMC algorithm for the half-filled
model 〈n̂〉 = 1 at β = 4.1/t, which is close to the CDW
transition temperature for this parameter set. We em-
phasize that both the DQMC and NNMC simulations
used the same sampling protocol with Nu = 1. Fig-
ure 2(a) plots the CDW structure factor S(πa ,

π
a ) [43] as

a function of the linear cluster size Nx, and demonstrates
that the NNMC algorithm accurately reproduces the re-
sults of the conventional DQMC algorithm for the ac-
cessible lattice sizes. Figure 2(b) compares the autocor-
relation time τL of SCDW(q) for both techniques, which
again yields similar results. We note, however, that the
autocorrelation time can be reduced significantly by in-
creasing the number of update sweeps Nu that are per-
formed before computing the cumulative update accep-
tance probability, as shown in the inset of Fig. 2(b).

To address how NNMC reduces the computational
cost, we compare the time to solution for both algorithms
in Fig. 2(c). Fitting a power law tCPU = αNz to the data
yields z = 3.41 and 2.35 for DQMC and NNMC, respec-
tively, a significant reduction in the scaling. We note that
a similar speedup was obtained using SLMC [28]; how-
ever, the NNMC does not require the functional form of
the effective model to be specified a priori. Moreover, the
NNMC method is more efficient at generating accepted
MC moves, particularly as it is generalized to larger sys-
tem sizes. We highlight this aspect in Fig 2(d), which
shows the cumulative acceptance ratio pc obtained us-
ing NNMC and compares it with SLMC. As the methods
are generalized to larger cluster sizes, pc decreases for
the SLMC method while the NNMC method proposes
cumulative moves that are almost always accepted, and
becomes more accurate on larger cluster sizes. The de-
crease of pc in SLMC is due to the poor performance of
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)
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x vs. T/t. The CDW tran-

sition is in the 2D Ising universality class with critical expo-
nents γ = 1/8 and ν = 1. The inset shows the collapse of the

data when SCDW(q)N
2γ/ν−2
x is plotted vs. N−ν

x
T−Tc
Tc

with a
critical temperature Tc = 0.244.

the regression model for predicting global updates, which
requires a more sophisticated effective model.

We now demonstrate that the NNMC approach can
also be used to study the finite-size scaling of the
CDW structure factor and obtain the transition tem-
perature in the thermodynamic limit. Fig. 3 presents
a scaling analysis carried out in the temperature range
β = 3.8/t ∼ 4.5/t. At the critical point, the finite-
size scaling behavior has the form SCDW(πa ,

π
a )/N2

x =

N
−2γ/ν
x f

(
N

1/ν
x

T−Tc

Tc

)
, where γ = 1

8 and ν = 1 are

the 2D Ising critical exponents. The critical temper-
ature Tc/t ≈ 0.244 (βc = 4.1/t) is determined by the
common intersection point of the curves. The inset re-

plots SCDWN
−7/4
x against N

1/ν
x

T−Tc

Tc
, showing the ex-

pected data collapsing to a single curve, consistent with
Ref. [28].

Summary and Conclusions — We have extended the
use of artificial neural networks in self-learning Monte
Carlo methods to lattice Monte Carlo simulations. Our
approach overcomes many of the scaling issues associated
with other SLMC implementations and can be widely ap-
plied to classical and quantum Monte Carlo simulations
on extended lattices. We then applied this methodology
to DQMC studies of the Holstein model. We designed
fully-connected and convolutional neural networks capa-
ble of performing accurate local and, for the first time,
global moves in configuration space. Using this method
we are able to reproduce results of the charge-density-
wave transition in this model without specifying the ef-
fective model in advance.

The success of our network architectures indicates that
the effective interactions in the Holstein model are suffi-
ciently short-ranged that the lattice dynamics can be cap-
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tured using relatively small clusters. Prior work examing
the effecive e-e interaction within the Migdal approxima-
tion also supports this view [37]. In the future, one could
envision examing the structure of the trained networks
to study the effective interactions of other Hamiltonians.

Our approach can be generalized for performing
machine-learning accelerated lattice Monte Carlo simu-
lations (even the Fermi-Hubbard model), provided that
the neural networks are sophisticated enough to learn the
effective model in the relevant parameter ranges. In this
context, we note that the specific network architectures
depicted in Fig. 1 accurately predict the CDW transition
but are not well-suited for the metal-to-superconducting
transition away from half-filling (this is also true for the
effective model used by the SLMC[28]), and that differ-
ent network architectures may be needed in that case.
Finally, we stress that our approach allows one to com-
pute physical quantities that can be compared with ex-
periments.
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