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The underdoped phase diagram of the iron-based superconductors exemplifies the complexity
common to many correlated materials. Indeed, multiple ordered states that break different sym-
metries but display comparable transition temperatures are present. Here, we argue that such a
complexity can be understood within a simple unifying framework. This framework, built to re-
spect the symmetries of the non-symmorphic space group of the FeAs/Se layer, consists of primary
magnetically-ordered states and their vestigial phases that intertwine spin and orbital degrees of
freedom. All vestigial phases have Ising-like and zero wave-vector order parameters, described in
terms of composite spin order and exotic orbital-order patterns such as spin-orbital loop-currents,
staggered atomic spin-orbit coupling, and emergent Rashba- and Dresselhaus-type spin-orbit in-
teractions. Moreover, they host unusual phenomena, such as the electro-nematic effect, by which
electric fields acts as transverse fields to the nematic order parameter, and the ferro-Néel effect, by
which a uniform magnetic field induces Néel order. We discuss the experimental implications of our
findings to iron-based superconductors and possible extensions to other correlated compounds with
similar space groups.

I. INTRODUCTION

The complexity of the phase diagrams of corre-
lated systems often challenges the notion of a unify-
ing, simple framework to describe these fascinating sys-
tems. One example is that of the underdoped hole-
doped cuprates: besides the mysterious pseudogap phe-
nomenon, they display a plethora of ordered phases
– incommensurate magnetism, charge order, nematic-
ity, time-reversal symmetry-breaking order, and inver-
sion symmetry-breaking order (for a recent review, see
Ref. 1). As pointed out in Ref. 2, it is difficult to explain
this richness solely in terms of independent, competing
electronic orders. This led to proposals of a more fun-
damental type of ordered state, such as a pair-density
wave [3–6], which simultaneously breaks several of the
symmetries above-mentioned. In this scenario, the vari-
ous broken-symmetry phases can be interpreted as vesti-
gial orders that break only a subset of the symmetries of
this “mother” state. To contrast with the standard case
of competing orders and fine-tuned multicritical points,
they have been dubbed intertwined orders [2, 7].

The phase diagram of underdoped iron-based super-
conductors seems relatively simpler compared to their
copper-based counterparts [8–11]. Initial observations
led to the concept of a typical phase diagram displaying
two ordered normal states (besides superconductivity),
namely, stripe magnetism and nematicity [12] (a notable
exception is FeSe [13, 14], which we will discuss more
later). One possible scenario is that these two ordered
states have different microscopic origins [15–17]. How-
ever, early on, it was argued that the nematic state can
be understood as a vestigial phase of the stripe magnetic
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state, as it breaks a subset of the symmetries broken by
the latter – specifically, tetragonal symmetry [18–21]. In
this scenario, stripe magnetism would be the “mother”
phase of underdoped iron pnictides [22]. Nematic order
is manifested in the electronic spectrum as orbital order
involving the 3dxz, 3dyz, and 3dxy Fe orbitals that form
the low-energy electronic states. The vestigial nematic
state in the iron pnictides is therefore a prime exam-
ple of an intertwined spin-orbital coupled phase [23, 24],
characterized by a composite spin order parameter and
a simple (i.e. non-composite) orbital order parameter.

Analogously to the historical evolution of the “typi-
cal” phase diagram of the cuprates, more detailed ex-
periments in the iron-based materials have recently un-
veiled a much more intricate underdoped phase diagram.
In particular, besides stripe magnetism and nematicity,
other types of magnetic order were observed to proliferate
as optimal doping is approached [25]. These are mag-
netic configurations that do not break tetragonal sym-
metry [26–36], and have thus been dubbed C4 magnetic
phases. This phenomenon is observed quite broadly in
hole-doped pnictides, and also in certain materials under
pressure [34–37]. These observations called for revisiting
the notion that stripe magnetism may be the “mother”
phase of underdoped iron superconductors. A compelling
scenario, put forward by several groups [20, 38–46], is
that the C4 phases are double-Q magnetic states, while
the stripe phase is a single-Q magnetic state. Here,
Q refers to two ordering vectors related by a 90◦ rota-
tion; in the square unit cell containing one Fe atom only,
Q1 = (π, 0) and Q2 = (0, π). In this scenario, all mag-
netically ordered phases are described in terms of two
magnetic vector order parameters:

M1 =

 M1,x

M1,y

M1,z

 , M2 =

 M2,x

M2,y

M2,z

 . (1)

Formally, Ma is the staggered Fe magnetization with mo-
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Figure 1. Schematic representation of the cascade of symmetry breakings leading to the emergence of intertwined orders in
the iron-based superconductors. The starting point is the magnetic SO(6) super-vector, presented in Eq. (3). Space-group
symmetries only allow certain combinations of the super-vector components to order, giving rise to the primary magnetically
ordered states ηi. These, in turn, support different types of vestigial spin-orbital coupled phases, characterized by Ising-like,
zero wave-vector order parameters that transform as the B2g, A2u, and B2u irreducible representations of the tetragonal point
group.

mentum Qa. One can then consider the “mother” order
parameter as a hypothetical six-dimensional super-vector

M = (M1, M2)
T

. The symmetries of the square lattice
only allow certain combinations of the six components of
M to condense, namely, one single-Q state (the stripe
magnetic order) and two double-Q states (called spin-
vortex crystal [33] and charge-spin density-wave [29]).

The single-Q phase breaks tetragonal symmetry and is
therefore associated with a vestigial nematic phase. An
important question is what types of vestigial orders can
be associated with the double-Q magnetic phases. This
question was partially addressed in Ref. 47, which pro-
posed unusual vestigial phases that break translational
and/or mirror symmetries, while preserving time-reversal
symmetry. There is an important issue left unaddressed,
however: what are the orbital-order patterns, if any, re-
lated to these vestigial phases? As discussed above, one
of the hallmarks of nematicity is precisely its accompa-
nying Fe-orbital order.

In this paper, we use group theory to determine the
orbital ordering configurations of these vestigial phases,
revealing a rich landscape of intertwined spin-orbital cou-
pled phases. More than just an interesting extension of
previous results, our work provides a powerful new frame-
work to describe and predict possible ordered phases of
underdoped iron-based superconductors, as well as their
responses to external electromagnetic and strain fields.
The key point is that the description of the magnetic de-
grees of freedom in terms of the order parameters M1 and
M2 is inevitably incompatible with a description of the
orbital degrees of freedom, due to the crystal symmetry
of the FeAs (or FeSe) layer. More specifically, while the
magnetic properties alone can be reasonably described
in terms of a simplified unit cell containing only one Fe

atom, the five 3d Fe-orbitals cannot.
The resolution to this conundrum is to note that the

presence of a sizable spin-orbit coupling, as observed
experimentally in most iron-based superconductors [48],
ties the crystal symmetry properties of the spin degrees of
freedom to those of the orbitals. Group-theoretical anal-
ysis of the space group of single-layered FeAs/Se super-
conductors (P4/nmm) then implies that the six compo-
nents of M should not be grouped in terms of two three-
dimensional vectors with different wave-vectors, Eq. (1),
but to three two-dimensional vectors with the same wave-
vector [40, 41]:

η1 =

(
M1,x

M2,y

)
, η2 =

(
M1,y

M2,x

)
, η3 =

(
M1,z

M2,z

)
. (2)

In particular, while Ma lives in the artificial one-Fe
square lattice unit cell (a = 1, 2), ηα lives in the actual
crystallographic unit cell of a single layer (α = 1, 2, 3),
containing two Fe atoms and two As/Se atoms. Be-
cause both wave-vectors Q1 = (π, 0) and Q2 = (0, π) of
the 1-Fe Brillouin zone map onto the same wave-vector
QM = (π, π) of the 2-Fe Brillouin zone, all ηα have the
same wave-vector, as seen in Fig. 2. Formally, they cor-
respond to three two-dimensional irreducible representa-
tions of the FeAs single-layer space-group.

The important point is that any low-energy field-
theory for the magnetic degrees of freedom should be
formulated in terms of ηα, rather than Ma, in contrast
to what has been done extensively in the previous liter-
ature. Applying this formalism to classify the possible
magnetically-driven vestigial orders, we find three dis-
tinct Q = 0 orbitally-ordered states, characterized by
Ising-like order parameters that are composite combina-
tions of ηα but simple (i.e. non-composite) combinations
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Figure 2. (a) Illustration of the 1-Fe (dotted square) and 2-Fe
(dashed square) unit cells. To correctly capture the puckering
of the As/Se atoms, two Fe atoms and two As/Se atoms are
required in the unit cell. Here sharp purple spheres denote
As/Se atoms above the Fe-layer while blurred purple spheres
denote As/Se atoms below the Fe-layer. (b) Crystallographic
2-Fe Brillouin zone (dashed square) and idealized 1-Fe Bril-
louin zone (dotted square).

of orbital operators. They are:

1. The well-studied Q = 0 nematic phase, whose Ising
order parameter transforms as the B2g irreducible
representation of the tetragonal group. This is the
vestigial phase of the stripe magnetic state. The
corresponding orbital order configuration is a mix-
ture of onsite and bond dxz/dyz ferro-orbital order,
as well as dxy bond order. Structurally, this or-
der couples to an acoustic phonon mode, and is
thus accompanied by an orthorhombic lattice dis-
tortion. Its conjugate field is shear strain along the
Fe-Fe bonds.

2. A Q = 0 ordered phase whose Ising order param-
eter transforms as the B2u irreducible representa-
tion of the tetragonal group. This is the vestigial
phase of the charge-spin density-wave state. The
corresponding orbital order configuration is a com-
bination of intra-unit-cell staggered charge order
on the dxy orbitals and a intra-unit-cell “staggered
spin-orbit coupling” ordering involving the dxz/dyz
orbitals. This ordered state does not couple to any
new atomic displacements, but it does remove the
spin-degeneracy of the bands, giving rise to spon-
taneously generated Dresselhaus-type and Rashba-
type spin-orbit terms. For simplicity, we refer to
this phase as the charge-ordered state. Its conju-
gate field is a combination of an electric field per-
pendicular to the FeAs-layer and shear strain along
the Fe-As bonds.

3. A Q = 0 ordered phase whose Ising order param-
eter transforms as the A2u irreducible representa-
tion of the tetragonal group. This is the vestigial
phase of the spin-vortex crystal state. The cor-
responding orbital order configuration is a mixture
of staggered spin-current patterns involving the dxy
orbitals and a mirror-symmetry breaking ordering
involving the dxz/dyz orbitals. This type of order

couples to an optical phonon mode, whose softening
however does not lead to any new atomic displace-
ments. Similarly to the B2u Ising order, it also re-
moves the spin-degeneracy of the bands, triggering
the appearance of Dresselhaus-type and Rashba-
type spin-orbit terms. For simplicity, we refer to
this phase as the spin-current state. Its conjugate
field is an electric field perpendicular to the FeAs-
layer.

A summary of the framework derived here, including
the primary magnetic states and their vestigial phases
is shown in Fig. 1. Because these three vestigial phases
are not independent, but connected by transformations
in the two-dimensional internal spaces of the ηα order
parameters, they can act as “transverse fields” to each
other [49]. This opens the possibility of using, for in-
stance, an electric field to induce the spin-current vesti-
gial order, which can then be employed to tune the ne-
matic phase transition. This rather unusual effect, which
we dub electro-nematic effect, is intimately connected to
the intertwined character of phases that break completely
different symmetries.

The same formalism can be used to investigate how
the vestigial phases respond to external fields, such as a
magnetic field H. In the nematic phase, the field simply
induces a finite magnetization, as expected for a stan-
dard paramagnet. However, in the charge-ordered and
spin-current states, the field H also induces a finite Néel
magnetization N, despite the absence of any long-range
magnetic order. In the charge-ordered state, N ‖ H, re-
sulting in a ferrimagnetic spin configuration, whereas in
the spin-current state we find that an in-plane magnetic
field induces a canted spin configuration for H ‖ x̂ or
H ‖ ŷ, and a ferrimagnetic configuration if H is applied
along the diagonal direction of the 1-Fe unit cell. This
effect, which we dub ferro-Néel effect, shows the non-
trivial character of these vestigial paramagnetic phases,
and can be used to identify these exotic spin-orbit cou-
pled vestigial states.

This paper is organized as follows: In Sec. II we discuss
how vestigial phases arise in the iron-based systems. We
argue that the fundamental degrees of freedom are given
by Eq. (2), and write down the field theory invariant un-
der the space-group symmetries of the FeAs/Se layer. We
demonstrate that vestigial phases can arise in the para-
magnetic state, and are characterized by composite spin
order. In Sec. III, we derive the electronic orders arising
as consequences of the vestigial phases, and demonstrate
how this leads to intertwined spin-orbital coupled orders.
The electronic orders induced in this manner include the
well-known ferro-orbital order arising in the nematic case,
but also a more exotic spin-current order. We show how
a number of these induced electronic orders lead to the
lifting of the spin-degeneracy of the bands. The vestigial
phases exhibit unique features when subjected to exter-
nal electromagnetic fields. These are discussed in Sec. IV.
In Sec. V we discuss how our approach changes depend-
ing on the stacking of the FeAs/Se layers, contrasting
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1111, 111, 11 compounds and 122 compounds. Finally,
conclusions are presented in Sec. VI. Additionally, we in-
clude two appendices containing technical details of the
Hamiltonian used (Appendix A) and the derivation of
the fermionic bilinears (Appendix B).

II. COMPOSITE SPIN ORDER IN THE
VESTIGIAL PHASES

A. Magnetically ordered states

Recent experiments unveiled an unexpected complex-
ity of the phase diagram of underdoped iron-based su-
perconductors, which rivals that of underdoped cuprates.
Our goal is to formulate a unifying framework in which
the observed magnetic and non-magnetic orders arise
from the same basic interactions, thus providing an orga-
nizing principle to describe and predict the behavior of
underdoped iron-based superconductors without resort-
ing to fine-tuned multi-critical points. The main idea is
that all these phases can be described as condensations
of simple or composite combinations of the components
of the six-dimensional super-vector:

M =
(
M1,x M1,y M1,z M2,x M2,y M2,z

)
. (3)

Here, Ma,µ are the components of the staggered magne-
tizatons M1 and M2 given in Eq. (1). In this frame-
work, the primary degrees of freedom are the magnetic
ones. This does not mean that orbital degrees of free-
dom are irrelevant – much to the contrary, they are
essential to correctly describe the vestigial phases, as
shown in Ref. 23. Empirically, it is well established
that most iron superconductors display sharp magnetic
fluctuations around the wave-vectors Q1 = (π, 0) and
Q2 = (0, π) [50]. Microscopically, one expects on general
grounds that repulsive electronic interactions are respon-
sible for the enhancement of these fluctuations [46]. In
this paper, we will not discuss the microscopic origin of
this magnetism. Instead, we simply note that both weak-
coupling [20, 38, 44–46, 51] and strong-coupling [52–55]
approaches give magnetic fluctuations peaked at these
ordering vectors [56].

In the absence of a lattice, the elements of M would
transform as an irreducible representation (irrep) of the
SO(6) group. There is a huge degeneracy of magnetic
ground states that give the same amplitude of the super-
vector M. The vast majority of these states are not
realized in the iron-based superconductors. This reflects
the important fact that this enlarged SO(6) symmetry is
merely a theoretical construct, as the existence of the lat-
tice immediately constrains the possible combinations of
the elements of M to those that obey the crystal lattice
symmetries. We stress that the magnetic order parame-
ters are not SO(6) invariant. Below we use group theory
to show how the crystal lattice restricts the symmetry of
the magnetic order parameters.

Figure 3. Illustration of the possible magnetic orders for each
order parameter ηi, with transforms as a two-dimensional
irreducible representation of the space group. The double-
Q structures for η1 and η2 are the in-plane hedgehog- and
loop-SVC phases, respectively. For η3, the double-Q phase
is denoted the charge-spin density-wave phase. All single-Q
phases are stripe magnetically ordered states.

In the simple approximation where the As/Se atoms
are neglected, and the crystal is described as a single-Fe
square lattice, the six components of M do not trans-
form according to an irreducible representation of the
SO(6) group, but instead according to an irrep of the

C
′′′

4v ⊗ SO(3) group, as discussed in Ref. 7. Here, C
′′′

4v

is the extended point group corresponding to the point
group C4v supplemented by three translations along x̂,
ŷ, and x̂ + ŷ. The translations are necessary because
the order parameters Ma,µ break the translational sym-
metry of the lattice. Note that, for our purposes, we
neglected the inversion symmetry and considered C4v in-
stead of D4h. As discussed in Ref. 7, the six elements
of M transform as the product of irreps E5 ⊗ ΓS=1,
where E5 is a two-dimensional irreducible representa-
tion of C

′′′

4v and ΓS=1 is the standard 3-dimensional irre-
ducible representation of SO(3). This warrants writing

M = (M1, M2)
T

and identifying the appropriate or-
der parameters as the three-dimensional vectors M1 and
M2, instead of M. The resulting free energy, which can
be constructed by imposing that its elements transform
trivially under the group symmetry operations, becomes:

F [Ma] =
a

2

(
M2

1 +M2
2

)
+
u

4

(
M2

1 +M2
2

)2
− g

4

(
M2

1 −M2
2

)2
+ w (M1 ·M2)

2
. (4)

Clearly, while the first two terms only depend on the am-
plitude of the super-vector M, the last two terms explic-
itly break SO(6) symmetry. This free-energy expansion,
and the field theory resulting from it, have been widely
studied in several papers in the context of the pnic-
tides [20, 23, 38, 39, 42, 43, 45, 57]. We just quote here
the result that there are only three possible ground states,
which are determined by the quartic coefficients g and w:
the single-Q stripe magnetic state, where M1 6= 0 and
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M2 = 0 (or vice-versa); the non-collinear double-Q spin-
vortex crystal state, where M1 = M2 and M1 ⊥M2; and
the collinear double-Q charge-spin density-wave, where
M1 = M2 and M1 ‖M2. All these states have been ob-
served in the iron-based superconductors [29, 33, 58–60].

Although the magnetic properties of these systems are
decently described within the approximation of a single-
Fe square lattice, the symmetries of the actual FeAs/Se
layer are different than those of the simple square lattice.
Most notably, there is a glide plane symmetry originating
from the puckering of the As/Se atoms above and below
the Fe plane. The immediate consequence of including
the As/Se atoms is that the unit cell doubles and rotates
by 45◦ (see Fig. 2). Note that this unit cell is invari-
ant under a four-fold rotation only if it is accompanied
by a mirror reflection. There are also important conse-
quences for the electronic structure, as the different Fe 3d
orbitals do not necessarily transform the same way under
the glide plane symmetry operation [61, 62]. Crucially,
a sizable atomic spin-orbit coupling λS · L is observed
in these materials (λ ∼ 20 meV [48]). As a result, the
spin-space SO(3) symmetry is broken, and the six mag-
netic components no longer transform according to an
irrep of the C

′′′

4v ⊗ SO(3) group. Instead, the relevant
group is the space-group of a single FeAs/Se layer, which
is the non-symmorphic P4/nmm group (group number
129) [17, 40].

In this case, the six elements of M cannot be organized
in the two three-dimensional vectors M1 and M2. Due
to the doubling and 45◦ rotation of the Fe-square unit
cell, the two wave-vectors Q1 = (π, 0) and Q2 = (0, π)
are folded onto the same wave-vector QM = (π, π) (see
Fig. 2). As a result, the six elements of M must trans-
form according to different irreps of the space group
P4/nmm at the M ≡ (π, π) point of the crystallographic
Brillouin zone. It was shown in Ref. 40 that all irreps of
P4/nmm at M are two-dimensional. As a result, the
six elements of M should be organized in terms of three
different two-dimensional irreps, denoted by EM1, EM2,
and EM3 (using the terminology of Ref. 40). The corre-
sponding two-dimensional order parameters are, respec-
tively, the η1, η2, and η3 vectors given by Eq. (2). Their
physical meaning can be understood in a straightforward
way: in the presence of spin-orbit coupling, M1,x, M1,y,
and M1,z become independent. Each of these order pa-
rameters have a partner related by a simultaneous 90◦

rotation around ẑ in both real and spin spaces, corre-
sponding to M2,y, M2,x, and M2,z.

The field theory for the magnetic degrees of freedom
should thus be expressed in terms of the two-component
vectors ηα, rather than the three-component vectors Ma.
Imposing that the free-energy expansion transforms triv-
ially under the operations of the space group P4/nmm,

we find:

F [ηα] =
∑
α

aα
2

(
ηατ

0ηα
)

+
∑
α,β

uαβ
4

(
ηατ

0ηβ
)2

−
∑
α,β

gαβ
4

(ηατ
zηβ)

2
+
∑
α 6=β

wαβ
4

(ηατ
xηβ)

2
.

(5)

Here, α, β = 1, 2, 3 and τ j are Pauli matrices that live in
the two-dimensional “internal” space of ηα. Symmetry
constrains a number of the coefficients, e.g. u13 + g13 =
−w13 and u23 + g23 = −w23. Note that the quadratic
term was previously obtained in Refs. 41 and 63. More-
over, the wαβ-coefficients play no role at the magnetic
transition [64, 65]. We emphasize that several of the
magnetic properties derived from Eq. (4) still hold in this
alternative formulation. But as we show below, the field
theory that respects the actual crystallographic symme-
tries of the FeAs/Se layers provides unique insights into
the rich interplay between spin and orbital degrees of
freedom.

The six different ground states of Eq. (5) are obtained
by direct minimization (see also Ref. 41), and are shown
in Fig. 3. For each of the three irreps, represented by
ηα, there are two possible magnetic ground states, cor-
responding to single-Q configurations (i.e. condensation
of one of the components of ηα) or double-Q configu-
rations (i.e. simultaneous condensation of both compo-
nents of ηα). Specifically, the ground states associated
with η1 are the single-Q stripe magnetic phase with mo-
ments pointing parallel to the wave-vectors Q1 = (π, 0)
and Q2 = (0, π), and the double-Q hedgehog spin-vortex
crystal phase [33]. Similarly, the ground states associated
with η2 are the single-Q stripe magnetic phase with mo-
ments pointing in-plane, but perpendicular to the wave-
vectors Q1 = (π, 0) and Q2 = (0, π), and the double-Q
loop spin-vortex crystal phase. Finally, the ground states
associated with η3 are the single-Q stripe magnetic phase
with moments pointing out-of-plane, and the double-Q
charge-spin density-wave [29]. Note that these six states
are a subset of the states obtained from the minimization
of Eq. (4). The restrictions arise from the symmetry
properties that the spin components must obey due to
the finite spin-orbit coupling.

B. Vestigial orders

The vestigial orders in terms of the Ma order parame-
ters were previously discussed elsewhere by one of us [47].
Here, we use group-theory to systematically derive all
vestigial orders in terms of the ηα order parameters. This
corresponds to much more than a simple change of basis,
as only the ηα vectors transform according to the ac-
tual crystallographic space group. This will give rise to
important qualitative differences between the two cases.
For instance, while certain vestigial phases described by
the free energy in Eq. (4) break translational symmetry
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and are associated with continuous order parameters, all
vestigial phases described by Eq. (5) preserve transla-
tional symmetry and are associated with discrete order
parameters.

A vestigial order parameter is a composite order pa-
rameter that can order even in the absence of the pri-
mary order, and that breaks a subset of the symmetries
broken by the primary order parameter (for a review, see
Ref. 7). Vestigial order can only appear if the primary
order parameter transforms as a multi-dimensional irrep,
i.e. if the group is non-Abelian. In our case, we thus
search for bilinear combinations ϕjα of the primary order
parameters ηα that do not transform trivially under the
operations of the space group P4/nmm:

ϕjα =
∑
µ,ν

ηµαΛjµνη
ν
α . (6)

Here, µ, ν = 1, 2 denote the two components of the vector
ηα and Λjµν is a 2× 2 matrix. Since the three ηα belong
to different irreps, and long-range magnetic order devel-
ops only within a single irrep channel, we consider only
the composite order parameters associated with each ir-
rep separately. This is in agreement with previous RG
calculations of Eq. (4) in the presence of spin-orbit cou-
pling [64, 65].

The 2 × 2 matrices Λjµν can be generally expressed in
terms of Pauli matrices τ . Their explicit expressions are
obtained by the decomposition of the products of irreps
EMi [40]:

EM1(M2) ⊗ EM1(M2) = A1g ⊕B2g ⊕A2u ⊕B1u (7)

EM3 ⊗ EM3 = A1g ⊕B2g ⊕A1u ⊕B2u . (8)

The fact that both inversion-even (g) and inversion-odd
(u) one-dimensional irreps appear is because the two
components of the two-dimensional irreps transform op-
positely under the glide-plane symmetry. Note that, be-
cause 2QM = (2π, 2π), the irreps on the right-hand side
are those of the P4/nmm space group at the Γ ≡ (0, 0)
point of the crystallographic Brillouin zone, which is
equivalent to the familiar point group D4h. Among those,
it is not possible to form non-zero bilinears involving ηα
that transform as B1u and A1u. Consequently, for each
α, there are only two possible composite order parame-
ters that transform non-trivially under D4h (i.e. that do
not transform as A1g), namely:

ϕzα ≡ ηατ
zηα ,

ϕxα ≡ ηατ
xηα . (9)

In terms of the original order parameters Ma, we have:

ϕz1 = M2
1,x −M2

2,y , ϕx1 = 2M1,xM2,y ,

ϕz2 = M2
1,y −M2

2,x , ϕx2 = 2M1,yM2,x ,

ϕz3 = M2
1,z −M2

2,z , ϕx3 = 2M1,zM2,z . (10)

All these composite order parameters have zero wave-
vector, and thus correspond to intra-unit cell order. In

particular, ϕz1, ϕz2, and ϕz3 transform as the B2g irrep
of D4h; ϕx1 and ϕx2 transform as A2u; and ϕx3 trans-
form as B2u. Because order parameters that break the
same symmetry must necessarily couple bilinearly in the
free energy expansion, they must either be all zero or
all non-zero at the same time. Therefore, we identify
three distinct vestigial phases, represented by the order
parameters: ΦB2g ∝ ϕz1 ∝ ϕz3 ∝ ϕz2; ΦA2u ∝ ϕx1 ∝ ϕx2 ;
ΦB2u ∝ ϕx3 . All of them are Ising-like, zero wave-vector
order parameters; the subscript just indicates how they
transform under the D4h group. In the next section,
we will see that they correspond to nematic order, spin-
current order, and checkerboard charge order, respec-
tively. Interestingly, the existence of three inter-related
spin-driven Ising-nematic order parameters, ϕz1, ϕz2, and
ϕz2 have been recently reported in an NMR study of a
detwinned 122 iron pnictide [66].

Having established the vestigial order parameters, we
now discuss the actual vestigial phases. Formally, a ves-
tigial phase is that in which the symmetry-breaking com-
posite order parameter is non-zero, but the primary order
parameter vanishes:〈

ηατ
(x,z)ηα

〉
6= 0 , 〈ηα〉 = 0 . (11)

Clearly, if 〈ηα〉 6= 0, it follows necessarily that at least one
of the composite orders is non-zero,

〈
ηατ

(x,z)ηα
〉
6= 0.

The non-trivial aspect of the condition above arises from
the fact that the composite order can be finite even if the
primary order is not. Note also that 〈ηατ yηα〉 is iden-
tically zero, as τy is antisymmetric, and that the non-
symmetry breaking composite combination

〈
ηατ

0ηα
〉

is
always non-zero, as it transforms as the trivial A1g irrep
of D4h. Physically, the latter corresponds simply to mag-
netic amplitude fluctuations. To determine whether and
when condition (11) is satisfied, phenomenological con-
siderations are not enough, and one must resort to mi-
croscopic calculations, which will depend on the model.
Importantly, in our case, both the vestigial and primary
magnetic order parameters are Ising-like. Generally, it
is possible that the two Ising transitions are split and
second- or first-order (in which case there is a regime
of vestigial phase) or simultaneous and first-order (in
which case there is no vestigial phase). Both regimes
have been theoretically seen, depending on model pa-
rameters [20, 21].

The outcome of our analysis is shown in Fig. 1. It
is remarkable that all these different broken-symmetry
states arise from the same primary degrees of freedom,
which ultimately go back to the six-dimensional super-
vector M in Eq. (3). We emphasize that each of the
three classes of magnetic order, represented by the irrep
EMi and shown in Fig. 3, support two possible types of
vestigial order parameters: ηατ

zηα, associated with the
single-Q phase, and ηατ

xηα, associated with the double-
Q phase. While all three classes support a B2g nematic
vestigial phase, only the EM1,M2 classes support an A2u

spin-current vestigial states, whereas only EM3 supports
a B2u charge-order vestigial phase.
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III. ORBITAL-ORDER PATTERNS IN THE
VESTIGIAL PHASES

Our analysis so far has focused exclusively on the spin
degrees of freedom. However, orbital degrees of freedom
are essential to describe the properties of the vestigial
phases, particularly since it is the very existence of a
spin-orbit coupling that changes the form of the magnetic
free-energy from Eq. (4) to Eq. (5).

To proceed, we must first define what we mean by or-
bital degrees of freedom, since the five 3d Fe orbitals are
generally hybridized throughout the Brillouin zone, and
are thus not generically good quantum numbers. How-
ever, if we focus on the low-energy states near the Fermi
level, we can restrict our analysis to the orbitals that give
the dominant spectral weight, namely, the dxz, dyz, and
dxy orbitals. Moreover, because the Fermi pockets are
typically small, we can focus on the states close to the
high-symmetry points of the crystallographic Brillouin
zone, i.e. the Γ = (0, 0) and M = (π, π) points. For-
tunately, at these high-symmetry points, we can define
pure orbital states. Thus, we can label the Bloch states
near the Fermi level by their orbital content, following
the procedure outlined in Ref. 40. Near the Γ point, the
Fermi surface consists of two small hole pockets, and the
relevant orbitals are the dxz and dyz, which transform as
the Eg representation of the D4h group. Thus, we define
the electronic doublet:

ΨΓ,s(K) =

(
dyz,s(k)
−dxz,s(k)

)
, (12)

in terms of the xz and yz orbital operators. Here, s
denotes the spin quantum number. We use K/X to
denote a momentum in the crystallographic Brillouin
zone/unit cell, while k/x corresponds to the 1-Fe Bril-
louin zone/unit cell (see Fig. 2). Near the M point, there
are two small electron pockets whose orbital contents are
dxz/dyz and dxy. Because all irreps of P4/nmm at M
are doubly degenerate, we define two electronic doublets:

ΨM+,s(K + QM ) =

(
dxz,s(k + Q2)
dxy,s(k + Q1)

)
,

ΨM−,s(K + QM ) =

(
dyz,s(k + Q1)
dxy,s(k + Q2)

)
. (13)

While the two elements of ΨM+,σ transform as the “up-
per” elements of the EM1 and EM3 irreducible repre-
sentations, the two elements of ΨM−,σ transform as the
“lower” elements of EM1 and EM3 [40]. The generic non-
interacting Hamiltonian in terms of these three doublet
operators was discussed in Ref. 40, and is shown again
in Appendix A. Because its form is enforced only by
the symmetries of the P4/nmm group, it can be used to
fit any experimentally determined band dispersion. Note
that while the Bloch states ΨΓ, ΨM± are defined in the
crystallographic Brillouin zone, the orbital operators dxz,
dyz, dxy are defined in the 1-Fe Brillouin zone.

To obtain the orbital order patterns of each of the ves-
tigial phases, all we need now is to find the fermionic

bilinears
〈

Ψ†aΛ̂ Ψb

〉
, where Λ̂ is a vertex in the space of

electronic operators, that transform according to the B2g,
A2u, and B2u irreps of the D4h group. Since the vestigial
orders have zero wave-vector, we look for combinations〈

Ψ†ΓΛ̂ ΨΓ

〉
and

〈
Ψ†M±Λ̂ ΨM±

〉
. Using the product ta-

bles for the P4/nmm group and including the role of the
spin operators, we obtain the orbital order parameters
detailed below. For the full derivation, see Appendix B.

A. B2g nematic order

We start with the case of the ΦB2g
vestigial order,

which is the vestigial phase associated with the EM1 ,
EM2 , and EM3 single-Q stripe magnetic phase, as dis-
cussed in Sec. II. There are three different types of or-
bital order parameters that appear concomitantly with
the condensation of ΦB2g (see Ref. 67):

∆
(1)
B2g

=
〈
d†yz,s(k)dyz,s(k)− d†xz,s(k)dxz,s(k)

〉
(14)

∆
(2)
B2g

=
〈
d†yz,s(k + Q1)dyz,s(k + Q1)

−d†xz,s(k + Q2)dxz,s(k + Q2)
〉

(15)

∆
(3)
B2g

=
〈
d†xy,s(k + Q1)dxy,s(k + Q1)

−d†xy,s(k + Q2)dxy,s(k + Q2)
〉
. (16)

Note that we have omitted the momentum summations
for convenience. The first two terms can be expressed
as combinations of onsite ferro-orbital order and bond-
orbital order involving the dxz and dyz orbitals, whereas
the third term corresponds to bond orbital order involv-
ing the dxy orbital. The breaking of tetragonal symme-
try warrants identifying this vestigial phase as a nematic
phase. We emphasize that this orbital pattern is rather
different than a uniform occupation of the dxz and dyz
orbitals, as it has previously been pointed out theoreti-
cally in [68–70] and observed experimentally in Refs. 71
and 72.

The real-space orbital order patterns are illustrated in
Figs. 4(a) and (b). While the former represents an onsite
dxz/dyz ferro-orbital order, the latter represents a hop-
ping anisotropy between nearest-neighbors dxy orbitals
(i.e. bond order). In Figs. 4(c) and (d), we show the
impact of these orbital order parameters on the band dis-
persions and on the Fermi surface. The main effects are
the well-known splitting of the energy doublets at the M
point and the Pomeranchuk-like distortion of the Fermi
pockets, which are no longer C4 symmetric. In these
figures, we also included the finite atomic spin-orbit cou-
pling, which lifts the degeneracy of the energy doublet at
Γ and hybridizes the two electron pockets already in the
non-nematic phase [48, 67].
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Figure 4. Effects of B2g vestigial nematic order. In (a) we
illustrate the ferro-orbital order involving the dxz and dyz

Fe 3d-orbitals (∆
(1)
B2g

6= 0) while in (b), the bond-nematic

order (hopping anisotropy) involving the dxy orbitals (∆
(3)
B2g
6=

0). The band structure and Fermi surface in the vestigial
phase are shown in (c) and (d), respectively. The dotted
lines show the band structure in the non-ordered phase. Note
the Pomeranchuk-type distortion of the Fermi surface. The
parameters used here are given in Appendix A.

B. A2u spin-current order

Let us now consider the vestigial phase with ΦA2u
or-

der parameter, which is associated with the EM1
, EM2

double-Q spin-vortex crystal phase discussed in Sec. II.
There are two momentum-independent fermionic bilin-

Figure 5. Effects of A2u vestigial spin-current order. In (a),
the bonds between next-nearest-neighbor Fe-atoms become

inequivalent in a staggered pattern as a result of ∆
(1)
A2u
6= 0.

This renders the As/Se atoms above and below the Fe-plane
inequivalent as well. In (b), we illustrate the formation of

staggered spin-currents involving the dxy orbitals (∆
(2)
A2u
6= 0).

The band structure and Fermi surface in the vestigial phase
are shown in (c) and (d), respectively. Note the doubling of
the number of bands due to the lifting of spin degeneracy.
The parameters used here are given in Appendix A.

ears that transform as A2u; both involve only states at
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the M point:

∆
(1)
A2u

=
〈
d†xz,s(k + Q2)dyz,s(k + Q1) + h.c.

〉
(17)

∆
(2)
A2u

= i
〈
d†xy,s(k + Q2)σzss′dxy,s′(k + Q1)− h.c.

〉
.

(18)

The first term corresponds to an intra-unit cell stag-
gered deformation of the bonds connecting next-nearest-
neighbor Fe atoms, and as such renders the positions of
the As/Se atoms above and below the Fe plane inequiv-
alent [73]. The second term corresponds to an intra-unit
cell staggered spin-current, polarized along the z axis, in-
volving only the dxy orbitals – hence the identification of
this phase as spin-current order. Both types of order are
illustrated, in real space, in Figs. 5(a) and (b), respec-
tively. Additional spin-dependent terms are discussed in
Appendix B.

Although, at first sight, it may seem that the states
near Γ are not affected by ΦA2u

, this only happens if we
restrict the analysis to momentum-independent fermionic
bilinears. Allowing for terms that are linear in momen-
tum, we find several orbital-order combinations that are
reminiscent of the Rashba- and Dresselhaus-type terms
typically found in systems that break inversion symme-
try. For instance, two of these terms are:

∆
(3)
A2u

= 〈(kxσyss′ − kyσ
x
ss′)(

d†xz,s(k)dxz,s′(k) + d†yz,s(k)dyz,s′(k)
)〉

(19)

∆
(5)
A2u

= 〈(kxσxss′ − kyσ
y
ss′)(

d†xz,s(k)dyz,s′(k) + d†yz,s(k)dxz,s′(k)
)〉
. (20)

Recall that kx and ky refer to momenta in the 1-Fe Bril-
louin zone and σx and σy refer to spins along the Fe-Fe
bonds. All four allowed linear-in-momentum terms are
shown explicitly in Appendix B.

In Figs. 5(c) and (d), we show the electronic band dis-
persion reconstructed by all these orbital-order patterns.
Besides the splitting of the energy doublets at M , which
is similar to the case of the nematic vestigial order, the
most salient feature is the doubling of the number of
bands, despite the absence of translational or rotational
symmetry breaking. This doubling is a consequence of
the fact that the bands are no longer spin-degenerate
due to the combination of a finite spin-orbit coupling
and an order parameter that breaks inversion symmetry
(i.e. it transforms as A2u). Indeed, such a band splitting
is commonly found in systems where the explicit break-
ing of inversion symmetry (e.g. by an applied electric
field) induces a Rashba coupling. What is unique to the
A2u vestigial phase is that the Rashba-type coupling is
the result of an spontaneous symmetry-breaking. Being
a composite spin order parameter, its magnitude is set
by the strength of magnetic fluctuations, which could in
principle be sizable near a magnetic critical point. It is
important to emphasize that the Fermi surface remains
symmetric under a 90◦ rotation and under an in-plane
inversion. This is a consequence of the fact that the ves-
tigial order parameter transforms as A2u.

Figure 6. Effects of the B2u vestigial charge order. In (a) we

show the induced charge order in the dxy orbital (∆
(1)
B2u
6= 0)

and in (b) the emergence of a staggered LzSz spin-orbital

coupling between the dxz and dyz orbitals (∆
(2)
B2u
6= 0). The

band structure and Fermi surfaces in the vestigial phase are
shown in (c) and (d), respectively. Note the doubling of the
number of bands due to the lifting of spin degeneracy. The
parameters used here are given in Appendix A.

C. B2u charge order

Finally, we analyze the orbital order patterns associ-
ated with the vestigial order with ΦB2u

order param-
eter, which is related to the EM3

double-Q charge-
spin density-wave phase. There are two momentum-
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independent fermionic bilinears transforming as B2u:

∆
(1)
B2u

=
〈
d†xy,s(k + Q2)dxy,s(k + Q1) + h.c.

〉
(21)

∆
(2)
B2u

= i
〈
d†xz,s(k + Q2)σzss′dyz,s′(k + Q1)− h.c.

〉
.

(22)

The first term corresponds to an occupation imbalance
of the dxy orbital on neighboring sites, as illustrated in
Fig. 6(a). Note that this is an intra-unit cell order. The
second term corresponds to an intra-unit cell staggered
LzSz-type spin-orbit coupling, illustrated in Fig. 6(b).
Appendix B shows additional spin-dependent terms are
discussed.

As with the case of A2u vestigial order, electronic states
near the Γ point are affected by terms linear in mo-
mentum. As explained above, these terms resemble the
Rashba- and Dresselhaus-type spin-orbit couplings com-
monly found in systems that break inversion symmetry.
In our case however, the multi-orbital structure allows
for multiple inequivalent terms:

∆
(3)
B2u

= 〈(kxσxss′ − kyσ
y
ss′)(

d†xz,s(k)dxz,s′(k) + d†yz,s(k)dyz,s′(k)
)〉

(23)

∆
(5)
B2u

= 〈(kxσyss′ − kyσ
x
ss′)(

d†xz,s(k)dyz,s′(k) + d†yz,s(k)dxz,s′(k)
)〉
. (24)

All the induced spin-orbit terms are listed in Appendix B.
The reconstruction of the electronic dispersion in the ves-
tigial phase that displays B2u order is shown in Figs. 6(c)
and (d). As with the ΦA2u case, the spin-degeneracy of
the bands is lifted and translational symmetry remains
unbroken. The doublets at M are split in a manner rem-
iniscent of the B2g nematic case, although the Fermi sur-
face remains symmetric under a 90◦ rotation since the
order parameter transforms as B2u.

IV. EXPERIMENTAL CONSEQUENCES

The symmetry classification above reveals the exis-
tence of three different types of vestigial phases associ-
ated with the magnetic ground states of the iron pnic-
tides, which trigger unique orbital order patterns. All
these vestigial order parameters are Ising-like (i.e. scalar)
that have zero in-plane wave-vector. As such, they
transform as different irreducible representations of the
P4/nmm group at the Γ point, which coincide with the
irreps of the D4h space group. In particular, we found a
vestigial nematic B2g phase, a vestigial spin-current A2u

phase, and a vestigial charge-ordered B2u phase. In this
section, we discuss different experimental manifestations
of these vestigial orders based on their coupling to non-
electronic degrees of freedom, such as the lattice, as well
as to external electromagnetic fields.

A. Coupling to the lattice

In the long wavelength limit, the elastic degrees of free-
dom are described in terms of derivatives of the displace-
ment vector U. For a tetragonal lattice, there are six
independent strain modes. Two of them transform as
A1g and do not change the symmetry of the lattice (e.g.
volume collapse); two of them involve out-of-plane shear
distortions and transform as Eg; and another two in-
volve only in-plane lattice distortions and transform as
B1g and B2g. These last two correspond to the strain
fields εB1g

= ∂XUX − ∂Y UY and εB2g
= ∂XUY + ∂Y UX ,

respectively. Note that U(X) is defined in the crystallo-
graphic unit cell.

A simple symmetry analysis reveals that the only vesti-
gial order parameter that couples linearly to a symmetry-
breaking strain mode is the nematic one, ΦB2g

, which
couples to the shear mode εB2g

. Such a linear coupling
drives a softening of the sound velocity of the acoustic
phonon mode that propagates along the [100] direction.
This coupling has been widely discussed in the literature
and explored to experimentally probe both long-range
nematic order and nematic fluctuations [75–82]. Because
ΦB2u

and ΦA2u
do not couple linearly to any of the strain

modes, the lattice remains tetragonal in the spin-current
and charge-ordered vestigial phases.

Besides the elastic lattice modes, associated with
acoustic phonons, the system also has optical phonon
modes. Among those, there is an A2u zone-center optical
phonon, with an energy of about ΩA2u

≈ 40 meV, cor-
responding to an in-phase displacement Z of the Fe and
As/Se atoms along the out-of-plane axis [83]. Symmetry
dictates that there must be a linear coupling between this
Z displacement and the vestigial order parameter ΦA2u .
Therefore, the condensation of ΦA2u leads to a softening
of the A2u optical phonon. Although the crystal struc-
ture remains tetragonal after ΩA2u → 0, this linear cou-
pling opens the interesting possibility of probing fluctua-
tions associated with the spin-current vestigial phase by
inelastic neutron scattering measurements of the phonon
spectrum. Furthermore, since this phonon mode is in-
frared active, it is in principle possible to manipulate
the spin-current order parameter via pump-probe spec-
troscopy.

We finish this section by noting that the vestigial or-
der parameter ΦB2u

does not couple linearly to either
acoustic or optical phonon modes. This implies that the
onset of charge-ordered vestigial phase is not accompa-
nied by any changes in the atomic positions of the crystal
structure.

B. Conjugate fields and transverse fields

The analysis above reveals that the shear strain εB2g

acts as a conjugate field to the vestigial nematic order
parameter ΦB2g

. Thus, controlled application of uniax-
ial strain, for instance via piezoelectric devices, offers a
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unique route to probe nematicity. This has been rou-
tinely employed to study nematicity in the iron pnictides
and other systems that display nematic order.

An interesting question is whether there are experi-
mentally accessible conjugate fields to the other vestigial
order parameters obtained here, ΦA2u

and ΦB2u
. Inter-

estingly, an electric field applied along the z axis, Ez,
also transforms as A2u, and thus behaves as a conjugate
field to the spin-current order parameter ΦA2u

. Such a
field can be experimentally applied in a controlled way
via electrostatic gating of thin films. It can also appear
in a less controlled way due to the existence of a sub-
strate, as is the case in FeSe grown on SrTiO3 [84–89],
or due to a particular feature of the crystalline structure,
as is the case of the 1144 pnictides [33, 90]. The linear
coupling between Ez and ΦA2u opens up the unexplored
possibility of experimentally probing spin-current order
and spin-current fluctuations in a systematic way.

It is also interesting to note that the order parameters
ΦA2u

and ΦB2g
are not completely unrelated, as they

live in the same two-dimensional subspace spanned by
the two-component magnetic order parameter η1 (or η2).
This is a direct consequence of the common vestigial na-
ture of both orders, and manifested clearly in Eq. (9):
while ΦB2g is associated with the τz Pauli matrix living
in the “Bloch sphere” set by the the two components of
η1, ΦA2u is described in terms of the τx Pauli matrix.
In view of the standard commutation relations between
Pauli matrices, it is expected that one of the order pa-
rameters acts effectively as a “transverse field” to the
other one. Of course, this by itself does not imply that
non-trivial Berry phases appear in the free energy (for an
analysis related to the simpler case of orbital nematicity,
see Ref. 49). Yet, it does suggest that the conjugate field
to ΦA2u

will have an effect on ΦB2g
(and vice-versa), as

they live in the same subspace. Thus, an electric field Ez
may be used to tune the nematic transition, instead of
shear strain. The advantage is that the former does not
explicitly break the symmetry that is spontaneously bro-
ken by ΦB2g

. This effect, which we dub electro-nematic,
is unique to the vestigial nature of the nematic order, and
would not be present if nematicity was simply a manifes-
tation of ferro-orbital order, see Ref. 49.

As for the vestigial order parameter ΦB2u
, we did not

identify a simple experimentally accessible quantity that
could act as its conjugate field. It is possible, however,
to combine two different quantities whose product trans-
forms as B2u. This is achieved for instance by combining
a biaxial strain εB1g

and a perpendicular electric field Ez.
Since B1g ⊗ A2u = B2u, there is a trilinear coupling be-
tween ΦB2u

, εB1g
, and Ez. Of course, the disadvantage

of this trilinear coupling is that Ez also induces ΦA2u
.

C. Intertwinment with Néel antiferromagnetic
order

The magnetically ordered states discussed in our work,
described in terms of the order parameters ηα, are associ-
ated with the ordering vectors (π, 0) and (0, π) of the Fe-
only Brillouin zone. Another type of magnetic order that
has been observed in certain hole-doped iron pnictides is
the well-known Néel order, described by an order param-
eter N, and associated with the ordering vector (π, π) of
the Fe-only Brillouin zone [91]. Of course, in the crystal-
lographic Brillouin zone, (π, π) is folded onto (0, 0). But
the key point is that, because (π, π) = (π, 0)+(0, π), one
expects that N will couple to a bilinear combination of
ηµαη

ν
α, with µ 6= ν. Those are precisely the vestigial order

parameters defined in Eq. (9).
This simple observation motivates us to investigate the

coupling between the Néel order parameter N and the
vestigial order parameters Φ. To ensure time-reversal in-
variance, since N is odd under time-reversal whereas Φ
is even, this coupling can only take place in the pres-
ence of an external magnetic field H. Note that H is a
pseudo-vector whose out-of-plane component transforms
as A2g and whose in-plane components transform as Eg
[40]. In contrast, for the Néel order on the Fe-sites, N,
(Nx,−Ny)T forms an Eu doublet while Nz transforms as
B1u. A symmetry analysis reveals that there is no trilin-
ear coupling involving H, N, and the vestigial nematic
order parameter ΦB2g

.
The situation is different for the vestigial order pa-

rameter ΦB2u . The free energy in such a case allows for
a trilinear coupling of the form:

FB2u
= λB2u

ΦB2u
H ·N , (25)

where λB2u
is a coupling constant. The physical implica-

tion of this term is clear: in the vestigial charge-orderd
phase, where ΦB2u

6= 0, application of a uniform mag-
netic field induces Néel order polarized parallel to the
field direction. Because H inevitably induces ferromag-
netic order, the resulting magnetic configuration is ferri-
magnetic, as illustrated in Fig. 7.

A trilinear coupling is also allowed in the case of the
vestigial order parameter ΦA2u

, although its form is dif-
ferent than that of Eq. (25):

FA2u
= λA2u

ΦA2u
(HxNy +HyNx) , (26)

where λA2u
denotes a coupling constant. Here, the sub-

scripts x, y refer to the 1-Fe unit cell, i.e. they are paral-
lel to the Fe-Fe nearest-neighbor directions. In the spin-
current phase, where ΦA2u

6= 0, the polarization of the
Néel order induced by the external field depends crucially
on its direction. An out-of-plane field, for instance, does
not induce any Néel order, as illustrated in Fig. 7. On
the other hand, for H ‖ x̂ or H ‖ ŷ, the Néel order
parameter is polarized along the perpendicular in-plane
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Figure 7. Illustration of the induced magnetic configurations
in the A2u and B2u paramagnetic vestigial phases induced by
the presence of an external magnetic field H. Besides the usu-
ally induced ferromagnetic order, Néel order is also induced
in this case, resulting in ferrimagnetic or canted antiferro-
magnetic configurations. For out-of-plane fields, currents are
induced around the As/Se atoms. These are omitted in the
figure.

direction, N ‖ ŷ or N ‖ x̂, respectively. Due to the addi-
tional parallel ferromagnetic component induced by H,
the resulting magnetic configuration is that of a canted
antiferromagnet (see Fig. 7). The relative angle ∆θ be-
tween the ferromagnetic and Néel components that are
induced by an in-plane magnetic field applied along a di-
rection that makes an angle θH with the x axis is given
by:

∆θ = 2θH ±
π

2

where the ± sign depends on the sign of the coupling
constant λA2u

. Clearly, for θH = ±π4 , corresponding to a
field applied along the (anti)diagonal, there is no canting
and the induced order is ferrimagnetic, similarly to the
case with ΦB2u

order.

We dub the rather unusual effect described by Eqs.
(25)-(26) of Néel order being induced by a uniform mag-
netic field the ferro-Néel effect. Its existence highlights
the non-trivial paramagnetic character of the vestigial
phases. It provides yet another possible route to ex-
perimentally probe the vestigial spin-current and charge-
ordered phases. The key manifestation, which can be
probed by neutron scattering experiments, would be the
emergence of a magnetic Bragg peak at (π, π) (of the 1-Fe
Brillouin zone) upon application of a magnetic field.

V. IMPACT OF THREE-DIMENSIONALITY:
CONTRASTING 122 AND 1111, 111, 11

COMPOUNDS

The results derived in this work refer to the space
group P4/nmm, for which the crystallographic unit cell
only contains a single FeAs/Se layer. Because the ma-
terials are layered compounds, the stacking pattern of
the layers is crucial to determine the applicability of our
results to the different families of iron-based supercon-
ductors. In the case where the layers are simply stacked
on top of each other, as is the case in the 1111, 111, and
11 compounds (such as LaFeAsO, NaFeAs, and FeSe, re-
spectively), the space group is indeed P4/nmm. Con-
sequently, all results derived here apply directly to these
systems. Specifically, the vestigial ordered states have or-
dering vectors Q = (0, 0, 0) in the crystallographic Bril-
louin zone. This also implies that the Néel order param-
eter of Sec. IV C has an ordering vector (π, π, 0) in the
1-Fe Brillouin zone.

The situation changes qualitatively in the case of the
122 compounds (e.g. BaFe2As2), where the layers are
stacked in a staggered pattern. In this case, the appro-
priate space group is not the non-symmorphic P4/nmm
group but instead the symmorphic I4/mmm. While a
full group-theoretical analysis is beyond the scope of this
work, we can still determine the main qualitative changes
in our results in this case. This can be accomplished
by starting from the artificial 1-Fe Brillouin zone and
noting that the main difference between the compounds
with P4/nmm and I4/mmm space groups is on the z-
component of the momentum vector Pfold responsible for
folding the larger 1-Fe Brillouin zone onto the crystallo-
graphic 2-Fe Brillouin zone [61, 62, 92]. In particular,
for the compounds with P4/nmm space group, the fold-
ing vector is Pfold = (π, π, 0) whereas for the compounds
with I4/nmm space group, it is Pfold = (π, π, π). Using
these folding vectors, the wave-vector in the crystallo-
graphic unit cell can be written as Q = R̂π/4 ·(q+Pfold),
where q is the wave-vector in the 1-Fe Brillouin zone
and R̂π/4 realizes a 45◦ rotation around the ẑ-axis (see
Fig. 2).

Because the vestigial nematic order parameter ΦB2g

has ordering vector q = (0, 0, 0) in the 1-Fe Brillouin
zone, it remains a zero wave-vector order in the 2-Fe Bril-
louin zone for both types of systems. Thus, in regards
to the nematic phase, the results are the same for both
P4/nmm and I4/mmm compounds. On the other hand,
the 1-Fe Brillouin zone ordering vector of the two other
vestigial order parameters ΦA2u

and ΦB2u
is q = (π, π, 0).

This means that, in the 2-Fe (crystallographic) Brillouin
zone, the ordering vector is Q = (0, 0, 0) for the P4/nmm
compounds, but Q = (0, 0, π) for the I4/mmm com-
pounds. Consequently, these vestigial orders break trans-
lational symmetry by doubling the periodicity along the
z direction. While this property provides another experi-
mentally accessible way of detecting these vestigial orders
(e.g. via X-ray scattering), it also implies that Ez is not a
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conjugate field for ΦA2u
and that A2u spin-current order

is not accompanied by a soft zone-center phonon. The
results for the coupling to the Néel order parameter of
Sec. IV C remain the same, since the ordering vector of
latter in the 1-Fe Brillouin zone is (π, π, 0).

We finish this section by emphasizing that the premise
of our framework is that the dominant magnetic fluctu-
ations are peaked at (π, 0, π) and (0, π, π) in the 1-Fe
Brillouin zone, i.e. they are stripe-like magnetic fluctu-
ations. Although this is the situation in the majority of
iron-based materials, this is not the case for all of them.
The prime example is the 11 compound FeTe, which dis-
plays double-stripe magnetic order, with ordering vector(
π
2 ,

π
2 , π

)
in the 1-Fe Brillouin zone [93–95]. While our

results are not relevant for that compound, this type of
magnetic order does support its own set of vestigial or-
ders, as discussed in Ref. 96. These vestigial orders have
been invoked to explain the phase diagram of a related
Ti-based oxypnictide [96]. We also emphasize that, in
FeSe and related intercalated systems, even though the
dominant magnetic fluctuations are stripe-type [97, 98],
it remains widely debated whether the nematic phase is a
vestigial order or the consequence of a separate instabil-
ity [51, 55, 68–70, 99]. The main evidence against a sim-
ple vestigial scenario is that the low-energy magnetic fluc-
tuations, as measured by NMR, are rather weak above
the onset of nematic order [cite Bohmer]. Typically, ves-
tigial order is triggered by the correlation length of the
primary order reaching an often large threshold value [7].
Moreover, the fact that upon application of pressure the
nematic transition temperature is suppressed whereas the
magnetic transition temperature is enhanced [34] sug-
gests a scenario of competing phases rather than inter-
twined vestigial phases. However, as shown by the first-
principle calculations of Ref. 51, the magnetic ground
state of FeSe seems to be much more degenerate than
(π, 0) and (0, π) (in the 1Fe BZ). Instead, there is a fam-
ily of nearly degenerate magnetic states with different
ordering vectors. What they have in common is that
they all support a vestigial nematic phase, despite di-
rectly competing for different magnetic configurations.
This suggests an interesting case of vestigial order being
stabilized over a wider temperature range by multiple
competing magnetic instabilities; as such, this scenario
certainly deserves further investigation.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented a simple, yet powerful
framework that provides a unifying description of the
complexity of the underdoped phase diagram of the iron
pnictides. Such a framework consists both of primary
phases that display long-range magnetic order and of
their vestigial phases that intertwine spin and orbital de-
grees of freedom. A plethora of electronic orders that
break different symmetries of the FeAs/Se layer while
displaying comparable transition temperatures emerge

within this framework, from stripe magnetic order and
nematicity to C4 magnetism, charge order, and loop spin-
current order. Formally, all these states arise from the
condensation of the symmetry-allowed simple and com-
posite order parameters formed by the six components of
the super-vector M in Eq. (3), as schematically shown
in Fig. 1.

Whereas previous works focusing on the idealized Fe-
only square lattice have identified some of these phases,
all electronic orders discussed here respect the symme-
tries of the crystallographic non-symmorphic space group
that describes the FeAs/Se layer. These symmetries
qualitatively change the nature of the vestigial phases,
and the orbital-order patterns that accompany the com-
posite spin orders. Besides the widely investigated Ising-
nematic order parameter ΦB2g , which transforms as the
B2g irrep of the tetragonal group, two additional Ising-
like, zero wave-vector composite order parameters are
found, transforming as the A2u and B2u irreps (denoted
by ΦA2u

and ΦB2u
).

While ΦB2g
is associated with a combination of onsite-

and bond-orbital orders involving the dxz, dyz, dxy or-
bitals, ΦA2u

is accompanied by spin-current order involv-
ing the dxy orbitals and staggered dxz/dyz orbital hy-
bridization. Similarly, ΦB2u

is accompanied by checker-
board charge-order related to the dxy orbitals and stag-
gered dxz/dyz spin-orbit coupling. Moreover, the onset
of ΦA2u

and ΦB2u
also triggers different types of Rashba-

like and Dresselhaus-like spin-orbit couplings involving
the dxz/dyz orbitals. Importantly, these spin-orbit cou-
pling terms are a consequence of a spontaneous symmetry
breaking driven by magnetic fluctuations, rather than an
explicit broken symmetry due to e.g. a substrate or an
applied electric field.

These rather unusual orbital patterns lead to a variety
of interesting effects unveiled in our work: the lifting of
the spin-degeneracy of the electronic band structure in
the vestigial A2u and B2u phases; the electro-nematic ef-
fect, by which an electric field applied perpendicular to
the FeAs/Se layer acts effectively as a transverse field to
the nematic order parameter; and the ferro-Néel effect,
describing the fact that Néel order is induced by a uni-
form magnetic field in the vestigial A2u and B2u phases,
resulting in ferrimagnetic and canted antiferromagnetic
spin configurations.

The most promising iron-based compounds where
these unusual A2u and B2u vestigial phases may be real-
ized are those for which the primary C4 magnetic phases
have been observed. Interestingly, not only doping, but
also pressure, have been shown to be capable of tuning
the magnetic ground state from stripe to C4 [34, 36].
Recently, indirect evidence for charge-order, presumably
due to a non-zero ΦB2u

, has been reported in ARPES ex-
periments in hole-doped compounds [101]. Although the
experiment was performed inside the charge-spin density-
wave phase, it would be interesting to investigate whether
the effect persists into the paramagnetic phase. In the
1144 compound, it has been argued that a non-zero ΦA2u
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exists due to a small symmetry-breaking field associated
with the crystal structure of this material, combined with
proximity to a spin-vortex magnetic phase [33].

More broadly, the formalism discussed here could also
be relevant to other correlated systems that have the
same space group as the iron pnictides and display mag-
netic or nematic orders. One interesting case is that of
URu2Si2, which has the same I4/mmm space group as
the 122 pnictides. Nematic order has been suggested
below the hidden-order temperature by certain exper-
iments, which may be an instability on its own right
or a B2g vestigial phase [102, 103]. Other experiments
indicate non-magnetic Fermi surface folding with order-
ing vector (0, 0, π) in the hidden-order phase, which one
may speculate to be related to a A2u or B2u vestigial
order [74, 104]. Another potentially relevant 5f -electron
system is the compound CeAuSb2, whose space group
P4/nmm is the same as the 11, 111, and 1111 pnictides.
Recent neutron scattering experiments revealed a change
in the magnetic ground state from single-Q stripe to
double-Q magnetic order as function of an applied mag-
netic field [105]. Whether vestigial phases also emerge in
this phase diagram remains to be established.
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Appendix A: Low-energy electronic model

For completeness, we here provide the details of
the non-interacting Hamiltonian used to obtain the
band structures shown in Figs. 4–6. They follow the
parametrization first proposed in Ref. 40. Note that
the results presented in the main text are independent
on the specific form of the Hamiltonian, since all the ar-
guments are based on symmetry. The basis used here
and throughout the paper is

Ψs(K) =

ΨM+,s(K + QM )
ΨM−,s(K + QM )

ΨΓ,s(K)

 , (A1)

where ΨΓ,s and ΨM,s are given in Eqs. (12) and (13).
The Hamiltonian is given by:

H =

 h+(K) hSOC
+− 0

(hSOC
+− )† h−(K) 0
0 0 hΓ(K) + hSOC

Γ

 . (A2)

Recall that K labels momentum in the crystallographic
2-Fe Brillouin zone and QM = (π, π). H is a 12 × 12
matrix with components

h±(K) =(
ε1 + K2

2m1
± a1KxKy −iv±(K)

iv±(K) ε3 + K2

2m3
± a3KxKy

)
⊗ σ0 ,

hΓ(K) =(
εΓ + K2

2mΓ
+ bKxKy c(K2

x −K2
y)

c(K2
x −K2

y) εΓ + K2

2mΓ
− bKxKy

)
⊗ σ0 ,(A3)

where

v±(K) = v(±Kx +Ky) + p1(±K3
X +K3

y)

+ p2KxKy(Kx ±Ky) , (A4)

and the SOC components are

hSOC
Γ =

1

2
λΓ

(
0 −i
i 0

)
⊗ σ3 ,

hSOC
+− =

i

2
λM

[(
0 1
0 0

)
⊗ σ1 +

(
0 0
1 0

)
⊗ σ2

]
. (A5)

The parameters can be determined on a case-by-case
basis by fitting to tight-binding results. For concrete-
ness, we adopted the ones provided in Ref. 40, based on
the band structure of Ref. 106. For the plots in Figs.
4, 5, and 6, we set λΓ = λM = 75meV to make the
SOC effects more pronounced. For the momentum in-

dependent fermionic bilinears we set ∆
(1,2)
B2g

= ∆
(1,2)
A2u

=

∆
(1,2)
B2u

= 100meV to ensure a more pronounced effect.
For the Rashba- and Dresselhaus-like SOC terms, we set

∆
(3,4,5,6)
A2u

= ∆
(3,4,5,6)
B2u

= 10meV.

Appendix B: Fermionic bilinears transforming as
A2u and B2u

Here we present the fermionic bilinears constructed
from the electronic operator (A1) that transform as the
A2u and B2u irreps, and are thus induced by the onset
of ΦA2u and ΦB2u . We use Eqs. (12) and (13) to ex-
press the bilinears in terms of the orbital operators with
momentum defined in the 1-Fe Brillouin zone. Note that
the bilinears that transform as B2g have been previously
discussed in Ref. 67.

1. Electron pockets

We first focus on bilinears of the form
〈

Ψ†M±Λ̂ ΨM±

〉
,

which involve states at the electron pockets. The ver-
tex Λ̂ has spin, orbital and momentum parts, Λ̂ =
Λ̂(s) ⊗ Λ̂(o) ⊗ Λ̂(k). In the case of spin- and momentum-
independent bilinears, Λ̂(s) and Λ̂(k) are identity matrices
and the orbital vertex Λ̂(o) must transform according to
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the A2u and B2u irreps. Using the vertices tabulated in
Ref. 40, we find:

∆
(1)
A2u

=
〈
d†xz,s(k + Q2)dyz,s(k + Q1)

〉
.

∆
(1)
B2u

=
〈
d†xz,s(k + Q2)dyz,s(k + Q1)

〉
. (B1)

In this expression and hereafter, sums over momentum
and spin indices are left implicit. In addition to these
terms, that are also bilinears that are not spin diagonal.
Consider first the case Λ̂(s) = σz, discussed in the main
text. Since σz transforms as A2g, all we need is to find

the orbital vertices Λ̂(o) that transform as A1u and B1u,
since A2g⊗A1u = A2u and A2g⊗B1u = B2u. We obtain:

∆
(2)
A2u

= i
〈
d†xy,s(k + Q2)σzss′dxy,s′(k + Q1)− h.c.

〉
,

∆
(2)
B2u

= i
〈
d†xz,s(k + Q2)σzss′dyz,s′(k + Q1)− h.c.

〉
.

(B2)

Note that the imaginary prefactor i ensures that time-
reversal symmetry is preserved. We can also construct
momentum-independent bilinears with the spin-vertex
Λ̂(s) = (σx, σy), which transforms as Eg, and orbital ver-

tices Λ̂(o) ∼ Eu. The result is

∆
(7)
A2u

= i
〈
d†xy,s(k + Q1)σyss′dxz,s′(k + Q2)− h.c.

〉
− i
〈
d†xy,s(k + Q2)σxss′dyz,s′(k + Q1)− h.c.

〉
∆

(7)
B2u

= i
〈
d†xy,s(k + Q1)σxss′dxz,s′(k + Q2)− h.c.

〉
− i
〈
d†xy,s(k + Q2)σyss′dyz,s′(k + Q1)− h.c.

〉
.

(B3)

These terms are very similar to the regular SOC terms
that are present even in the absence of vestigial order.
However, the momentum dependence differs, which re-

sults in a staggered SOC, similar to ∆
(2)
A2u

.

2. Hole pockets

We now turn to the bilinears involving states at the

hole pockets, which have the form
〈

Ψ†ΓΛ̂ ΨΓ

〉
. As before,

we write the vertex as Λ̂ = Λ̂(s)⊗Λ̂(o)⊗Λ̂(k). The doublet
ΨΓ, corresponding to dxz and dyz orbitals, transforms as
the Eg irrep of the P4/nmm group at Γ. Thus, the
momentum-independent bilinears constructed from such
fermions will transform as one of the gerade irreps:

Eg ⊗ Eg = A1g ⊗A2g ⊗B1g ⊗B2g . (B4)

To construct fermionic bilinears transforming as unger-
ade irreps it is necessary to consider vertices Λ̂(s) and Λ̂(k)

that are odd under inversion. Since spin-vertices are even
under inversion, the vertices that are odd under inversion
must be Λ̂(k), which must be odd in momentum. Hence,
to preserve time-reversal symmetry, the spin vertices Λ̂(s)

therefore cannot be the identity. We thus construct the

allowed vertices by combining (kx, ky), which transforms
as Eu, and (σx, σy), which transforms as Eg:

Eu ⊗ Eg = A1u ⊗A2u ⊗B1u ⊗B2u . (B5)

Combining Eqs. (B4) and (B5) gives:

Eg ⊗ Eg ⊗ Eu ⊗ Eg = 4A1u ⊗ 4A2u ⊗ 4B1u ⊗ 4B2u ,

(B6)

The numerical prefactors denote how many copies of the
respective irreps can be constructed. The 4 different A2u

terms result from

A1g ⊗A2u

A2g ⊗A1u

B1g ⊗B2u

B2g ⊗B1u , (B7)

whereas the 4 different B2u terms are:

A1g ⊗B2u

A2g ⊗B1u

B1g ⊗A2u

B2g ⊗A1u . (B8)

In the expressions above, the gerade irreps originate from

the bilinear Ψ†ΓΨΓ, Eq. (B4), whereas the ungerade irreps

come Λ̂ = Λ̂(s) ⊗ Λ̂(k), Eq. (B5). Writing down these
combinations explicitly, we have

[A1g] ∼ d†xz,s(k)dxz,s′(k) + d†yz,s(k)dyz,s′(k)

[A2g] ∼ d†xz,s(k)dyz,s′(k)− d†yz,s(k)dxz,s′(k)

[B1g] ∼ d†xz,s(k)dyz,s′(k) + d†yz,s(k)dxz,s′(k)

[B2g] ∼ d†xz,s(k)dxz,s′(k)− d†yz,s(k)dyz,s′(k) . (B9)

Moreover:

[A1u] ∼ kxσxss′ + kyσ
y
ss′

[A2u] ∼ kxσyss′ − kyσ
x
ss′

[B1u] ∼ kxσyss′ + kyσ
x
ss′

[B2u] ∼ kxσxss′ − kyσ
y
ss′ . (B10)

In the expressions above, the orbitals, spins, and mo-
menta, are defined with respect to the coordinate system
of the single Fe atom square lattice. Combining these
expressions according to Eqs. (B7) and (B8) gives:

∆
(3)
A2u
∼
〈

(kxσ
y
ss′ − kyσ

x
ss′)(

d†xz,s(k)dxz,s′(k) + d†yz,s(k)dyz,s′(k)
) 〉

∆
(4)
A2u
∼
〈

(kxσ
x
ss′ + kyσ

y
ss′)(

d†xz,s(k)dyz,s′(k)− d†yz,s(k)dxz,s′(k)
) 〉

∆
(5)
A2u
∼
〈

(kxσ
x
ss′ − kyσ

y
ss′)(

d†xz,s(k)dyz,s′(k) + d†yz,s(k)dxz,s′(k)
) 〉

∆
(6)
A2u
∼
〈

(kxσ
y
ss′ + kyσ

x
ss′)(

d†xz,s(k)dxz,s′(k)− d†yz,s(k)dyz,s′(k)
) 〉

(B11)
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for A2u and

∆
(3)
B2u
∼
〈

(kxσ
x
ss′ − kyσ

y
ss′)(

d†xz,s(k)dxz,s′(k) + d†yz,s(k)dyz,s′(k)
) 〉

∆
(4)
B2u
∼
〈

(kxσ
y
ss′ + kyσ

x
ss′)(

d†xz,s(k)dyz,s′(k)− d†yz,s(k)dxz,s′(k)
) 〉

∆
(5)
B2u
∼
〈

(kxσ
y
ss′ − kyσ

x
ss′)(

d†xz,s(k)dyz,s′(k) + d†yz,s(k)dxz,s′(k)
) 〉

∆
(6)
B2u
∼
〈

(kxσ
x
ss′ + kyσ

y
ss′)(

d†xz,s(k)dxz,s′(k)− d†yz,s(k)dyz,s′(k)
) 〉

(B12)

for B2u.

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S.
Uchida, and J. Zaanen. From quantum matter to high-
temperature superconductivity in copper oxides. Nature
518, 179 (2015).

[2] E. Fradkin, S. A. Kivelson, and J. M. Tranquada. Collo-
quium: Theory of intertwined orders in high temperature
superconductors. Rev. Mod. Phys. 87, 457 (2015).

[3] A. Himeda, T. Kato, and M. Ogata. Stripe States with
Spatially Oscillating d-Wave Superconductivity in the
Two-Dimensional t− t′−J Model. Phys. Rev. Lett. 88,
117001 (2002).

[4] E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V.
Oganesyan, J. M. Tranquada, and S. C. Zhang. Dy-
namical Layer Decoupling in a Stripe-Ordered High-Tc

Superconductor. Phys. Rev. Lett. 99, 127003 (2007).
[5] D. F. Agterberg and H. Tsunetsugu. Dislocations

and vortices in pair-density-wave superconductors. Nat.
Phys. 4, 639 (2008).

[6] P. A. Lee. Amperean Pairing and the Pseudogap Phase
of Cuprate Superconductors. Phys. Rev. X 4, 031017
(2014).

[7] R. M. Fernandes, P. P. Orth, and J. Schmalian. Inter-
twined vestigial order in quantum materials: nematicity
and beyond. arXiv:1804.00818 (2018).

[8] J. Paglione and R. L. Greene. High-temperature super-
conductivity in iron-based materials. Nat. Phys. 6, 645
(2010).

[9] D. C. Johnston. The Puzzle of High Temperature Su-
perconductivity in Layered Iron Pnictides and Chalco-
genides. Advances in Physics 59, 803 (2010).

[10] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin.
Gap symmetry and structure of Fe-based superconduc-
tors. Rep. Prog. Phys. 74, 124508 (2011).

[11] A. V. Chubukov. Pairing Mechanism in Fe-Based Su-
perconductors. Ann. Rev. Cond. Mat. Phys. 3, 57
(2012).

[12] S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D.
K. Pratt, A. Thaler, N. Ni, S. L. Bud?ko, P. C. Can-
field, J. Schmalian, R. J. McQueeney, and A. I. Gold-
man. Anomalous Suppression of the Orthorhombic Lat-
tice Distortion in Superconducting Ba(Fe1−xCox)2As2

Single Crystals. Phys. Rev. Lett. 104, 057006 (2010).
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